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Abstract

The relationship between prices and volatility of energy assets (primarily oil and gas)

is of paramount importance for investors and policy makers. We construct a volatility

index for the European oil and gas market based on a model-free approach to obtain

a European counterpart of US volatility indices for the energy market, such as the

CBOE Crude Oil Volatility Index (OVX). Given that investors are averse to volatility

of losses, but appreciate volatility of gains, we also derive risk measures that focus on

positive and negative returns and their imbalance. We assess whether the constructed

indices have predictive power on future returns. We show that in the medium term

all the risk indices behave as market greed indicators, whereas in the short term they

behave as fear indicators since rises in risk indices are linked with negative returns.

The implications for investors and policy-makers are outlined.
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1 Introduction

Financial market risks (e.g. credit risk, liquidity risk or market risk) are important in invest-

ments assessment. Volatility is a crucial indicator for quantification of risk. The Chicago

Board Options Exchange (CBOE) introduced the VIX Index in 1993, as a 30-day expecta-

tion indicator for the volatility of the S&P 100. The methodology was later updated in 2003,

adopting a model-free approach based on extracting volatility from a basket of option prices

related to the S&P 500. Since then, it has become the reference benchmark for volatility

in the US stock market. However, this measure does explicitly account for tail risk of the

distribution, leaving ground for other skewness measures. It is worth noting that, for the

computation of model-free implied volatility the risk-neutral distribution of returns is used,

which may differ from the realized one. In fact, the risk-neutral distribution is often more

left-skewed than the realized distribution, as traders assign a higher probability to extreme

events in the left tail of the distribution. Put out-of-the-money (OTM) prices consistently

exceed call OTM prices, indicating traders’ willingness to hedge against extremely negative

events. Therefore, asymmetry in the distribution is necessary to accurately predict future

realized returns (see Foresi & Wu (2005)). In 2011, the CBOE introduced the CBOE SKEW

Index to measure the perceived tail risk by financial operators, capturing the probability

they associate with extremely negative returns (Gambarelli & Muzzioli (2019)). However,

the CBOE SKEW Index did not achieve the same success as the VIX Index because the

combined use of the two indicators led to results that are difficult to interpret. In fact, while

the VIX tends to assume high values during periods of market instability, the asymmetry

of the distribution can also increase during calm periods. To address this discrepancy, new

risk measures have been proposed, as Corridor Implied Volatility (CIV) of Andersen & Bon-

darenko (2007) and the Risk Asymmetry Index (RAX) of Elyasiani et al. (2018).

In this paper we construct for the first time a volatility index for the European oil and gas

market based on a model-free approach to obtain a European counterpart of US volatility

indices for the energy market, such as the CBOE Crude Oil Volatility Index (OVX). More-
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over, we derive risk measures that focus on positive and negative returns and their imbalance

(Corridor implied volatility and Risk asymmetry index). We assess whether the constructed

indices have predictive power on future returns of Oil & Gas market. Both markets are sub-

ject to strong pressures, including energy transition and geopolitical tensions, influencing

energy asset prices and inflation. Additionally, oil and gas prices are linked to significant

cost items in many sectors of the economy, affecting the inflation rate dynamics. According

to Ciner (2013), oil prices affect stock prices in two ways: by altering expectations about

future cash flows of companies and influencing inflation expectations, which in turn affect

the discount rate used for securities valuation.

The structure of the paper is as follows. In Section 2 we provide a literature review. In

Section 3 we illustrate the data used in the empirical analysis. In Section 4 we investigate

the capability of CIV and RAX to predict realized returns. The last section concludes.

2 Literature review

In this section, we describe the extensive literature regarding the relationship between volatil-

ity and prices in the energy market, focusing on oil and gas markets in Subsections 2.1 and 2.2

respectively. In Subsection 2.3 we present the main challenges in the estimation of volatility

and skewness.

2.1 Relationship between oil prices and stock market

The literature regarding the relationship between prices and volatility of energy assets (pri-

marily oil) and stock markets is extensive. Urom et al. (2021) examine the relationship

between economic activity and stock market volatility, energy assets and gold in the United

States, both in the short and long term, using data fromMarch 12, 2011 to May 2, 2020. They

implement an asymmetric AutoRegressive Distributed Lag (ARDL) model and a Granger

causality test showing an asymmetric interaction between the variables, both in the short
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and long term. Specifically, in the long term, there is an increase in stock market volatility in

response to both positive and negative shocks from the energy asset market and conversely.

However, energy asset volatility decreases in response to both positive and negative shocks

to economic activity and in relation to negative shocks from the gold market. In all cases,

they use OVX as implicit volatility.

Choi & Hong (2020) focus on the causal relationship between implicit volatility indices re-

lated to crude oil (OVX), the S&P 500 (VIX) and the KOSPI 200 (VKOSPI), representing

the South Korean stock market, using a methodology similar to Urom et al. (2021). Unlike

Urom et al. (2021), they split the sample in two sub-periods to examine the relationship

between the measures considered before and after the shale gas revolution. The results show

that during the period of the shale gas revolution, there is a bi-directional causal relationship

between OVX and VIX. Furthermore, OVX appears to influence the dynamics of VKOSPI.

However, these relationships seem to diminish in the period that does not include the shale

gas revolution. Instead, in both sub-periods, there is a unidirectional causality from VIX to

VKOSPI.

Xiao et al. (2019) examine how changes in the values of OVX impact the implicit volatility

index of the Chinese market (VXFXI). They implement a quantile regression model that,

unlike the standard linear regression model, provides a comprehensive frame of the distribu-

tion of the dependent variable under different market conditions and it produces estimates

of the dependent variable robust to outliers, heteroscedasticity, and skewness. The results of

the standard linear regression model show a statistically significant and positive relationship

between OVX changes and VXFXI changes. A more in-depth analysis through quantile re-

gression, however, reveals that this relationship persists in all quantiles but intensifies from

the seventieth percentile. It is therefore inferred that the effect of OVX changes on VXFXI

is greater in extreme market conditions. The analysis is then repeated, including VIX in

the model, as a control variable. As suggested by the Adjusted R2, the inclusion of this

variable provides a better description of the relationship between OVX changes and VXFXI
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changes, which is still significant and positive. However, it is a less pronounced relationship

overall, but one that still has a greater intensity in the upper quantiles. Controlling for

VIX also suggests that changes in this index have a significantly positive impact on VXFXI

changes, meaning that higher volatility in the US stock market results in higher volatility in

the Chinese stock market.

Creti et al. (2013) analyse the relationship between the returns of 25 commodities and the

US stock market from January 2001 to November 2011 using a Generalized Autoregressive

Conditional Heteroskedasticity (GARCH) model. The results show that the relationship

between commodities and the stock market evolves over time and exhibits high volatility,

especially following the 2007-2008 crisis, confirming previous studies’ findings that this rela-

tionship is rather unstable. It is highlighted that, in the short term, the stock market crash

following the sub-prime crisis led to a loosening of this relationship. This is mainly due to

a flight-to-quality phenomenon, whereby commodities are seen as safe-haven assets in port-

folio diversification. However, in the long term, the relationship between the stock market

and commodities is stronger, and its dynamics are mainly driven by industrialization and

financialization phenomena. This latter aspect is particularly evident when considering the

oil market. This energy asset is highly correlated with the stock market because an increase

in oil prices results in increased production costs, potential profit erosion, and therefore, loss

of value for shareholders. Creti et al. (2013) also highlight how the relationship between

stock prices and oil prices even reverses in crisis period.

