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Novel treatments based upon the use of immune checkpoint inhibitors have an

impressive efficacy in different types of cancer. Unfortunately, most patients do not derive

benefit or lasting responses, and the reasons for the lack of therapeutic success are not

known. Over the past two decades, a pressing need to deeply profile either the tumor

microenvironment or cells responsible for the immune response has led investigators

to integrate data obtained from traditional approaches with those obtained with new,

more sophisticated, single-cell technologies, including high parameter flow cytometry,

single-cell sequencing and high resolution imaging. The introduction and use of these

technologies had, and still have a prominent impact in the field of cancer immunotherapy,

allowing delving deeper into the molecular and cellular crosstalk between cancer and

immune system, and fostering the identification of predictive biomarkers of response.

In this review, besides the molecular and cellular cancer-immune system interactions,

we are discussing how cutting-edge single-cell approaches are helping to point out the

heterogeneity of immune cells in the tumor microenvironment and in blood.

Keywords: immunotherapy, immune checkpoint, single-cell technologies, cancer, immune system

INTRODUCTION

Immune checkpoints are critical regulators of the immune system which modulate the duration
and amplitude of immune responses to maintain self-tolerance and prevent autoimmunity. Among
immune checkpoints, cytotoxic T lymphocyte antigen-4 (CTLA-4, or CD152), programmed
death-1 (PD-1, or CD279) and programmed death ligand-1 (PD-L1, or CD274) have been
intensively studied and antibodies against these molecules have been developed to successfully
reinvigorate T cell functions and provide a durable immune response. Antibodies against immune
checkpoints have demonstrated impressive efficacy, and now constitute the backbone of systemic
therapy in different malignancies (1).

Despite considerable advancements in clinical care, epidemiologic data and ongoing clinical
trials suggest that most patients receiving immune checkpoint inhibitors (ICI) do not derive benefit
or stable and lasting responses. The mechanisms at the basis of this lack of responsiveness are
multiple, and still not completely known. Over the past years, accumulating evidence suggested that
the elevated neoantigen load (i.e., the number of antigens actually targeted by T cells) may have a
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robust relationship with the response to ICI (2). In particular,
the more is the neoantigen load, the better is the response to
therapy. However, the intensity and efficacy of the immune
response can vary upon neoantigens’ clonality. It seems that
neoantigens derived from clonal mutations, which appear early
during tumorigenesis, may elicit more effective tumor responses
than neoantigens derived from subclonal mutations, which are
acquired later in tumorigenesis (3). This means that intratumoral
heterogeneity may impact the response to ICI. Moreover,
several biophysical matters occur in the binding and recognition
between peptide-MHC complex and T cell receptor (TCR) (4),
and current prediction algorithms are still unable to precisely
define TCR binding capacity for specific neoantigens (2). An
additional layer of complexity originates from the fact that T
cells, which are the main mediator of anti-tumor immunity, are
extremely heterogenous in the tumor microenvironment (TME),
and that beyond T cells many other types of immune cells are
present in the tumor tissue that could affect response to ICI (4).
Furthermore, an anticancer immune response may be impaired
also by a number of other factors, mainly immune cells polarized
toward an immune suppressive phenotype (5).

Taken together, these observations suggest that most, if not
all, of these components are involved in the clinical response
to ICI, and that the identification of the mechanism(s) at the
basis of such response is crucial, both to provide important
insights into the molecular and cellular crosstalk between cancer
and immune system, and possibly foster the identification of
predictive biomarkers of response (6). In this scenario, recently
several novel single-cell technologies have been used to draw
an in-depth characterization of tumor and immune system
ecosystems in different malignancies. Here, we first describe
the interactions between tumor and immune cells and then
give an overview of the cutting-edge single-cell approaches
mainly used to interrogate cancer immunity both in the tumor
microenvironment and in the blood. We also cover and discuss
how single-cell analysis have revealed the vast heterogeneity
characterizing intra-tumoral immune cells, mainly T cells, and
how this knowledge is critical to understand the role of
different cell states and phenotypes in the response to immune
checkpoint inhibitors.

IMMUNE SYSTEM AND CANCER

Cancer Immunosurveillance and
Immunoediting
The long-standing theory of immune surveillance suggests that
cells and tissues are regularly monitored by the immune system,
which is responsible for recognizing and eliminating the vast
majority of nascent cancer cells. The interactions between cancer
and the immune system are regulated by a complex network
of biological pathways, and start during the early steps of
carcinogenesis, when normal cells acquire biological capabilities
which allow them to evolve progressively to a neoplastic state.
Such capabilities are commonly known as hallmarks of cancer,
and among them the ability to evade immune system is crucial to
guarantee cancer cell survival and tumor progression (7).

Over the past years, accumulating evidences, both from
murine models and clinical epidemiology, have validated the
concept of cancer immunosurveillance, demonstrating that the
immune response acts as a barrier to tumor development and
progression, and is a critical determinant of susceptibility to
tumors (8–13). This action is exerted through at least three
distinct mechanisms: (i) protection of the host from viral
infections, and thus suppression of tumors of viral etiology;
(ii) prevention or resolution of inflammation, which facilitates
tumorigenesis; (iii) identification and elimination of cancer cells,
in certain tissues and on the basis of the expression of tumor-
specific antigens (14). In particular, deficiencies in the number or
functionality of CD8+ cytotoxic T lymphocytes (CTLs), CD4+
type-1 T helper (Th1) cells, natural killer (NK) cells, natural
killer T (NKT) cells, B cells, or γδ T cells lead to increased
susceptibility to carcinogen-induced tumors and spontaneous
tumors development (9, 11, 15, 16). Similarly, unsensitivity to
interferons (IFNs) or lack of perforin, interleukin (IL)-12, tumor
necrosis factor (TNF)-α or IL-1β are associated with increased
tumor susceptibility (10, 11, 17–20).

Reinforcing this notion, clinical epidemiology supports
the existence of antitumoral immune response in some
types of cancer. Firstly, evidence for immunosurveillance
can be found in patients with acquired immunodeficiencies,
like that caused by the human immunodeficiency virus
(HIV), the cause of AIDS, who have an increased frequency
of virus-associated malignancies, including Kaposi’s sarcoma,
lymphomas, urogenital cancers, and cervical cancers due to
different strains of papillomavirus (21). Secondly, higher cancer
prevalence has been observed in transplanted recipients treated
with immunosuppressive drugs. Immunosuppression to prevent
transplant rejection is associated with a 3- to 100-fold increased
risk of developing certain types of cancer, mainly lymphomas
(22). However, solid tumors with no viral etiology also occur
with increased frequency. For example, patients receiving renal
transplant have a 3-fold increase in the incidence of cancers
respect to the general population, and a 200-fold increase of skin
cancers (23). Patients with liver transplant also display a greater
incidence of malignancies, including head and neck cancers, and
skin cancers (24, 25).