Dutta (2017) uses an ARDL model, a Bound Test and a Granger Causality Test in the Toda-

Yamamoto version to verify the relationship, over different time horizons, between global oil

market implicit volatility indices and the US energy stock market. They introduce the US

VIX as control variable for potential effects resulting from global uncertainty. The results

reveal both a long and short term relationship between oil market volatility indices. Among

implicit volatilities in the oil market and the US energy asset market, the Toda-Yamamoto

test highlights, as expected, a bidirectional causal relationship between the energy sector’s
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VIX and OVX. However, no significance is found regarding the mutual influence between

VIX and OVX, contradicting previous studies. This discrepancy can be explained by use

of different models and/or periods in the analysis. In any case, the results indicate that

changes in implicit volatility of crude oil prices are indicative of future changes in implicit

volatility of energy sector stock prices and viceversa, given the bidirectional relationship.

2.2 Relationship between natural gas prices and stock market

Natural gas plays a crucial role in the economy, although the literature on this topic is rather

limited. The majority of the papers focuses on volatility spillovers between crude oil and

natural gas.

Perifanis & Dagoumas (2020) examine the mechanism of transmission of price and volatility

between the main European natural gas markets (National Balancing Point, NBP, and Title

Transfer Facility, TTF), the Japan-Korean Marker (JKM), and the Brent crude oil market,

used as a benchmark in Europe and Asia. They use a Vector autoregression (VAR) model

with Granger causality tests and Wald tests to verify the connection between prices and a

Dynamic Conditional Covariance (DCC) GARCH model to test the transmission of informa-

tion between markets through volatility transmission. The results show that, regarding the

NBP, oil and natural gas do not mutually influence price formation, which is rather based

on fundamental factors (i.e. supply and demand) and that only gas, for some brief periods,

acts as an information transmitter to the Brent oil market. The results are the same for the

TTF. Perifanis & Dagoumas (2020) find that, in the European market, there is independence

between the two commodities. Opposite results are obtained when considering the JKM. In

this case, each commodity has an explanatory power over the other, although the influence

exerted by Brent oil on natural gas is greater. However, the cause of this connection is to be

found in exogenous factors. Indeed, the period in which this connection was most evident

corresponds to the period when Japan shut down some of its nuclear power plants following

the 2011 tsunami, thus increasing the need for alternative sources for electricity production.
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Brent oil, unsurprisingly, led price formation in the natural gas market only until Japan

resumed nuclear energy production. Even considering potential connections between volatil-

ities, the result is the same, except for the period characterized by the first gas crisis in

Europe. Therefore, the authors conclude that the two markets are not connected, and price

formation follows supply and demand dynamics.

Geng et al. (2021) on the other hand, analyse the level of connection between the natural

gas market, uncertainty, and the stock market in Europe and the USA. They observe an

higher level of connection in the United States due to a greater maturity of the markets,

although this difference is rather limited. The authors also assess how the level of connection

varies over time. They highlight that a higher level of connection is associated with periods

of turmoil in financial markets, confirming the hypothesis of previous studies that there is

greater interaction between the commodity market and the stock market in times of stress.

Geng et al. (2021) also observe that much of the spillover effect between markets occurs

mainly in the short term. They also study in which direction spillovers move. In Europe,

after 2014 and until mid-2016, the natural gas market acted as an information transmitter

to other markets, probably due to the collapse of crude oil prices. In the long term, however,

the intensity of the connection between markets in both regions is rather limited. Focusing

on the European case, they show that, in recent years, the impact of the natural gas market

on overall uncertainty has increased: it acts as an information transmitter for energy market

uncertainty and the stock market, while it is a net receiver regarding uncertainty arising from

economic policy. Both in the long and short term, in both regions, the natural gas market is

mainly influenced by uncertainty from financial markets, indicating an increasingly financial

asset.

Acaravci et al. (2012) assess the long-term relationship between natural gas prices and stock

market prices in 15 European Union countries, for the period from 1990 to 2008. Empirical

evidence shows a long-term relationship between natural gas prices, industrial production,

and stock market prices in Austria, Denmark, Finland, Germany, and Luxembourg, con-
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trary to what happens for other EU countries. However, this causal relationship is not

direct; rather, gas prices affect the stock market through economic activity. The authors ev-

idence a certain heterogeneity among EU countries regarding the effects of natural gas price

changes on stock prices. Given the economic importance and considering that natural gas

is currently among the most volatile commodities, it is essential to have tools to accurately

predict future realized volatility.

Ding (2021) propose the Natural Gas Volatility Index (NGVX), built using a state-preference

approach based on 30-day expectations of future realized volatility. This measure falls among

those based on a forward-looking approach, as it is derived from option prices that incor-

porate market participants’ expectations. According to Poon & Granger (2005), volatility

estimates extracted from option prices have better predictive performance than those derived

from historical data. This is because option prices incorporate all information and volatility

expectations in response to market events such as monetary policy announcements or the

publication of gas and oil inventory reports. The results show that NGVX is an unbiased

estimator of future realized volatility and it is able to capture the strong seasonality of the

natural gas market, showing peaks when gas demand increases. The study also analyses the

characteristics of this market to justify daily price volatility movements. The authors high-

light that the main source of information is the weekly gas inventory reports, which is why

volatility tends to increase until the day before the publication of these reports (Thursday)

and then decrease once the data is released.

2.3 Challenges in the estimation of volatility and skewness

Volatility estimation is crucial for pricing and risk management: a gain and a loss of the same

absolute value do not have the same effect on decision-making, but a loss has proportionally

a greater impact (see the prospect theory of Kahneman & Tversky (1979)).

We can distinguish two approaches: a backward-looking approach (BLa) and a forward-

looking approach (FLa). BLa is based on the Random Walk model, which assumes that
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it is possible to estimate volatility based on the previous period, using historical average,

moving average, exponential weighted moving average or Exponential Smoothing methods

Poon & Granger (2003). On the other hand, FLa involve extracting volatility from option

prices, which incorporate traders’ expectations. The volatility estimation following FLa can

be based on specific theoretical model or model-free. In the former case, volatility is ex-

tracted from the price of a single option through the inversion of a formula, such as Black

& Scholes (1973). Specifically, at-the-money (ATM) calls are used because they have the

most informative content (see Christensen & Prabhala (1998)) and the resulting volatility is

considered as the market’s expectation of future realized volatility until the option’s expiry

date. However, this estimate should be less accurate than the model-free estimate proposed

by Britten-Jones & Neuberger (2000), because the latter, derived from prices of options with

different strikes, maturities and types, has more information content.

RAX belongs to FLa and is based on the concept of CIV introduced by Carr et al. (1998)

and Andersen & Bondarenko (2007). In order to compute corridor implied volatility, option

prices are used, but the integration domain is truncated at the forward price to obtain the

two corridor implied volatilities: one for the upper part of the distribution (CIVup) and one

for the lower part (CIVdown). The two corridor implied volatilities CIVup and CIVdown are

used to calculate the RAX. This index is useful because it combines the information con-

tained in both the VIX, which is an indicator of overall volatility, and the skewness index,

which is expected to express perceived tail risk.

Elyasiani et al. (2018) show that an asymmetric distribution does not necessarily imply thick

tails, and conversely, a symmetric distribution may have them. The ability to synthesize the

various information is crucial for those making investment decisions, as the combined use

of VIX and SKEW may lead to misleading results. The usefulness of the skewness index

and whether it is an indicator of market fear or market greed is a widely debated topic in

the literature. The direction of the relationship between the skewness index, constructed

according to CBOE guidelines, with overall volatility index and market returns is decidedly
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counterintuitive. Elyasiani et al. (2018) conduct a study on the properties of the skewness

index (ITSKEW) and its relationship with volatility (ITVIX) and stock market returns in

Italy. The empirical evidence is consistent with studies on different markets. The first result

concerns the relationship between ITVIX and ITSKEW with FTSE Mib returns, respec-

tively. The volatility index is known to be an indicator of market fear: an increase in its

value is associated with negative returns. This occurs because when there are expectations of

increasing volatility, investors demand higher returns, and thus stock prices decrease. What

is rather surprising is the positive relationship between the skewness index and stock re-

turns. This index is constructed such that values above 100 indicate left skewness (negative

skewness) of the distribution, and viceversa. In economic terms, a value of the skewness

index above 100 indicates that purchasing protection against market downturns, i.e., buying

put options, is more expensive. The results show that increasing values of ITSKEW are

associated with higher returns, suggesting that ITSKEW is more an indicator of market

greed than an indicator of market fear. The authors indicate a possible explanation in the

fact that investors, with a view to protecting their profits, tend to assign a relatively higher

probability to negative events located in the left tail of the distribution.

Another factor that creates confusion in interpreting SKEW values arises from the contro-

versial relationship between this index and VIX. The relationship between skewness and

volatility has been studied through a regression model for 12 European countries (see Gam-

barelli & Muzzioli (2019)). The results show that the sign of the relationship depends on the

country considered and the maturity, highlighting an unclear relationship between the vari-

ables. Daily variations in RAX are, instead, positively correlated with those of the overall

volatility index, for almost all countries, thus showing a clearer relationship. Therefore, the

authors conclude that there is no clear relationship between the variables, at least regarding

SKEW and VIX, and that this depends on the characteristics of each market. A further

analysis considers market returns regressed against the overall volatility index and skewness

index simultaneously. The results show that the main contribution to explain market move-
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ments comes from daily variations in VIX, and only marginally from variations in skewness

indices. Furthermore, while VIX is an indicator of market fear, being negatively correlated

with market returns, the contribution of the skewness index shows a positive sign, confirming

that, at least for the countries considered, it acts as an indicator of market greed. However,

considering additional studies, this relationship is not always respected, generating confusion

among those operating in financial markets.

3 Data and methodology for constructing the implied

volatility indices

For the calculation of implied volatility indices on the STOXX Europe 600 Oil & Gas, we

use data on options for the period from January 1, 2005, to December 31, 2020. These data

include the issuance date, option price, underlying price, implied volatility, volume, strike

and expiry date. Dividend yield for the STOXX Europe 600 Oil & Gas is also utilized to

adjust its price, along with risk-free rates and futures prices of natural gas and Brent oil.

All data were extracted from the OptionMetrics IvyDB Europe Database. STOXX Sector

indices categorize companies based on their primary source of earnings using the Industry

Classification Benchmark (ICB) market standard. According to this standard, 11 industries,

20 supersectors, 45 sectors, and 173 subsectors are defined. The STOXX Europe 600 Oil &

Gas belongs to the STOXX Europe 600 family and pertains to the energy supersector (Oil

and Gas). Specifically, it comprises companies operating in 10 European countries. The

most represented country is the United Kingdom (45.7%). It is followed by France (16.2%),

Italy (9.6%), Norway (9.4%), Denmark (5.3%), Spain (4.6%), Finland (3.6%), Germany

(1.6%), Poland (1.5%), and Austria (1.3%). The index encompasses 600 companies with

high, medium, and low capitalization. Table 1 contains the top 10 companies by market

capitalization included in the index (as of December 30, 2022).

We follow Elyasiani et al. (2018) in constructing of VIX, CIV and RAX indices for STOXX
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Europe 600 Oil & Gas in order to assess whether these risk measures can explain the returns

of the index and whether they add information content compared to other variables such as

futures prices on the European market for Brent oil and natural gas.

3.1 Methodology

Option data are filtered according to the following criteria. First, we eliminate options with

time-to-maturity of less than eight days, as these may be subject to pricing anomalies close

to expiration. Second, only ATM and OTM options are retained, following the criteria of

Aı̈t-Sahalia & Lo (1998), which means put options with moneyness lower than 1.03 and

call options with moneyness higher than 0.97. In-the-money (ITM) options are excluded.

Last, we elimintate the option prices violating the standard no-arbitrage constraints and

those with positive prices for butterfly spreads, as outlined by Carr et al. (1998). To handle

volatility-strike knots, cubic splines are used for interpolation, and a constant extrapolation

scheme is employed outside the existing domain of strike prices, as suggested by Muzzioli

(2013a). This approach ensures a minimal truncation and discretization error (for further

details, refer to Muzzioli (2013a) and Muzzioli (2013b)).

We construct VIX as follow (see Appendix A):

VIX =
2erT

T

∫ ∞

0

M(K,T )

K2
dK (1)

where r is the risk-free rate, T is the time to maturity, M(K,T ) is the minimum between

the call and put price, whit strike price K and maturity T . B1 and B2 represent the cut-off

points in which the variance is accumulated.

CIV is calculated likewise implied volatility but the integration domain is not (0,∞). In

fact, it is truncated as follow:

CIV =
2erT

T

∫ B2

B1

M(K,T )

K2
dK (2)
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The RAX is calculated as follow:

RAX =
σup(0, T )− σdown(0, T )

σoverall(0, T )
(3)

where σup and σdown represent, respectively, the volatility of the right tail (CIVup) and the left

tail (CIVdown) of the distribution and σoverall the overall volatility, with integration domain

(0,∞). Indeed:

σup(0, T ) =

√
2erT

T

∫ ∞

Ft

M(K,T )

K2
dK (4)

σdown(0, T ) =

√
2erT

T

∫ Ft

0

M(K,T )

K2
dK (5)

where Ft is the forward index price, which is the value based on which the integration domain

is divided, equal to:

Ft = K∗erT∆ (6)

where K∗ is the reference strike price, which is the strike at which the absolute difference

(∆) in price between the call and the put ATM is minimized. Given that strike prices are

spaced by a finite interval and are available on a limited domain, we overcome truncation

and discretization errors by interpolating the implied volatility function by cubic splines.

For each trading day, two maturities are reported: one for the near-term options and the

other for the next-term options. For each of these, we calculate the model-free implied

volatility and the two CIVs. However, since the goal is to obtain risk measures for a 30-

day period, interpolation is performed between the two values corresponding to different

expirations. Thus, for each trading day, implied volatility, CIVup, CIVdown, for 30 days are

obtained. These values are then inserted into (3) to obtain the 30-day RAX.

Alternatively, a value of RAX can be calculated for near-term options and one for next-term

options. There will be two values for the forward index price: one for the near-term options

(with expiry less than 30 days) and one for the next-term options (with expiry more than
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30 days). Consequently, there will also be two values for the RAX. Elyasiani et al. (2018)

construct a single 30-day skewness measure, proceeding to calculate a weighted average of

the two RAX values based on their maturities, using the following formula:

RAX30 = wRAXnear + (1− w)RAXnext (7)

where

w =
Tnext − 30

Tnext − Tnear

Through interpolation (Equation 7), we obtain the respective 30-day RAX measure. Since

interpolation is performed on different levels, the values obtained using the two calculation

methods are not identical, but the difference is negligible. The correlation between the two

series is indeed 99.95%.

In order to have a positive value for the RAX index, we use the following formula:

RAX = 100− 10RAX30 (8)

Values of RAX greater than 100 indicate a higher volatility of the left tail compared to

the right tail of the distribution, and viceversa 1. We use Matlab R2021b to perform the

calculation of indices.

3.2 Descriptive analysis

Table 2 present presents descriptive statistics for the log-returns (contemporaneous and 30-

day future) of the STOXX Europe 600 Oil & Gas, for the volatility index, the Corridor

Implied Volatility (CIVup and CIVdown), and the RAX, covering the period from January 1,

2005, to December 31, 2020. These statistics include mean, median, maximum, minimum,

1The same considerations apply to the other risk indices: the goal is to obtain a single 30-day risk
measure by interpolating the near-term and next-term measures. In this case, the values obtained are
simply multiplied by 100.
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standard deviation, skewness, kurtosis, and the p-value for the Jarque-Bera test. The dis-

tributions of STOXX Europe 600 Oil & Gas returns do not adhere to the assumptions of

normality: there is a noticeable negative skewness and high kurtosis for both 30-day future

returns and contemporaneous returns. The normality assumption is rejected for all variables

considered. In the case of the implied volatility index, the asymmetry of the distribution

is already apparent when considering the means of the two CIV, which are its components.