Along with clinical epidemiology, other evidences support
the theory of cancer immunosurveillance, including the
identification of tumor antigens and of antibodies against those
antigens. In cancer patients, humoral immune response has
been detected against more than a hundred tumor-associated
antigens, thus indicating that the immune system is well able
to fight against cancer (26). However, whether or not the
identification and quantification of these antibodies has a
clear diagnostic and/or prognostic relevance is still unclear.
Other spontaneous immune responses against cancer cells
have been described in paraneoplastic autoimmune syndromes,
caused by the activation of an immune response against self-
antigens expressed on cancer cells. Paraneoplastic autoimmune
syndromes are often caused by cross-reactivity between the anti-
tumor immune response and antigens present in the nervous
system, and the onset of neurologic symptoms typically precedes
the diagnosis of a formerly undetected tumor (27).

Frontiers in Immunology | www.frontiersin.org 2 March 2020 | Volume 11 | Article 490

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Gibellini et al. Single-Cell Tools and Immunotherapy

Advancements made all over the past two decades
have demonstrated that the immune system not only
defends the host against tumor development, but also edits
tumor immunogenicity, in a process referred to as cancer
immunoediting. In its most complicated form, cancer
immunoediting proceeds through three phases, termed
elimination, equilibrium and escape. During the elimination
phase, both innate and adaptive immune system collaborate
to recognize and kill neoplastic cells. Cancer clones which
survive the elimination phase can then progress through the
equilibrium phase, in which tumor growth is limited, but cellular
immunogenicity is edited by the adaptive immune system,
mainly lymphocytes. During this phase, the pressure of the
immune system together with the genetic instability of tumor
cells can lead to the selection of neoplastic subclones with low
immunogenicity, which can enter into the escape phase and
evade the immune recognition. A large number of mechanisms
operate to enable tumor immune escape by interfering with
almost every step required to generate an effective immune
response, i.e., the: (i) tumor capacity to downregulate antigens
and/or MHC I; (ii) tumor expression and/or secretion of
immunosuppressive molecules and/or antiphagocytosis signals;
(iii) tumor modulation of lymphocytes’ metabolism; (iv)
recruitment of immune cells that actively mediate tolerance, or
even promote tumor growth (28).

Since Virchow noted the presence of lymphocyte infiltration
in solid tumors in 1863 (29), additional support for cancer
immunosurveillance and immunoediting is evident in
uncountable reports that describe the presence of immune
cells infiltrating the tumors, and that correlate their frequency
with patient prognosis. The presence of T cells inside tumors
was observed, in late 1990’s, in patients with melanoma,
and then described for several other malignancies, including
ovarian, colorectal (CRC) or lung cancer (30–36). From then
on, a great attention has been paid to investigate the role of
tumor-infiltrating lymphocytes (TILs). This effort resulted in
the identification of TILs frequency as a bona fide indicator of
improved prognosis and increased overall survival for several
types of tumors.

Recent advancements in the characterization of the immune
context within the tumor microenvironment have revealed that
different classes of the so-called tumor immune environment
(TIME) exist that are associated to tumor initiation and could
affect the response to therapies (37). The TIME varies greatly
across individuals and over distinct cancers. However, despite
variability, two main classes can be described, which differ on the
basis of composition, functional status and spatial distribution
of immune cells. Infiltrated-excluded TIMEs are populated by
immune cells mainly along the tumor margins, and are relatively
poor of CTLs in the tumor core (37). Moreover, CTLs from this
kind of TIME typically display low expression of activation or
cytotoxicity markers, including granzyme(GZM)-B and IFN-γ
(37). Conversely, infiltrated-inflamed TIMEs are characterized
by large immune infiltration among neoplastic cells, with a high
frequency of CTLs expressing GZM-B, IFN-γ, and PD-1. In
some cases, infiltrated-inflamed TIMEs contain compartments
which resemble tertiary lymphoid structures (TLSs), and act

as sites of lymphoid recruitment and immune activation (38).
Such compartments are generally located at the invasive tumor
margin and in the stroma, and include naïve and activated T
cells, regulatory T (Treg) cells, B cells and dendritic cells (DCs)
(37). Over the past years, the immune network of the TME has
become a focus of cancer research and therapeutics development,
and the need to understand its great complexity and diversity in
this context is now compelling.

Immune Checkpoints and Their Inhibitors
Immune checkpoints are molecules expressed on T cell plasma
membrane able to inhibit or activate the development or
execution of effector functions exerted by cytotoxic or pro-
inflammatory T cells. Among immune checkpoints, CTLA-4 and
PD-1 have been most actively studied in the field of clinical
cancer immunotherapy.

CTLA-4 and CD28 are homologous molecules expressed by
CD4+ and CD8+ T cells, which mediate antagonistic functions
in T cell activation, and share two ligands, namely B7-1 (CD80)
and B7-2 (CD86), expressed on antigen-presenting cells (APCs).
CD28 interacts with the CD80 dimer with relatively high affinity
and the CD86 monomer with lower affinity, to mediate T cell
activation in conjunction with TCR signals. Conversely, CTLA-
4 interacts with both ligands with higher affinity and avidity
than CD28, to inhibit T cell activation. CTLA-4 is constitutively
expressed on Treg cells or induced following T-cell activation
via CD28 and TCR signaling (39). The humanized anti-CTLA-
4 antibody ipilimumab was approved by the United States Food
andDrug Administration (FDA) in 2011. It blocks the interaction
between CTLA-4 and its ligands expressed by APCs, thereby
preventing the transmission of inhibitory signals to CTLA-4-
expressing T cells. Although the blocking of inhibitory signals
is the main mechanistic contributor to ipilimumab functions,
other still poorly known mechanisms are involved. For example,
the effects of anti-CTLA-4 on Treg is still matter of debate.
Indeed, the binding of CTLA-4 by ipilimumab on Treg within the
tumor tissue would likely promote Treg depletion by antibody-
dependent cellular cytotoxicity (ADCC) and phagocytosis by
NK cells and macrophages (40, 41). Recently it was found
that both ipilimumab and tremelimumab, another anti-CTLA-4
drug, increase infiltration of intratumoral CD4+ and CD8+ T
cells without significantly changing or depleting FOXP3+ cells
within the TME (42). Nonetheless, regardless the mechanism of
action, ipilimumab demonstrated impressive anti-tumor activity
in several clinical settings in metastatic melanoma (43, 44).

Along with CTLA-4, the PD-1/PD-L1 system constitutes
another immune checkpoint pathway mainly operating by
controlling immune homeostasis. However, while transient
expression of PD-1 is a feature of normal T lymphocyte
activation, persistent antigen exposure leads to a sustained
expression of PD-1 with a gradual loss of effector functions which
are characteristic of exhausted T cell (45). PD-1 mediates an
inhibitory signal in T cells after binding to its ligands, PD-L1
and PD-L2, which are expressed on APCs and cancer cells (46).
The blockade of PD-1/PD-L1 pathway with anti-PD-1 or anti-
PD-L1 antibodies, can successfully reinvigorate T cell functions
and provide a durable response in different malignancies. There
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are currently six inhibitors of the PD-1/PD-L1 pathway, namely
nivolumab, pembrolizumab, cemiplimab (directed against PD-
1), and atezolizumab, avelumab and durvalumab (directed
against PD-L1), which have been approved by the FDA for
the treatment of tumors like melanoma, lung cancer, renal-cell
carcinoma (RCC), microsatellite instability-high CRC, classical
Hodgkin lymphoma, head and neck squamous cell cancer
(HNSCC), hepatocellular carcinoma (HCC), bladder cancer,
gastro-oesophageal cancer, and unresectable or metastatic,
microsatellite instability-high or mismatch repair deficient solid
tumors (47).