The mean of CIVdown is higher than that of CIVup (17.63 and 14.7, respectively). Since these

are risk-neutral distributions, based on the expectations of option traders, this discrepancy

highlights how traders in this market assign a higher probability to price movements located

in the left tail of the distribution. Consequently, volatility spikes are also more frequent

in the left tail of the distribution. This is also evident from the fact that the mean of the

Risk Asymmetry Index is greater than 100 (101.2), indicating a negative asymmetry of the

risk-neutral distribution. Additionally, it is observed that the distributions of the implied

volatility index and the Corridor Implied Volatilities are characterized by positive skewness.

This implies that relatively high values for VOL, CIVup, and CIVdown are more likely to

occur.

In Table 3 we present the correlation matrix of the variables. A negative relationship is

observed between contemporaneous daily returns and all risk indices, indicating that higher

perceived risk is associated with lower daily returns on average. However, in the case of

30-day future returns, the relationship with risk indices differs: increasing perceived risk is

associated with positive average returns. Therefore, it is expected that the implied volatility

index, CIV, and Risk Asymmetry Index are not suitable, in the medium term, as indicators

of market fear. It is also interesting to observe the correlation between the various indices,

especially between the Risk Asymmetry Index and the implied volatility index. The high

(positive) correlation between the implied volatility index and the two CIV is quite intuitive

since CIVs are obtained by model-free implied volatility. There is a positive relationship

between the RAX and the implied volatility index, indicating that its value tends to increase
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in the presence of tensions in the European energy market. This result is consistent with

expectations. In times of turbulence in financial markets, it is expected that the volatility

of negative returns will be higher. Consequently, the spread between CIVdown and CIVup

increases, leading to higher values of the RAX. The increase in the spread between the two

CIV is evident in Figure 1, which presents STOXX Europe 600 Oil & Gas prices (left axis)

and the values of the implied volatility index and CIVs (right axis).

4 Econometric analysis and results

The following analysis consists of five subsections. Subsection 4.1 concerns the evaluation

of the risk indices’ ability to predict the medium-term returns of the STOXX Europe 600

Oil & Gas. Subsection 4.2 focuses on a one-day time horizon to assess the information

content available in the indices for explaining the Oil & Gas index daily returns. Subsection

4.3 investigates the potential asymmetry in the relationship between risk indices and one-

day returns. Finally, we assess in Subsection 4.4 whether past information also influences

price formation and in Subsection 4.5 we verify whether risk indices provide additional

information after introducing Brent oil futures prices into the models. We implement several

linear regression models in order to assess the information content and predictive power of

model-free volatility and asymmetry measures on the returns of the STOXX Europe 600 Oil

& Gas, both in the medium term and short term (30 and 1 days, respectively).

4.1 The predictive power of risk indices on returns in the medium

term

We use the following model to evaluate the predictive power of volatility and asymmetry

measures in the medium term.

Rt,t+30 = α + βIt + εt (9)
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where Rt,t+30 identifies the 30-day log-returns of the STOXX Europe 600 Oil & Gas and

It represent, at time t, alternatively, the implied volatility (V OLt), CIVupt , CIVdownt and

RAXt. If the estimate of the β is statistically significant and negative (positive), it means

that the i-th index is an indicator of market fear (market greed) given an inverse (direct)

relationship between returns and indices.

The result is presented in Table 4. On a 30-day horizon, all four risk measures are statis-

tically significant at the 1% level in explaining medium-term future returns of the STOXX

Europe 600 Oil & Gas. Moreover, the implied volatility index and the two Corridor Implied

Volatility measures have quite similar information content: they explain approximately 1.8%

of the total variance of returns, unlike the model containing RAX, whose Adjusted R-squared

is significantly lower. Such modest information content of the indices was foreseeable over a

30-day horizon. Indeed, other factors come into play in determining prices over the medium

term, such as monetary policy interventions or geopolitical events. The sign of the β esti-

mates suggests that, over the medium term, high index values are generally associated with

positive returns. For example, in the case of CIVdown, a 1% change in the index value is

associated with a 0.031 change in 30-day future log-returns. Regarding VOL and CIVup,

the beta estimates are almost identical to that of CIVdown (slightly above 0.03). Even in

the model containing RAX, the β estimate is positive, but compared to other models, the

intercept value is higher. This, along with a relatively lower Adjusted R-squared, suggests

that RAX has lower content compared to the implied volatility index and the two CIVs.

Contrary to Elyasiani et al. (2018), in the European energy market, options-derived risk

indices cannot be considered indicators of market fear. Instead, given their association with

positive future returns, market participants’ expectations may incorporate the idea of an

oversold market that may return to ”normal” levels in the medium term. For this reason,

we perform the same regression taking into account two distinct market conditions: high

volatility and low volatility. Additionally, it is suggested that during periods of high volatil-

ity, the indices carry a higher level of information, as demonstrated in previous research
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(i.e. Gambarelli & Muzzioli (2019)). The sample characterized by high risk includes the sub-

prime crisis, the Euro crisis, the Ukraine gas crisis that began in 2014, and the COVID-19

pandemic crisis, totaling 2312 observations compared to the remaining set of 1681 observa-

tions, defined residually. Table 5 present the results of the estimates made for Regression

9 under different volatility scenarios. Even in periods characterized by high volatility, the

sign of the estimates remains unchanged, reinforcing the idea that the energy market tends

to exhibit positive returns following even pronounced turbulence. Furthermore, in such cir-

cumstances, the implicit volatility index, CIVup, and CIVdown respectively explain 5.2%,

4.8%, and 5.3% of the total variance of returns, thus possessing greater information con-

tent compared to normal market conditions. Moreover, double beta estimates are observed

compared to those of the entire sample, indicating a more pronounced relationship: a one

percent change in the volatility index and Corridor Implied Volatility is associated with fu-

ture returns being approximately 0.06 higher on average. Even the RAX has improved its

performance, although it still has significantly lower information content compared to the

other indices, explaining approximately 1.3% of the total variance of returns. The intercept

level also assumes a rather high value, suggesting a potential omitted variable problem within

the model. However, even in this case, an increase in risk is associated with higher average

returns.

Conversely, in periods of calm, the indices have less relevance in explaining future returns of

the STOXX Europe 600 Oil & Gas. The levels of Adjusted R-squared are indeed less than

1% for all indices. However, even in low volatility conditions, increases in risk are associated

with positive returns, although the relationship is less pronounced overall. An increase in

the volatility of the left tail more than proportional to that of the right tail is associated with

lower returns, but overall the model is only marginally significant, so it cannot be concluded

that there is a reversal of the relationship in calm market periods. Despite differences in per-

formance among the various indices, it is quite evident that, regardless of market conditions,

an increase in volatility is indicative of future positive returns in the medium term.
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4.2 The information content of risk indices in the short term

In order to investigate the information content of risk indices in the short term, we consider

first differences of the indices (∆I) in the following regression:

Rt,t+1 = α + β∆It+1 + εt (10)

where Rt,t+1 represents the contemporaneous daily log return. From Table 6, it can be

observed that in the short term, volatility risk is a predominant factor in explaining the

variance of contemporaneous returns. However, considering the entire time span, the RAX

does not have sufficient information content to explain the dynamics of returns as it is

not statistically significant. As for the volatility measures, adjusted R-squared values of

approximately 23% are observed for the two CIVs measures, and 29.6% for the VOL. In the

short term, an increase in perceived risk, whether related to the left tail or the right tail of

the distribution, is generally associated with a decline in prices of the STOXX Europe 600

Oil & Gas.

The estimation is replicated in the two different volatility conditions (Table 7). In the period

characterized by high volatility, the coefficient estimates are essentially unchanged compared

to Table 6. However, the statistical significance of the models has increased. Indeed, higher

levels of Adjusted R2 are recorded (above 33% for implied volatility and around 25% for

both Corridor Implied Volatility measures). Additionally, the economic significance has

slightly increased with larger standardized coefficients (in absolute value) compared to those

estimated over the entire sample. It’s evident that the strongest relationship, in economic

terms, is between contemporaneous returns and ∆V OL. As for the CIV, the standardized

coefficients are quite similar among them.
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4.3 Is the relationship between returns and risk indices symmet-

rical?

Given the relevance of risk in explaining the dynamics of contemporaneous returns, the anal-

ysis was deepened to identify any specificities in the risk-return relationship. Specifically, this

assessment aims to identify differences in the mean returns depending on whether traders’

expectations are for increasing or decreasing volatility (thus considering the first differences

of volatility indices). In order to evaluate the potential asymmetry in the relationship be-

tween the analysed measures and daily returns, we create a variable (∆IPt) to account for

any additional effect resulting from positive differentials (referring to the difference in index

value between time t and time t− 1). This variable takes a value of zero if the differential is

negative; otherwise, it takes on the value of the observation. We estimate the Regression 11

in the case of high-volatility sample and on the low-volatility sample. Results are reported

in Table 8.

Rt,t+1 = α + β∆It+1 + γ∆IPt+1 + εt (11)

In calm market conditions, the coefficient of the constructed variable is not statistically sig-

nificant. No conclusion can be drawn regarding a potential asymmetric relationship between

risk and return. However, conducting the estimates on the sample characterized by high

volatility, we highlight a possible asymmetry in the case of ∆VOL and ∆CIVdown. The esti-

mated coefficients for these measures are statistically significant at the 1% level, suggesting

that daily returns differ on average depending on whether volatility expectations are increas-

ing or decreasing. Given the positive estimation of coefficients for these variables, on aver-

age, lower returns are observed when volatility expectations are decreasing. Consequently,

for positive values of VOL and ∆CIVdown, the relationship with returns is less pronounced.

For example, for positive differentials of the volatility index (CIVdown), a unitary increase is

associated with average contemporaneous returns lower by 0.00567 (0.00577); conversely, in

the case of negative spreads, a unitary decrease is associated with higher returns by approxi-
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mately 0.00756 (0.00814) on average. Therefore, it is evident that the risk-return relationship

tends to change under different market conditions, at least concerning the implicit volatility

index and CIVdown. While the risk-return relationship appears symmetrical for all indices in

calm periods (except for RAX, which is not significant), periods characterized by financial

market turbulence show an asymmetric relationship between volatility and returns, except

for volatility related to the right tail of the distribution (i.e., ”good” volatility).

4.4 Is past information relevant?

We assess whether the contemporaneous first differences related to the risk indices (∆It+1)

contain all the available information or if, in price formation, past information is crucial. We

estimate the following regression:

Rt,t+1 = α + β∆It+1 + γ∆It + εt+1 (12)

We regress contemporaneous daily log returns on contemporaneous first difference of indices

(∆It+1) and lagged first difference of indices ∆It. We present in Table 9 the result of the

Regression 12 for high and low volatility sub-samples. Either way, the lagged variable (∆It)

is statistically significant only in the models containing the two Corridor Implied Volatility

indices. The RAX is not statistically significant. Therefore, concerning the implied volatility

index only, the lagged variable (∆VOLt) does not add any significant information beyond

that contained in the contemporaneous variable (∆VOLt+1). In the case of the two Corridor

Implied Volatility indices, it was observed that the coefficients related to the lagged variable

are statistically significant in both market conditions, although there are differences between

different volatility regimes. In the low volatility period the coefficient related to the lagged

variable (∆CIVupt) is statistically significant at the 1% level, the information content is

lower compared to that of the model with a single regressor (Regression 10). A lower value

of Adjusted R2 is observed.
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Conversely, in the high volatility period, the inclusion of the lagged variable among the

regressors leads to a better descriptive ability of the models (Table 3.2.8). For both CIVupt

and CIVdownt , the coefficients related to the lagged variable are statistically significant (at the

5% and 1% levels, respectively), and the increase in Adjusted R2 values confirms that, for the

Corridor Implied Volatility indices, past information is relevant in explaining the dynamics of

STOXX Europe 600 Oil & Gas returns. Economically, the effect of the lagged variable is quite

similar to the contemporaneous variable, but the relationship with returns is less pronounced.

It is approximately 14% of the effect exerted of the contemporaneous variable. Indeed, while

variations of one standard deviation of ∆CIVupt+1 are on average associated with movements

in returns of about 0.54 standard deviations, the standardized effect of the lagged variable

(∆CIVupt) is approximately 0.07 standard deviations of returns, in the opposite direction.

This holds true in the presence of market turbulence. In conditions of low volatility, however,

this ratio remains almost unchanged, but the overall economic significance is reduced. For

instance, in such a context, variations of ∆CIVupt+1 of one standard deviation are associated

with changes in returns averaging 0.39 standard deviations.

4.5 Using oil futures prices as control variable

In this subsection, we investigate whether the risk indicators considered add information

content and remain significant in explaining both contemporaneous and medium-term future

returns, even after including futures prices of natural gas and Brent oil among the regressors

(Brent oil, like crude oil in the USA, is the benchmark reference in the European market). It

is expected that the prices of these two commodities are significant in explaining the returns

of the European sector index. To verify their actual significance, we estimate the following

models:

Rt,t+30 = α + βCO1t + γNG1t + εt (13)

Rt,t+1 = α + βCOt,t+1 + γNGt,t+1 + εt+1 (14)

21



where CO1t and NG1t are, respectively, future prices of Brent oil and natural gas and

COt,t+1 (NGt,t+1) represent the logarithmic difference of CO1t (NG1t). The results are

presented in Table 10. We find that only the variables related to Brent oil have significant

information content in explaining both contemporaneous and medium-term returns of the

STOXX Europe 600 Oil & Gas. For this reason, we decide to exclude the future prices of

natural gas as control variable. We estimate the following regressions, for both different

sub-sample of volatility scenario:

Rt,t+30 = α + βIt + γCO1t + εt (15)

Rt,t+1 = α + β∆It+1 + γCOt+1 + εt+1 (16)

We present in Table 11 the results of Regression 15 for different volatility scenarios. We

show that in periods characterized by market turbulence, VOL and CIVdown have informa-

tion content such that Brent oil futures prices, which are statistically insignificant, do not

add any additional information about the dynamics of future returns over 30 days for the

STOXX Europe 600 Oil & Gas. In periods of calm, however, the situation is reversed. In

such a context, the implied volatility index and CIVdown are not significant at all, while

Brent oil futures prices alone explain over 3.5% of the overall variance of future returns for

the STOXX Europe 600 Oil & Gas. CIVup and RAX, on the other hand, are statistically

significant regardless of market conditions, thus adding information compared to that con-

tained in Brent oil futures prices. However, the information content they possess is quite

different. From the estimates made on models with a single regressor (Regression 9 and Re-

gression 10), it emerged that RAX explains a very small percentage of the overall variance

of returns. The same considerations apply to CIVup: in periods of calm, this indicator adds

information content compared to prices, but most of the variance in returns is explained by

the latter. Instead, CIVup has much of the information contained in the control variable in

periods characterized by high volatility. In such cases, indeed, Brent oil futures prices are
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scarcely significant, while CIVup explains about 4.8% of the variance in returns.

Finally, we present the result of Regression 16 in Table 12. Unlike what happens over a

medium-term horizon, the daily variation in Brent oil futures prices is always significant,

both in periods of high volatility and in calm periods. However, the relationship between

risk indicators (except for RAX) and daily returns remains very strong: the estimated coef-

ficients for the first differences of the volatility index and the two Corridor Implied Volatility

measures are statistically significant at 1%, regardless of market conditions. Despite the

significant increase in Adjusted R2 of the models after the inclusion of the control variable,

risk remains a determining factor in price formation.