The best examples of stable response are those observed
in patients with advanced melanoma. In these patients, it
was reported that 3-year overall survival was 34 and 52%
for ipilimumab and nivolumab, respectively (48). The 3-year
overall survival was 60, 55, 41% for nivolumab plus ipilimumab,
nivolumab alone, or ipilimumab alone (49). In advanced RCC,
the 2-year overall survival of patients treated with nivolumab
plus ipilimumab was 28%, and complete responses were 11%
(50–52). In other cancers, responses to immune checkpoint
monotherapies were not as impressive as in melanoma. This
means that despite considerable advancements in clinical care
of some tumors, epidemiologic data and ongoing clinical trials
suggest that most of the patients receiving ICI do not derive
benefit or durable responses, and the mechanisms at the
basis of this lack of responsiveness are multiple and still not
completely known.

SINGLE-CELL APPROACHES TO IMMUNE
PROFILE

Over the past two decades, a pressing need to deeply profile
the TIME has led investigators to complement data obtained
from traditional approaches, like immunohistochemistry, basic
flow cytometry or measurements on bulk populations of cells,
with data obtained with novel, more sophisticated, single-cell
technologies. To date, a vast array of single-cell approaches,
including high-parameter flow cytometry, deep sequencing,
and high-resolution imaging are available to unmask cellular
heterogeneity and to try to identify actionable hallmarks
of efficient anticancer immunotherapy. In Table 1 a general
overview of single-cell technologies is provided together with
their advantages and disadvantages.

High-Parameter Flow Cytometry
Last advances in proteomics and genomics are paving the way
to comprehend the complexity and the heterogeneity of billions
of specialized immune cells in cancer patients. For decades,
immunologists relied mainly on flow cytometry, the first single-
cell technique that now allows to study the expression and
density of up to 30–40 antigens in a single-cell level. Flow
cytometry is very popular technique used to measure physical
and chemical characteristics of a population of cells/particles
suspended in a fluid, and is routinely used both in basic research,
and in clinical practice to perform cell count, determine cell
phenotypes and functions allowing the monitoring of immune

features in pathophysiological settings (64, 65). Flow cytometry
is unmatched for its high throughput as several million cells can
be analyzed in a few minutes. In addition, cells can be sorted
achieving pure cell populations to perform further functional,
metabolic and molecular analyses (66). Sample preparation
for flow cytometry is relatively fast, but setting up a flow
cytometry panel that includes 28–30 parameters takes a lot of
time because of the need to optimize spectral overlap between
fluorophores, and to choose best antibodies. These issues can be
overcome by following precise rules applicable to panel design,
and optimized panels published such as Optimized Multicolor
Immunophenotyping Panels (OMIPs) (67–72). Together with
fluorescent flow cytometry, mass cytometry (also called CyTOF—
Cytometry by Time-Of-Flight) is a technology that allows
simultaneous analysis of more than 40 different molecules,
including cytokines and transcription factors, with minimal
compensation (53, 54). This technique exploits the use of
monoclonal antibodies conjugated with heavy-metal isotopes
to stain cells and quadrupole time-of-flight mass spectrometer
to perform the detection (73). Mass spectrometry is able to
discriminate isotopes of different atomic weights with high
accuracy, enabling more features to be assayed at the same time,
so the quantity of reporter ions in a particular mass channel
represents the marker expression with little signal overlap
between parameters.

Among high-parameter single-cell technologies, at present
flow cytometry is the gold standard. However, it reveals
the different percentages of cell populations in different
pathophysiological onsets barely identifying different clones (74).
Flow cytometry perfectly captures the phenotype of cells, but fails
to snap their biological complexity. The spectrum of phenotypic
diversity of immune cells within the TME and in blood can
better be appreciated by analyses at the single-cell level to explore
cellular heterogeneity, in terms of gene expression and chromatin
accessibility, that often confounds biomolecular variation from
multi-omics approaches in bulk. Recently, the adaptation of
high-parameter flow cytometry to imaging platforms took to the
development of two promising technologies, known as Imaging
Mass Cytometry (IMC), Co-detection by Indexing (CODEX)
and multiepitope-ligand-cartography (MELC) (55–57, 75, 76).
The former is used to process tissues, employs antibodies
tagged with lanthanides and combines a high resolution laser
ablation system with CyTOF (77). IMC enables the study of cell-
cell interactions and of intercellular networks, thus providing
information regarding the spatial distribution of cells within
a tissue (57–59). CODEX employs oligonucleotide-conjugated
antibodies. Although these technologies have not yet been
applied to dissect immune responses in the field of cancer
immunotherapy, the power will be used to investigate the role
of immune cells in the TME.

Single-Cell RNA Sequencing
Single-cell RNA sequencing (scRNA-seq) technology provide a
transformative view of cell-type-specific gene expression and
allows to analyze hundreds of messenger RNAs (mRNAs) in
a single experiment, enabling the reconstruction of a high-
resolution map of cells according to their molecular signature
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TABLE 1 | Advantages and disadvantages of the cutting-edge single-cell technologies to profile cancer immunity.

Methodology Advantages Disadvantages References

Flow

cytometry

• Evaluation of protein, RNA and DNA at a single-cell level

simultaneously;

• Easy and fast sample preparation;

• Acquisition of sample is high-throughput and fast;

• A plethora of unsupervised and supervised data analysis

methods available (global data structure, cellular progression,

cellular diversity, signaling network inference,

correlative/predictive features of clinical outcome or sample

type);

• Possible to sort cells and perform further studies;

• The cost is cheap (more or less, US $ 0.10 per cell).

• Limit to 30-parameters at time;

• Spillover among different fluorescences;

• Quality control of the data needed;

• High level of expertise is needed to analyze data;

• No information on tissue structure;

• Acquisition of samples must occur in a few hours after

staining due to photo bleaching.

(53)

Mass

cytometry

• Evaluation of protein, RNA and DNA at a single cell level

simultaneously (up to 40 parameters—theoretically around 100);

• Sample preparation is fast;

• Acquisition of sample is high-throughput;

• Metal-tagged samples can be run up to 2 weeks after staining

without notable loss of signal and can be cryopreserved up to 1

month without affecting the data quality or staining integrity of

both surface and intracellular markers;

• A plethora of unsupervised and supervised data analysis

methods available (global data structure, cellular progression,

cellular diversity, signaling network inference,

correlative/predictive features of clinical outcome or

sample type).

• Sample acquisition is not fast;

• Difficult to measure molecules that are expressed at

very low levels;

• Quality control of the data needed;

• Spillover between close isotopes;

• High level of expertise needed to analyse data;

• No information on tissue structure;

• Impossible to recover living cells after analysis;

• The cost is much higher than fluorescence-based flow

cytometry (more or less, several US dollars per cell).