There is a different relevance of the risk factor in describing the dynamics of returns depend-

ing on the time horizon and the index considered. In the medium term, the risk indicators

are always significant even after controlling for Brent Oil future prices as control variable

but the Adjusted R2 is lower than the short term analysis. In the short term, we find that

the lagged RAX is no significant.

23



5 Conclusions

Given the strong relationship between risk and financial asset returns, quantifying the volatil-

ity of a security plays a crucial role in defining appropriate investment strategies. Currently,

all trading platforms provide investors with a multitude of risk indicators to support their in-

vestment decisions. Among these, the VIX Index is certainly the most widely used, becoming

the benchmark for overall market volatility in the US financial market. However, investors

distinguish between ”good” volatility and ”bad” volatility, as a security with high risk can

offer excellent returns but also significant losses. Therefore, it is necessary to consider the

asymmetry of returns distribution and consequently evaluate which tail this volatility falls

into. Thus, our work focus on evaluating the information content and predictive power of

both volatility and skewness indices on returns. In particular, the analysis was conducted

with reference to the short and medium-term returns of the STOXX Europe 600 Oil & Gas, a

sector index of the European energy market that includes 600 companies with high, medium,

and low market capitalization exposed to the price risk of oil and natural gas.

We construct, following a forward looking approach (FLa) based on model-free implied

volatility (i.e. Britten-Jones & Neuberger (2000)), the risk indices (VOL, CIVs and RAX)

for STOXX Europe 600 Oil & Gas. Specifically, the implied volatility index (VOL), the

Upside Corridor Implied Volatility (CIVup), and the Downside Corridor Implied Volatility

(CIVdown) were considered as volatility indices while the Risk Asymmetry Index (RAX) was

considered as a skewness index.

Compared to previous studies Elyasani et al. (2016), the analysis was conducted over a longer

observation period (January 1, 2005, to December 31, 2020) and focused on a specific sector

of the European financial market. The choice of using RAX as a skewness index stems from

the fact that the joint use of the SKEW index Bakshi et al. (2003) and the implied volatility

index leads to misleading results for those making investment decisions. Indeed, if volatility

increases in periods characterized by market tensions, skewness of the distribution can also

increase in periods of calm. RAX, on the other hand, being positively correlated with the
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implied volatility index, shows increases in value with increases in volatility. Moreover, since

RAX contains the information available in both the volatility index and the skewness index,

investors can use only this measure to obtain unbiased indications regarding future returns

Elyasani et al. (2016). In particular, to assess the information content of the risk measures in

explaining sector returns, we estimated a linear regression where the returns were regressed

on the implied volatility indices. 30-day returns were regressed on the levels of the risk

measures (as they are indicative of 30-day volatility by construction), while 1-day returns

were regressed on the first differences of the same to preserve temporal coherence within the

analysis.

Unlike previous studies (Elyasani et al. (2016)), on a medium-term horizon (30 days), risk

measures cannot be considered indicators of market fear. Rather, given the positive sign

of the coefficient estimates, expectations of increasing volatility are indicative of investors’

fear of missing investment opportunities (indicators of market greed). However, the results

of the analysis conducted over the short term (1 day), are consistent with expectations that

increases in risk measures are reflected in negative returns. Over this time horizon, the RAX

is statistically non-significant: it is unable to explain the returns of the STOXX Europe 600

Oil & Gas.

Given the crucial role of volatility in determining short-term returns, the analysis was deep-

ened by studying the relationship between volatility indices and returns. It emerged that,

in periods characterized by low volatility, the relationship between the indices under consid-

eration and 1-day returns of the STOXX Europe 600 Oil & Gas is symmetric. However, in

the presence of market turmoil, the existence of an asymmetric relationship between the first

differences of the VOL and the CIVdown and the 1-day returns of the STOXX Europe 600

Oil & Gas cannot be excluded. In fact, although an overall inverse relationship between the

first differences of the two indices and 1-day returns is observed, for positive values of the

two volatility measures, negative returns are still observed, albeit lower in absolute value.

In the case of the Upside Corridor Implied Volatility, however, the relationship with returns
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remains symmetric even in periods of market tension.

In order to check the robustness of the results, 30-day futures prices of Brent oil, the bench-

mark for oil prices in the European market, were introduced into the analysis. Also in this

case, for the very short-term analysis, the daily logarithmic differences of the futures prices

were considered, as the 30-day prices were unable to capture the dynamics of returns over this

time horizon. It emerged that the risk measures under study provide additional information

even after the introduction of Brent oil futures prices, which are significant in explaining the

returns of the STOXX Europe 600 Oil & Gas, both in the medium and short term. This

has led to a redefinition of the economic significance of volatility measures on returns. In

fact, the implied volatility index and the two CIVs measures are statistically significant in

explaining Brent oil futures prices as well.

The study has thus confirmed the importance of model-free volatility and skewness measures

in describing returns in the European energy sector (with the exception of skewness index

in the short term). However, it highlights the different information content of these mea-

sures in explaining sector returns over different time horizons. If in the medium term risk

measures are to be considered indicators of market greed, the same cannot be said for short

term, where increases in volatility risk are associated with negative returns. Future research

will extend the analysis over longer time horizons to verify the information contained in

these measures and include the recent period characterized by the war between Russia and

Ukraine, during which natural gas prices showed marked volatility.
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Tables

Table 1: Top 10 companies for market capitalization.

Companies Supersector Country Wage (%)

SHELL Energy United Kingdom 29.84%
TOTALENERGIES Energy France 15.61%

BP Energy United Kingdom 15.05%
EQUINOR Energy Norway 6.76%

ENI Energy Italy 6.35%
VESTAS WIND SYSTEMS Energy Denmark 5.29%

REPSOL Energy Spain 3.94%
NESTE Energy Finland 3.56%

SNAM RETE GAS Energy Italy 1.79%
AKER BP Energy Norway 1.71%

Table 2: Descriptive stastistics

VOL CIVup CIVdown RAX Rt,t+30 Rt,t+1

mean 23.38 15.36 18.04 101.20 0.00 0.00
median 20.30 13.06 15.45 101.22 0.00 0.00
max 93.20 54.35 76.11 103.58 0.35 0.14
min 10.49 7.03 8.17 99.51 -1.13 -0.18
std. Dev. 9.56 6.22 8.04 0.55 0.08 0.02
skewness 2.29 2.23 2.34 0.07 -1.26 -0.39
kurtosis 10.50 10.06 11.38 3.24 11.35 15.11
p-value JB 0.00 0.00 0.00 0.00 0.00 0.00

Note: We show the descriptive statistics for the implied volatility index (VOL),
the Upside Corridor Implied Volatility (CIVup), the Downside Corridor Implied Volatil-
ity (CIVdown), the Risk Asymmetry Index (RAX), the 30-day future returns (Rt,t+30), and
contemporaneous daily returns (Rt,t+1) of the STOXX Europe 600 Oil & Gas. The p-value
corresponds to the Jarque-Bera normality test (the null hypothesis being that skewness and
kurtosis are both zero).
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Table 3: Correlation matrix of variables

VOL CIVup CIVdown RAX Rt,t+30 Rt,t+1

VOL 1.00
CIVup 16.32 1.00
CIVdown 16.37 16.18 1.00
RAX 5.31 3.42 6.38 1.00
Rt,t+30 2.28 2.25 2.28 0.38 1.00
Rt,t+1 22.56 22.56 22.58 23.37 -1.04 1.00

Note: Table 3 represents correlation matrix between the implied volatility index (VOL),
the Upside Corridor Implied Volatility (CIVup), the Downside Corridor Implied Volatility
(CIVdown), the Risk Asymmetry Index (RAX), the 30-day future returns (Rt,t+30) and the
contemporaneous daily returns (Rt,t+1) of the STOXX Europe 600 Oil & Gas.