(54)

Image-flow

cytometry

• Evaluation of protein, RNA and DNA at a single cell level

simultaneously (up to 12 parameters);

• Easy and fast sample preparation;

• Up to 10 fluorescent images per cell;

• Images up to 60x magnification;

• Detailed localization of signal from fluorescent probes.

• Sample acquisition is not fast;

• No information on tissue structure;

• High expertise is needed to analyse data;

• Only few software used to analyse data;

• Not possible to perform unsupervised analysis.

(55)

Histo-

cytometry

• Technology is based on multiplexed antibody staining, tiled

high-resolution confocal microscopy, voxel gating, volumetric

cell rendering, and quantitative analysis;

• Gain positional and quantitative information on complex cellular

subsets/phenotypes (defined by multiple markers) directly in

tissue sections;

• Very high-resolution imaging and accurate signal 3D allocation.

• 6–8 colors/parameters;

• Spillover between fluorochromes;

• Due to the lack of molecular level resolution, imaging

does not spatially separate neighboring fluorescent

molecules, instead colocalizing them to the same

voxel (volumetric pixel);

• Software dedicated to imaging;

• Low- throughput.

(56)

Imaging mass

cytometry

• Analytical platforms that successfully couple high-density

analysis by mass cytometry to conventional histology;

• Comprehensive exploration of individual cell phenotypes,

cell–cell interactions, microenvironments, and morphological

structures within intact tissues.

• 1µm spot size

• Sample preparation is slow and needs a lot of

technical advices;

• The rate of image acquisition by laser ablation is slow

(1.5 mm2 in 2 h), and sets a practical limit to the extent

to which a slide can be scanned;

• Many tissue markers of clinical importance show

considerable intratumoral heterogeneity in their

distribution patterns;

• Data analysis remains challenging, and is performed

by particular and dedicated software (like HistoCAT).

(57–59)

Single-cell

RNA

sequencing

• Different methods developed in recent years allow to investigate

single-cell transcriptomics;

• Two low-throughput plate-based methods (Smart-seq2 and

CEL-Seq2) and five high-throughput methods (10x Chromium,

Drop-seq, Seq-Well, inDrops, and sci-RNA-seq);

• Standardized and optimized protocols;

• Very high-throughput;

• A plethora of data analysis methods available (global data

structure, cellular progression, cellular diversity, signaling

network inference, network reconstruction);

• On the basis of the type of sequencing it is possible to identify

cell clonality, allelic expression, alternative splicing, RNA editing;

• 2,000–6,000 genes per cell for primary cells if SMART-seq2 is

used; 1,000–3,000 genes if Drop-seq or InDrop is used;

• Long procedures to prepare cDNA libraries;

• Sample preparation is long (2 days of protocol);

• High cost of single cell sequencing (thousands of US $

per sample);

• Data analysis requires the use of highly advanced

bioinformatics methods;

• Quality control, normalization and imputation needed;

• Due to technical limitations and biological factors,

scRNA-seq data have some background, and are

more complex than bulk RNA-seq data.

• The high variability of scRNA-seq data raises

computational challenges in data analysis.

(60–62)

(Continued)
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TABLE 1 | Continued

Methodology Advantages Disadvantages References

• Low cost of sample preparation: $3–6 per well (if SMART-seq2

protocol is used); $0.05 per cell (if DropSeq or InDrop protocol

is applied).

Single-cell

ATAC

sequencing

• It interrogates the genome for accessibility to DNA binding

proteins in a single experiment; such challenge emphasizes the

need for informative features to assess cell heterogeneity at the

chromatin level;

• scATAC-seq experiments sample DNA, compared to

transcriptomic (scRNA-seq) data;

• Single-cell ATAC libraries are created from single cells that have

been exposed to the Tn5 transposase using one of the following

protocols: Single cells are individually barcoded by a

split-and-pool approach where unique barcodes added at each

step can be used to identify reads originating from each cell,

microfluidic droplet-based technologies are used to extract and

label DNA from each cell, or each single cell is deposited into a

multi-well plate for library preparation.

• A plethora of data analysis methods available.

• Sample preparation is long (2 days of protocol);

• Data analysis for expert requires the use of

bioinformatics methods.

(61, 63)

(66). The first example of single-cell digital gene expression
profiling was published in 2009, and since then on, a continuous
effort has been made to improve experimental protocols and
bioinformatics pipelines, which are essential to process data
(60, 78, 79). A canonical scRNA-seq protocol involves several
steps, including single cell isolation, cell lysis to obtain RNA,
reverse transcription into the first-strand cDNA, second-strand
synthesis, cDNA amplification, and sequencing (60–62).

Although single cells can be isolated by different techniques,
the use of microdroplet-based microfluidics is now widely
diffused among the majority of commercial platforms and
allows the isolation of individual cells into aqueous droplets
in a continuous oil phase. In every droplet, cells are lysed
in a hypotonic buffer, and mRNAs are captured by poly-
dT primers. When reverse transcription takes place, cDNA
molecules originated from a given individual cells are identified
by using short DNA barcode tags. Then, second strands are
generated, and the small amount of synthesized double-strand
cDNA is amplified by means of conventional polymerase
chain reaction (PCR) or in vitro transcription, depending
on the technology. Some protocols improved read coverage
across transcripts, which significantly enhances detailed analyses
of alternative transcript isoforms and identification of single
nucleotide polymorphisms (SNPs) with high sensitivity and
accuracy (80). Eventually, sequencing is performed, and once
reads are obtained, data are pre-processed and analyzed through
clustering of cells, classification and cell trajectory assignment
(78, 79). Concerning T cells, during the last years, several
algorithms have also been developed to utilize scRNA-seq data to
reconstitute TCR information. TCR is a heterodimer composed
of two chains, α and β, which result from genetic recombination
of the V(D)J genes, and is responsible for the specificity of each T
cell against cognate antigens. The diversity of TCRαβ repertoire
is associated with efficient protection against several pathogens
(81), and more recently, the clonality of both peripheral blood
and tumor TCRαβ repertoire has also been associated with

improved clinical outcome under anti-PD-1 or anti-CTLA-4
immunotherapy (82–84).

Despite its numerous pros and great potential, scRNA-seq
suffers from the caveat that mRNA and protein expression do
not always directly correlate. For this reason, recent technological
advances have been made to capture new cell types with a
better resolution, and to detect simultaneously mRNAs and
proteins. For example, Cellular Indexing of Transcriptomes
and Epitopes by Sequencing (CITE-seq), RNA Expression and
Protein Sequencing (REAP-seq), Antibody sequencing (Ab-seq)
enable the measurement of proteins and mRNAs in individual
cells, by using antibodies labeled with DNA barcodes instead
of fluorochromes, thus avoiding the limitations dictated by
the possible spectral overlap of fluorescent signals (85–87).
Quantifying proteins together with mRNAs allows to overcome
the lack of correlation that sometimes exists between mRNA
and protein levels, thus providing a more readout of cellular
phenotype, at the single-cell level. Indeed, proteins, not mRNAs,
are the real targets of drugs, and mRNA abundance cannot
necessarily resemble protein abundance (85). Moreover, in
certain settings, the measurement of protein abundance is more
sensitive for markers with low levels of mRNA transcripts
(85). Thus, CITE-seq, REAP-seq, and Abseq give an unbiased
view of the mRNA and protein profile at the single-cell level,
which is necessary to precisely identify cellular function, and
provide important insights into the pathophysiology of multiple
disorders. However, sample preparation requires more than 2
days and cells need to be fixed or lysed, therefore excluding the
possibility to perform further analysis (85–87).

Another possibility to investigate both mRNA and proteins
is the combination of scRNA-seq and high-parameter flow
cytometry. The combinatorial use of scRNA-seq and high-
parameter flow cytometry in the same sample would likely have a
huge impact in the field of immunotherapy, as is associated with
unique advantages to each method together with the advantage
of using both methodologies. Whereas each technology uses
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unsupervised clustering to identify different populations, scRNA-
seq is totally unbiased as it analyses the expression of thousands
of genes. Conversely, high-parameter flow-cytometry looks
at 30–40 markers that are pre-selected based on a priori
knowledge. Also, scRNA-seq allows transcriptomic analysis
between individual cell subsets, including the use of Gene
Set Enrichment Analysis (GSEA) and comparisons to human
datasets. However, as already described, mRNA and protein
do not always correlate, meaning that the information on
protein expression delivered by high-parameter flow-cytometry
is also central. However, to date, a few studies reported the
combination of scRNA-seq and CyTOF to profile the tumor
immune microenvironment (88, 89).

Single-Cell ATAC-Seq
The Assay for Transposase-Accessible Chromatin using
sequencing (ATAC-seq) is a method for assessing genome-wide
chromatin accessibility. ATAC-seq identifies accessible DNA
regions by probing accessible chromatin with hyperactive
mutant Tn5 transposase that inserts sequencing adapters into
open regions of the genome (90). Single cell ATAC-seq (scATAC-
seq) measures chromatin accessibility enabling marker-free
identification of cell type-specific cis- and trans-regulatory
elements and mapping of disease-associated enhancer activity
and reconstruction of trajectories of cellular differentiation, and
has been used to map gene regulation in cell-to-cell variability
and rare cell phenotypes, including in healthy and malignant
immune cells (61, 63).

The Analysis of Single-Cell Data
Single-cell technologies generate huge amount of information
that allow the exploration of cellular diversity at unprecedented
depth and throughput. For this reason, one of the major
analytical challenge is how to visualize and understand this high-
dimensional datasets originating from high dimensional flow
cytometry, scRNA-seq and scATAC-seq. Data generated by high-
dimensional flow cytometry (up to 30 parameters in several
million cells) can no longer be analyzed by using classical manual
analysis techniques involving the use of bidimensional dot plots
(91). Manual gating analyses is hard to reproduce, as is subjective
and biased, and for large data set is extremely time consuming.
Large datasets are computationally demanding, and therefore
require the development and the application of novel techniques.

Computational flow cytometry provides a set of packages to
analyze and visualize large amount of cells in an unbiasedmanner
(92). These tools are automated, meaning that the quality of
data is fundamental to get rid of false positive. For this reason,
before analyzing high-parameter flow cytometry datasets, files
need to be perfectly compensated, cleaned from the presence of
aggregates and turbulences during acquisition. Only after this
step, data can be analyzed by unsupervised tools (93, 94).

scRNA-seq requires pre-processing of data based on quality
control performance and alignment (78). Several efforts have
been made from bioinformaticians to develop and optimize new
software and packages able to provide insights on the complex
biology and dynamics of cells (66). Most software provide
information regarding identification and characterization of cell

types and their spatial organization in time (78). A canonical
pipeline of data analysis firstly requires data visualization. There
are methods based on dimensionality reduction techniques,
including principal component analysis (PCA), t-distributed
stochastic neighbor embedding (t-SNE), One-Dimensional Soli-
Expression by Nonlinear Stochastic Embedding (ONE-sense),
UniformManifold Approximation and Projection (UMAP), that
aim to preserve the main structure of data while reducing a high-
dimensional data description to a lower-dimensional projection
(95–97). An example of the analysis of the same data by using
PCA, t-SNE, and UMAP is reported in Figure 1. In addition,
clustering-based techniques are available that group cells into
cell type clusters in the original, high-dimensional space and
subsequently use visualization algorithms to represent these cell
type clusters in a lower-dimensional space (93, 98, 99).

Secondly, differences in gene expression level between
populations need to be analyzed. To this purpose, specialized
methods have been designed for single-cell data that considers
single cell features such as technical dropouts and shape of the
distribution (100).

Thirdly, the software Monocle andWanderlust independently
introduced the concept of “pseudotemporal analysis,” in
which scRNA-seq data are collected from a population of
cells undergoing a dynamic biological process and then
computationally ordered into a trajectory that reflects the
continuous changes in gene expression that occur from the
beginning to the end of the process (101–103). Pseudotime
trajectories allow to identify genes that exhibit differential
expression over the course of the biological process and cluster
them based on their expression dynamics. As of February 2020,
more than seventy trajectory inference tools have already been
developed (104).

THE WORKFLOW OF SINGLE-CELL
EXPERIMENT

Regardless of the specific technology employed to generate a
particular dataset, a common workflow can be formulated which
involves multiple steps linking the initial study design to the
final correlation to clinical data. A typical pipeline for single-cell
experiments is reported in Figure 2. An accurate experimental
planning is imperative to avoid technical issues and improve
scientific reproducibility. Several professionals, including the
statistician, the bioinformatician, the biologist and the clinician
should be involved at this step to: (i) define the biological
question; (ii) find patients; (iii) calculate the sample size; (iv)
define the number of replicates; (v) decide the number of
cells; (vi) define the sequencing depth (in the case of scRNA-
seq or sc-ATACseq experiments); (vii) choose the appropriate
equipment (105). At this stage, experimental protocols should
be standardized, and appropriate positive and negative controls
should be selected to ensure good quality results. Then,
experiment is performed and raw data are generated. Alongside,
data pre-processing is performed. Quality control involves
the examination of data, their possible transformation and
normalization, the check for technical issues, batch effects or
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FIGURE 1 | Representative image of different dimensionality reduction techniques that are widely used in single cell studies. As shown by analyzing freely available

scRNA-seq dataset (3k PBMC, from 10X Genomics), UMAP preserves much of the local and more of the global data structure, highlighting its ability to resolve even

subtly differing cell population. From left to right PCA, t-SNE, UMAP.

unexpected results. At the end of the entire process, clean data
need to be visualized and analyzed by computational approaches
to identify clusters and trajectories, and potentially derive novel
predictive biomarkers of response to ICI.