Table 4: Results of Regression 9 based on the total observations

Rt,t+30 Rt,t+30 Rt,t+30 Rt,t+30

VOLt 0.03228***
(0.00374)

CIVup,t 0.03300***
(0.00389)

CIVdown,t 0.03094***
(0.00361)

RAXt 0.00701***
(0.00235)

Constant -0.10193*** -0.08955*** -0.08948*** -0.71189***
(0.01155) (0.01030) (0.01019) (0.23818)

Adjusted R2 1.83% 1.77% 1.81% 0.22%

Note: Table 4 presents the estimated output for the following regression: Rt,t+30 =
α+ βIt + εt where It is represented by VOL, CIVup, CIVdown and RAX. The t-statistics are
reported in parentheses. *p-value < 0.1; **p-value < 0.05; ***p-value < 0.01.
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Table 5: Results of Regression 9 based on different volatility scenarios.

High volatility
Rt,t+30 Rt,t+30 Rt,t+30 Rt,t+30

VOLt 0.06384***
(0.00565)

CIVup,t 0.06378***
(0.00588)

CIVdown,t 0.06237***
(0.00546)

RAXt 0.02059***
(0.00364)

Constant -0.21330*** -0.18448*** -0.19204*** -2.09262***
(0.01833) (0.01645) (0.01629) (0.36898)

Adjusted R2 5.20% 4.81% 5.31% 1.32%
Low volatility

Rt,t+30 Rt,t+30 Rt,t+30 Rt,t+30

VOLt 0.02209***
(0.00703)

CIVup,t 0.02930***
(0.00728)

CIVdown,t 0.01630**
(0.00665)

RAXt 0.00802***
(0.00252)

Constant -0.05977*** -0.06767*** -0.03875** 0.81384***
(0.02011) (0.01769) (0.01720) (0.25468)

Adjusted R2 0.53% 0.90% 0.30% 0.54%

Note: Table 5 presents the estimated output for the following regression: Rt,t+30 =
α+ βIt + εt where It is represented by VOL, CIVup, CIVdown and RAX. The t-statistics are
reported in parentheses.
p-value < 0.1; **p-value < 0.05; ***p-value < 0.01.
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Table 6: Results of Regression 10 based on the total observations

Rt,t+1 Rt,t+1 Rt,t+1 Rt,t+1

∆VOLt+1 -0.00608***
(0.00015)

∆CIVup,t+1 -0.00731***
(0.00021)

∆CIVdown,t+1 -0.00637***
(0.00018)

∆RAXt+1 0.00033
(0.00074)

Constant -0.00004 -0.00006 -0.00005 -0.0001
(0.00022) (0.00023) (0.00023) (0.00026)

Adjusted R2 29.62% 22.95% 23.24% 0%

Note: Table 6 presents the estimated output for the following regression: Rt,t+30 =
α + β∆It + εt where ∆It is represented by ∆VOL , ∆CIVup , ∆CIVdown and ∆RAX . The
t-statistics are reported in parentheses. *p-value < 0.1; **p-value < 0.05; ***p-value < 0.01.
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Table 7: Results of Regression 10 for different volatility scenarios

High volatily
Rt,t+1 Rt,t+1 Rt,t+1 Rt,t+1

∆VOLt+1 -0.00637***
(0.00019)

∆CIVup,t+1 -0.00756***
(0.00027)

∆CIVdown,t+1 -0.00666***
(0.00023)

∆RAXt+1 0.00063
(0.00114)

Constant -0.00018 -0.00019 -0.00019 -0.00024
(0.00033) (0.00035) (0.00035) (0.0004)

Adjusted R2 33.23% 25.51% 25.92% 0%
Low volatility

∆VOLt+1 -0.00465***
(0.00026)

∆CIVup,t+1 -0.00593***
(0.00038)

∆CIVdown,t+1 -0.00494***
(0.00032)

∆RAXt+1 -0.00012
(0.00078)

Constant 0.00014 0.00012 0.00013 0.00009
(0.00024) (0.00025) (0.00025) (0.00026)

Adjusted R2 15.50% 12.43% 12.67% 0%

Note: Table 7 presents the estimated output for the following regression: Rt,t+30 =
α + β∆It + εt where ∆It is represented by ∆VOL , ∆CIVup , ∆CIVdown and ∆RAX . The
t-statistics are reported in parentheses. *p-value < 0.1; **p-value < 0.05; ***p-value < 0.01.
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Table 8: Results of Regression 11 based on different volatility scenarios

High volatility

Rt,t+30 Rt,t+30 Rt,t+30 Rt,t+30

∆VOLt+1 -0.00756***
(0.00034)

∆VOLPt+1 0.00189***
(0.00045)

∆CIVup,t+1 -0.00742***
(0.00044)

∆CIVPup,t+1 -0.00024
(0.00063)

∆CIVdown,t+1 -0.00814***
(0.00043)

∆CIVPdown,t+1 0.00237***
(0.00057)

∆RAXt+1 -0.00324*
(0.00197)

∆RAXPt+1 0.00747**
(0.00311)

Constant -0.00099*** -0.0001 -0.00110*** -0.00114**
(0.00038) (0.00041) (0.00041) (0.00055)

Adjusted R2 33.69% 25.47% 26.42% 0.18%

Low volatility

∆VOLt+1 -0.00454***
(0.00044)

∆VOLPt+1 -0.0002
(0.00063)

∆CIVup,t+1 -0.00515***
(0.00062)

∆CIVPup,t+1 -0.0016
(0.00098)

∆CIVdown,t+1 -0.00539***
(0.00057)

∆CIVPdown,t+1 0.00076
(0.00079)

∆RAXt+1 -0.00007
(0.0014)

∆RAXPt+1 -0.00006
(0.00226)

Constant 0.00018 0.0004 -0.00004 0.00009
(0.00029) (0.00032) (0.0003) (0.00038)

Adjusted R2 15.50% 12.56% 12.68% 0.00%

Note: Table 8 shows the estimated output for the following regression: Rt,t+1 = α+ β∆It+1 +
γ∆IPt+1+εt, where ∆It+1 is represented by ∆VOL , ∆CIVup , ∆CIVdown and ∆RAX and ∆IPt+1 is
the asymmetry variable for each measure, taking a value of zero for negative differentials, otherwise
the value of the observation. T-statistics are reported in parentheses. *p-value < 0.1; **p-value <
0.05; ***p-value < 0.01.
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Table 9: Results of Regression 12 based on different volatility scenarios

High volatility

Rt,t+1 Rt,t+1 Rt,t+1 Rt,t+1

∆VOLt+1 -0.00668***
(0.00019)

∆VOLt -0.00027
(0.00019)

∆CIVup,t+1 -0.00876***
(0.0003)

∆CIVup,t -0.00059**
(0.0003)

∆CIVdown,t+1 -0.00729***
(0.00024)

∆CIVdown,t -0.00100***
(0.00024)

∆RAXt+1 -0.00229*
(0.00136)

∆RAXt -0.00283**
(0.00136)

Constant -0.0002 -0.00022 -0.00021 0.00009
(0.00033) (0.00034) (0.00034) (0.00038)

Adjusted R2 33.86% 27.30% 29.13% 0.14%

Low volatility

∆VOLt+1 -0.00473***
(0.00026)

∆VOLt -0.00045*
(0.00026)

∆CIVup,t+1 -0.00593***
(0.00039)

∆CIVup,t -0.00106***
(0.0004)

∆CIVdown,t+1 -0.00532***
(0.00031)

∆CIVdown,t -0.00072**
(0.00031)

∆RAXt+1 -0.00199**
(0.00087)

∆RAXt -0.00079
(0.0087)

Constant 0.00021 0.00021 0.00021 0.00021
(0.00023) (0.00024) (0.00023) (0.00025)