DATA FROM SINGLE-CELL STUDIES

Immune Cells in the Tumor
Microenvironment
Tumors contain different cell populations in endless evolution.
This diversity is commonly referred to as tumor heterogeneity,
and is considered the main driver of resistance to therapy and
metastasis (106). The full comprehension of this heterogeneity
would be extremely important to optimize existing therapeutic
intervention and find new strategies to break down relapses
and mortality. The recent development of technologies based
on sequencing individual cells has been crucial to address
tumor heterogeneity and to elucidate how cells are organized
into multicellular systems. Single cell profiles not only revealed
that human tumors comprise subpopulations of genetically
different diverse malignant cells, but also that a profusion of
different cell types from the surrounding tissues and the immune
system, each with a precise role in pathogenicity, is present
within the TME (106, 107). The immune components of the
tumor microenvironment in different kind of malignancies,
including non-small cell lung cancer (NSCLC), clear cell RCC
(ccRCC), breast cancer (BC), HCC, glioblastoma multiforme
(GMB), microsatellite instability-stable CRC have been recently
annotated and finely characterized (88, 108–111). In general, in
the majority of these tumors, immune cells were mostly T cells,

whereas myeloid cells, B cells and NK cells were found at lower
frequencies (108–111). Only GMB had higher levels of CD68+
myeloid cells if compared to T cells (88).

In NSCLC tumor samples, different subsets of CD8+ T
cells, conventional CD4+ T cells, and Treg cells have been
found (109). Each subset is characterized by a precise gene
expression signature, which reflects a specific functional status.
Two main clusters were found at high frequency: (i) exhausted
CD8+ T cells, characterized by increased expression of effector
molecules, including GZM-A, granulysin (GNLY), perforin
(PRF), GZM-B, NKG7, and inhibitory receptors, like lymphocyte
activating (LAG)-3 (CD223), T cell immunoreceptor with Ig
and ITIM domains (TIGIT), PD-1, and CTLA-4; (ii) suppressive
CD4+ Treg cells, characterized by increased expression of
costimulatory molecules, including CD28 and inducible T
cell costimulatory (ICOS or CD278), and inhibitory receptors
like CTLA-4 and TIGIT (109). Moreover, two CD8+ T cell
subsets exhibited a functional state that precede exhaustion,
and is indeed called pre-exhaustion state. These subsets do
not express CTLA-4, and express mild levels of TIGIT, PD-
1, and the transcription factor TOX, which is a critical
driver of exhaustion (112–115). Whether or not pre-exhausted
subsets could be more effectively reinvigorated by ICI than
fully exhausted subsets is still not known. Furthermore, the
expression level of PD-1 or other inhibitory receptors does not
necessarily correlate with exhaustion-dependent dysfunction. It
was indeed reported that tissue-resident memory T (TRM) cells
expressing PD-1, T-Cell Immunoglobulin And Mucin Domain-
Containing Protein-3 (TIM-3) and negative for CD127 (the
α chain of the IL-7 receptor), which are present in lung

Frontiers in Immunology | www.frontiersin.org 8 March 2020 | Volume 11 | Article 490

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Gibellini et al. Single-Cell Tools and Immunotherapy

FIGURE 2 | Workflow for canonical single-cell experiment.

tumors, proliferate, can upregulate TCR activation–induced
genes, exhibit a transcriptional signature indicative of effector,
survival, and tissue-residency properties, and produce cytokines,
like IL-2, IFN-γ and TNF-α (116). In early-stage triple-negative
BC, among CD8+ T cells infiltrating the TME, TRM cells display
high levels of genes encoding for cytotoxic molecules, including
GZMB and PRF1, high levels of genes encoding for inhibitory
checkpoint, as well as high levels of genes associated with
proliferation (117). This means that the expression of inhibitory
receptors is not a unique feature of exhausted T cells as several
highly functional effector cells also express those receptors. This
also means that exhausted T cells are heterogenous, and that T
cell exhaustion, as well as T cell dysfunctionality, is a gradual,
rather than a discrete, state (118).

In ccRCC, in-depth immunophenotyping analysis identified
the main immune cell types in both T cells and tumor-
associated macrophages (TAMs) (108). Concerning T cells,
eight CD4+ clusters, eleven CD8+ clusters, one CD4+/CD8+
double positive cluster, and one CD4–/CD8– double negative
cluster were identified (108). Notably, whereas PD-1 had a
broad expression both CD8+ and CD4+ T cell population,
other inhibitory molecules, like TIM-3, CTLA-4, and 4-1BB
(CD137) were expressed only by a few PD-1+ subsets, indicating
that a pre-exhaustion status is also present in ccRCC (108).
Interestingly, both in CD8+ and CD4+ T cells, PD-1 is co-
expressed with CD38, which mediates immunosuppression by
activating nitric oxide synthetase which in turn catalyzes the

production of nitric oxide from arginine. Although CD38 has
traditionally been linked to T cell activation, these data suggest
that its expression is not restricted to activated cells, but rather
can be extended to exhausted T cells, at least in ccRCC and BC
(108, 110). In the latter, a higher frequency of PD-1highCTLA-
4+CD38+ T cells has been observed in tumor biopsies if
compared to juxta-tumoral tissues, thus confirming that PD-1
and CD38 are both expressed in exhausted cells (110). Indeed,
CD8+ T cells expressing high level of PD-1 also expressed the
co-inhibitory molecules TIM-3 and CTLA-4, and the activation
markers HLA-DR and CD38, which were not expressed by CD8+
T cells expressing intermediate levels of PD-1 (110). Similarly,
HCC biopsies were mostly enriched by exhausted CD8+ T cells
and Treg cells, and exhausted CD8+ T cells were increased
in patients with late stage HCC if compared with early stage
HCC (111).

Another cluster of special interest in HCC consisted of
mucosal-associated invariant T (MAIT) cells, which are mainly
involved in the protection against bacterial or viral mucosal
infections (119). Although MAIT cells are considered as a first
line defense in the liver, their role in liver cancer is still totally
unexplored. Recent evidences revealed that tumor initiation and
metastasis formation is reduced in mice knockout for MHC
class I-related protein-1 (MR1), which is essential for MAIT
development (120). A fraction of MAIT cells among tumor
CD8+ T cells has been found also in NSCLC and CRC (109,
121). Interestingly, at least in chronic infections, MAIT cells can
express inhibitory receptors, including PD-1, thus meaning that
they could also be targets of ICI (122).

In uveal melanoma, single-cell analysis revealed that tumor-
infiltrating immune cells, including CD8+ T cells and NK cells,
mainly express LAG3, rather than PD-1 or CTLA-4 (123), thus
partially explaining the limited efficacy of checkpoint inhibitor
therapy in this type of tumors (124). This further confirms that
PD-1 is not the exclusive determinant of CD8+ T exhaustion and
that the expression of additional markers should be considered
across different tumors. The situation is even further complicated
by the fact that T cell exhaustion is associated with vast changes
in chromatin accessibility (125). Emerging evidence revealed
that exhausted CD8+ T cells are epigenetically distinct from
functional memory CD8+ T cells, thus suggesting that exhausted
T cells occupy a different differentiation state if compared to
memory T cells (125).

ScRNA-seq analysis of NK cells obtained from human
melanoma metastases indicated that seven clusters of tumor-
infiltrating NK are present in these tissues, each with an
individual functional specialization (126). NK cells were recently
shown to recruit cross-presenting DCs to tumors that are critical
for CD8+ T cell–mediated tumor immunity (126).

Although T cells have a dominant role in controlling
cancer growth, there is growing interest for other subsets of
immune elements that infiltrate the TME, including B and
myeloid cells, and that could have a role in the response
to therapy. Tumor-infiltrating myeloid cells (TIMs) consist of
various subsets of granulocytes, monocytes, macrophages and
DCs, at different stage of differentiation, that contribute to
cancer progression and response to therapy (127, 128). Among
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TIMs, the frequency of a specific subset of monocytes, i.e.,
CD14+, CD16–, HLA-DRhigh monocytes, has been identified
as predictor of progression-free and overall survival in patients
with metastatic melanoma prior anti-PD-1 therapy (129). High-
dimensional single-cell profiling of lung cancer revealed that an
enrichment of macrophages expressing high levels of peroxisome
proliferator-activated receptor (PPAR)-γ has been observed in
lung adenocarcinoma at early stage (130). Macrophages in the
TME have also been studied in breast cancer, renal cancer and
HCC using scRNA-seq data (4, 108, 131). TAM-like macrophages
in HCC highly express two genes, SLC40A1 and GPNMB. The
former encodes ferroportin, a transporter exporting iron from
cells, and regulates pro-inflammatory cytokines, like IL-6, IL-
23, and IL-1β, through a Toll like receptor (TLR)-dependent
pathway (131).

Single-cell profiling of tumor biopsies also revealed that DCs
can be present at the TME (4, 108, 130). Among TIMs, DCs are
the best armed to prime and activate T cells (132), and among
DCs, several subsets with a specificmolecular signature have been
found to be depleted or enriched in the TME. This was possible by
combining CyTOF with single-cell transcriptomics. For example,
CD141+ DCs express high levels of CD207, CLEC9A, and
XCR1 and preferentially interact with CD8+ T cells, whereas
CD1c+ DCs express high levels of CX3CR1, IRF4, CCL22, and
CCL17,which are involved in chemokine signaling, and are better
equipped to interact with CD4+ T cells (130). Also LAMP3+
DCs have various interesting features (131). They indeed exhibit
a higher migration capacity toward lymph node if compared to
conventional DCs (131).

Checkpoint Inhibitor Therapy Effects on
TILs and PBMCs
During the last years, single cell technologies have been used
to interrogate a number of tumoral settings with the goal to
understand both successful and ineffective immune responses
after treatment with ICI, and identify accessible biomarkers
that clinicians could use to discriminate between patients who
most likely respond or not to therapy (2). The most important
studies reporting the use of cutting-edge single-cell technologies
to identify the effects of checkpoint inhibitor therapy on immune
system are reported in Table 2. Concerning the type of neoplasia,
the vast majority of studies regard patients with melanoma or
NSCLC, treated with anti-CTLA-4 or anti-PD-1 or, in few cases,
with both of them.

CD8+ T Cells
Overall, among immune cells, main differences have been found
in T cell compartment, and among T lymphocytes, cytotoxic
cells are often affected by checkpoint inhibitor therapy. Single-
cell technologies have shown that cytotoxic T cells do not
form a homogenous population but are a heterogenous mix of
cells with different transcriptomes, phenotype and functional
capacity. According to their differentiation state and on the basis
of the expression levels of few proteins, CD8+ T cells have been
typically classified in well-defined subsets of naïve, memory, and
effector cells (148). During the last few years, high-dimensional
single-cell profiling allowed immunologists to understand that a

variety of other states with significant phenotypic and functional
diversity is observed within the CD8+ T cell compartment (149).
This heterogeneity becomes increasingly relevant at the level of
the TME, both within and among patients, and could be at the
basis of the mechanisms linking T cells states and response to
checkpoint inhibitor therapy.

A study performed on freshly isolated metastatic melanoma
samples from two cohorts of 20 patients used flow cytometry
alone to show that an increased fraction of tumor-infiltrating
CD8+ T cells expressing high level of PD-1 and CTLA-4 strongly
correlated with response to therapy and progression-free survival
(133). These cells were named as “partially exhausted,” as they
retained the capacity to produce IFN-y but lose the ability to
produce TNF-α and IL-2 (133). In another cohort of patients
with melanoma treated with ICI, single-cell RNA profiling of
immune cells from baseline, on-therapy and post-therapy tumor
samples was performed (139). Exhausted cells were defined as
those with increased expression of several genes encoding for
inhibitory receptors, including LAG3, FASLG, HAVCR2 (which
encodes for TIM-3), PDCD1 (which encodes for PD-1), CD38
(139). It was also showed that TIM-3 and CD39 were markers
for discriminating exhausted from memory CD8+ T cells, and
that the elevated frequency of TCF7+, CD8+ T cells can predict
with a positive outcome (139). Concerning CD39, it was also
found that CD8+ TILs from lung cancer and CRC were not only
specific for tumor antigens but also could recognize a broad range
of epitopes unrelated to cancer, and that CD39 was critical to
distinguish tumor-specific CD8+ TILs from bystander CD8+ T
cells (150).

In other melanoma patients treated with anti-PD-1, the
combination of scRNA-seq to TCR-seq allowed to identify a
dysfunctional axis consisting of cells able to actively proliferate
despite having an “exhausted” phenotype (144). The application
of different single-cell technologies to three different cohorts of
melanoma patients treated with anti-PD-1 allowed to understand
that a noteworthy phenotypic heterogeneity is observed within
CD8+ TILs that display characteristics of dysfunction, reflected
by various combinations and expression levels of inhibitory
receptor and activation markers, the proliferative capacity and
the ability to produce cytokines and effector molecules. A
resistance program that is associated with hallmarks of T cell
exclusion and suppression has also been found in malignant
cells prior to immunotherapy, likely indicating the presence of
intrinsic resistance (137).

Other striking results of single-cell technologies have been
obtained in blood samples from cancer patients treated with
ICI. In those with melanoma, circulating Ki67+, CD8+ T cell
response was correlated with tumor burden (134). Similar results
were found in NSCLC treated with anti-PD-1. After therapy, an
increase of Ki-67+, PD-1+, CD8+ T cells displaying an effector-
like phenotype (HLA-DR+, CD38+, Bcl-2low), costimulatory
molecules (CD28+, CD27+, ICOS+), high levels of PD-1 and
co-expression of CTLA-4 was observed in patients responding
to therapy (135, 140). In the same patients, the expansion of
CD39+, CD8+ T cells was observed a few days after a single dose
of anti-PD-1 in a neoadjuvant setting (145). Tracking TCR clones
and transcriptional phenotypes in basal cell carcinoma (BCC)
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TABLE 2 | Main studies reporting the use of cutting-edge single-cell technologies to identify the effects of checkpoint inhibitor therapy on immune system.