Adjusted R2 16.33% 11.79% 15.03% 0.19%

Note: Table 9 shows the estimated output for the following regression: Rt,t+1 = α+ β∆It+1 +
γ∆It + εt+1, where ∆It+1 is represented by ∆VOL , ∆CIVup , ∆CIVdown and ∆RAX and ∆It
represents the differences in value of the same risk measures between time t and time t − 1. T-
statistics are reported in parentheses. *p-value < 0.1; **p-value < 0.05; ***p-value < 0.01.
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Table 10: Results of Regressions 13 and Regression 14 based on the total observations

Regression13 Regression 14
Rt,t+30 Rt,t+1

NG1t 0.00026
(0.00054)

CO1t -0.00050***
(0.00005)

NGt,t+1 -0.00003
(0.00702)

COt,t+1 0.34740***
(0.00974)

Constant 0.03443*** -0.00017
(0.00022) (0.00438)

Adjusted R2 2.32% 24.67%

Note: We report the results of Regression 13 and Regression 14, Rt,t+30 = α+ βCO1t +
γNG1t + εt and Rt,t+1 = α + βCOt,t+1 + γNGt,t+1 + εt+1, respectively. T-statistics are
reported in parentheses. *p-value < 0.1; **p-value < 0.05;
**p-value < 0.01.
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Table 11: Results of Regression 15 based on different volatility scenarios

High volatility
Rt,t+30 Rt,t+30 Rt,t+30 Rt,t+30

VOLt 0.06126***
(0.00669)

CIVup,t 0.05966***
(0.00685)

CIVdown,t 0.06051***
(0.00652)

RAXt 0.01524***
(0.00399)

CO1t -0.00008 -0.00012 -0.00006 -0.00035***
(0.00008) (0.00008) (0.00008) (0.00007)

Constant -0.19864*** -0.16330*** -0.18169*** -1.52279***
(0.02544) (0.02274) (0.02334) (0.40575)

Adjusted R2 5.16% 4.84% 5.25% 2.36%
Low volatility

VOLt 0.01350*
(0.00752)

CIVup,t 0.02230***
(0.00792)

CIVdown,t 0.00741
(0.00701)

RAXt 0.00863***
(0.00399)

CO1t -0.00054*** -0.00051*** -0.00056*** -0.00054***
-0.00008 -0.00008 -0.00008 -0.00007

Constant 0.0038 -0.01383 0.02449 0.91515***
-0.02351 -0.02152 -0.02002 -0.2479

Adjusted R2 3.62% 3.90% 3.50% 4.14%

Note: In Table 11, we report the estimated outputs for Rt,t+30 = α+ βIt + γCO1t + εt,
where Rt,t+30 represents the log-returns of 30 days future of the STOXX Europe 600 Oil
& Gas, It is represented by the implicit volatility index VOLt , Upside Corridor Implied
Volatility CIVup,t , Downside Corridor Implied Volatility CIVdown,t and Risk Asymmetry
Index RAXt . CO1t is the Brent oil futures price at time t. In parentheses, t-statistics are
provided. *p-value < 0.1; **p-value < 0.05; ***p-value < 0.01.
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Table 12: Results of Regression 16 based on different volatility scenarios

High volatility
Rt,t+1 Rt,t+1 Rt,t+1 Rt,t+1

∆VOLt+1 -0.00538***
-0.00018

∆CIVup,t+1 -0.00699***
-0.00027

∆CIVdown,t+1 -0.00568***
-0.00022

∆RAXt+1 0.00047
-0.00106

COt,t+1 0.27066*** 0.29746*** 0.28439*** 0.37352***
-0.00008 -0.00008 -0.01179 -0.01278

Constant -0.00022 -0.00023 -0.00023 -0.00026
-0.00029 -0.0003 -0.0003 -0.00034

Adjusted R2 46.77% 43.28% 42.90% 26.81%
Low volatility

∆VOLt+1 -0.00395***
-0.00025

∆CIVup,t+1 -0.00490***
-0.00037

∆CIVdown,t+1 -0.00434***
-0.00029

∆RAXt+1 -0.00102
-0.0073

COt,t+1 0.21702*** 0.23143*** 0.21908*** 0.25635***
-0.01333 -0.0135 -0.01345 -0.01407

Constant 0.00007 0.00006 0.00007 0.00004
-0.00021 -0.00022 -0.00022 -0.00023

Adjusted R2 27.62% 24.61% 26.40% 16.64%

Note: In Table 12, we report the estimated outputs for Regressione 16, Rt,t+1 = α +
β∆It+1+ γCOt+1+ εt+1. In parentheses, t-statistics are provided. *p-value < 0.1; **p-value
< 0.05; ***p-value < 0.01.
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Figures

Figure 1: STOXX Europe 600 Oil & Gas prices, VOL, CIVup and CIVdown

Note: The figure displays STOXX Europe 600 Oil & Gas prices (left axis) and the
values of the implied volatility index (vol), Upside Corridor Implied Volatility (civup) and
Downside Corridor Implied Volatility (civdown) (right axis) for the period from January 3,
2005, to December 31, 2020.
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Appendix A. VIX methodology

We present the methodology of VIX index, based on CBOE (2021). Starting from May

2007, the same methodology is applied for calculating the CBOE crude oil ETF volatility

index (OVX), whose underlying options refer to the United States Oil Fund (USO), an ETF

created to replicate the returns of WTI (see Chen et al. (2018)). Given the following formula:

σ2 =
2

T

∑
i

∆Ki

K2
i

eRTQ(Ki)−
1

T

[
F

K0

− 1

]2
(17)

VIX is equal to

VIX = 100 · σ (18)

The Equation 17 include:

• T is the time to expiration (in years);

• F is option-implied forward price;

• K0 is first strike equal to or otherwise immediately below the forward index level, F ;

• Ki is the strike price of the ith out-of-the-money option; a call if Ki > K0 and a put

if Ki < K0; both put and call if Ki = K0;

• ∆Ki is the interval between strike prices- half the difference between the strike on

either side of Ki;

∆Ki =
Ki+1 −Ki−1

2

• R is the risk-free interest rate to expiration;

• Q(Ki) is the midpoint of the bid-ask spread for each option with strike Ki.

The VIX consists of put and call options (near-term and next-term) with more than 23 days

and less than 37 days to expiry. Among these are the standard options that expire on the

third Friday of the month and the ”weekly” options that expire every Friday except the

third. The time to expiration is calculated according to the following formula:

T =
Mcd +Msd +Mod

m
(19)

where Mcd represent the minutes remaining until midnight of the current day, Msd represent

the minutes from midnight to 9:30 a.m. for standard options and until 4:00 p.m. for weekly
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options, Mod is the total minutes of the days between the current day and the expiration

day and m is the minutes in a year. The risk-free interest rate consistent with the option’s

time to expiration is derived from the U.S. Yield curve, to which approximations are applied

using cubic spline.

The first step in calculating the index is to select the options to be used. Firstly, it is

necessary to determine F for both the near-term and the next-term options according to the

formula:

F = S + eRT (C − P ) (20)

where S is the strike price at which the absolute difference between the call price and the put

price is minimal and (C − P ) represents the minimum difference. Then, K0 is determined,

which is the strike that equals F or, if not, the immediately lower strike. Finally, out-of-

the-money (OTM) puts with strike K < K0 and OTM calls with strike K > K0 are selected

until two consecutive options with a bid price of 0 are found. For options with a strike equal

to K0, both the put and the call are selected. For each selected option, reference is made

to the midpoint between the quoted bid price and ask price. Then, Equation 17 is used to

calculate σ2 for both the selected near-term and next-term options. The third and final step

involves calculating the VIX using the two values of σ2:

VIX = 100 ·

√[
T1σ2

1

(
NT2 −N30

NT2 −NT1

)
+ T2σ2

2

(
N30 −NT1

NT2 −NT1

)]
· N365

N30

(21)
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