Tumor type Sample

source

Technology Main findings References

Melanoma TILs Flow cytometry • High level of CD8+, PD-1++, CTLA-4++ TILs correlated with

response to therapy and progression-free survival;

• Functional analysis of these cells revealed a partially exhausted

T cell phenotype;

• Assessment of metastatic lesions during anti–PD-1 therapy

demonstrated a release of T cell exhaustion, as measured by an

accumulation of highly activated CD8+ T cells within tumors.

(133)

Melanoma PBMCs

TILs

Flow cytometry • CD8+ T cells responding to therapy display an

exhausted phenotype;

• TIL clones in responding peripheral blood CD8+ T cell

population and blood Ki67+, CD8+ T cell response correlates

with tumor burden.

(134)

NSCLC PBMCs Flow cytometry • Increase in Ki67+, PD-1+, CD8+ T cells following therapy in

∼70% of patients (after the first or second treatment cycle);

• Effector-like phenotype (HLA-DR+, CD38+, Bcl-2low),

expressed costimulatory molecules (CD28, CD27, ICOS), and

had high levels of PD-1 and coexpression of CTLA-4.

(135)

Melanoma TILs Mass cytometry;

RNA-seq

• The CD8+ T cell population expanded in ICI-treated tumors

displayed a CD45R0+, PD-1+, TBET+, EOMES+ phenotype;

• CTLA-4 blockade induces expansion of ICOS+ Th1-like CD4+

T cells.

(136)

Melanoma tumor RNA-seq;

scRNA-seq;

in situ multiplex

protein

• Resistance program expressed by malignant cells, associated

with T cell exclusion and immune evasion. The program is

expressed prior to immunotherapy, characterizes cold niches in

situ, and predicts clinical responses therapy;

• CDK4/6-inhibition represses this program in individual malignant

cells, induces senescence, and reduces melanoma tumor

outgrowth in mouse models in vivo when given in combination

with immunotherapy.

(137)

NSCLC TILs Flow cytometry

RNA-seq

• PD-1++ T cells showed a markedly different transcriptional and

metabolic profile from PD-1+− and PD-1− lymphocytes, as well

as an intrinsically high capacity for tumor recognition;

• PD-1++ lymphocytes were impaired in classical effector

cytokine production, they produced CXCL13, which mediates

immune cell recruitment to tertiary lymphoid structures;

• The presence of PD-1++ cells was strongly predictive for both

response and survival.

(138)

Melanoma tumor scRNA-seq;

ATAC-seq

• Two distinct states of CD8+ T cells were defined by clustering

and associated with patient tumor regression or progression;

• TCF7 was visualized within CD8+ T cells in fixed tumor samples

and predicted positive clinical outcome.

(139)

Melanoma 1

patient, 90 years

old

PBMCs TILs Flow cytometry;

TCR sequencing

• Proliferating CD8+ T cells exhibited an effector-like phenotype

with expression of CD38, HLA-DR and Granzyme B, as well as

expression of the positive costimulatory molecules CD28

and CD27;

• TCR sequencing of peripheral blood CD8+ T cells revealed a

highly oligoclonal repertoire at baseline with one clonotype

accounting for 30%.

(140)

Melanoma PBMCs Mass cytometry • Frequency of CD14+, CD16–, HLA-DRhi monocytes before

therapy is a strong predictor of progression-free and

overall survival.

(129)

Melanoma,

NSCLC

TILs PBMCs Flow cytometry;

RNA-seq

• CD4+, FoxP3-, PD-1hi T cells (4PD1hi, a TFH-like phenotype)

negatively regulate T cell responses;

• CTLA-4 and PD-1 blockade modulate 4PD1hi frequency in

opposing directions;

• 4PD1hi are a pharmacodynamic and negative prognostic factor

of checkpoint blockade.

(141)

Melanoma,

Prostate cancer,

Bladder cancer

Tumor IHC; CyTOF • Both ipilimumab and tremelimumab increase the infiltration of

CD4+ and CD8+ cells without significantly changing or

depleting FOXP3 cells within the tumor microenvironment.

(42)

(Continued)
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TABLE 2 | Continued

Tumor type Sample

source

Technology Main findings References

Melanoma Tumor RNA-seq;

Multiplex IHC;

CyTOF

• Tumors from non-responders to monotherapy often express

other immune checkpoints and higher gene expression profile of

EOMES+, CD69+, CD45RO+ T cells is associated with greater

tumor shrinkage in both therapies.

(142)

Glioblastoma Tumor TILs Flow cytometry;

RNA-seq

• Neoadjuvant nivolumab resulted in enhanced expression of

chemokine transcripts, higher immune cell infiltration and

augmented TCR clonal diversity among tumor-infiltrating

T lymphocytes.

(143)

Melanoma Tumor MARS-seq;

scTCR-seq

• scRNA-seq and TCR analysis in melanoma identifies a gradient

of T cell dysfunction;

• Cytotoxic T cells are unconnected to the dysfunctional gradient;

• Proliferation in CD8+ T cells is most profound during early

stages of dysfunction;

• The abundance of dysfunctional CD8+ T cells is associated

with tumor recognition.

(144)

Melanoma TILs PBMCs Flow cytometry;

RNA-seq

• After a single dose of anti-PD-1, rapid pathologic and clinical

responses associated with accumulation of exhausted CD8+ T

cells in the tumor at 3 weeks, with reinvigoration in the blood

observed as early as 1 week;

• A pre-treatment immune signature (neoadjuvant response

signature) associated with clinical benefit.

(145)

Melanoma TILs scRNA-seq;

TCR sequencing

• Tracking TCR clones and transcriptional phenotypes revealed

coupling of tumor recognition, clonal expansion and T cell

dysfunction marked by clonal expansion of CD8+, CD39+ T

cells;

• The expanded clones consisted of novel clonotypes that had

not previously been observed in the same tumor. Clonal

replacement of T cells was preferentially observed in exhausted

CD8+ T cells and evident in patients with basal or squamous

cell carcinoma.

(146)

Basal cell

carcinoma

PBMCs TILs scATAC-seq • Serial tumor biopsies before and after PD-1 blockade identifies

chromatin regulators of therapy-responsive T cell subsets and

reveals a shared regulatory program that governs intratumoral

CD8+ T cell exhaustion and CD4+ T follicular helper

cell development.

(63)

Melanoma,

RCC

TILs scRNA-seq;

CyTOF

• B cells found in tumors of responders;

• B cells localized in the TLSs;

• CyTOF shows differential B cell phenotypes.

(147)

TILs, Tumor-infiltrating lymphocytes; PBMCs, peripheral blood mononuclear cells; RNA-seq, RNA sequencing; scRNA-seq, single-cell RNA sequencing; NSCLC, non-small cell lung

cancer; TCR, T cell receptor; CyTOF, Cytometry by Time-Of-Flight; MARS-seq, massively parallel single-cell RNA-sequencing; scATAC-seq, single-cell Assay for Transposase-Accessible

Chromatin using sequencing; ICI, immune checkpoint inhibitors; TLSs, tertiary lymphoid structures; IHC, immunohistochemistry.

also revealed clonal expansion of CD8+, CD39+ T cells, which
co-expressedmarkers of chronic T cell activation and exhaustion.
However, in this case, the expansion of T cell clones did not
derive from pre-existing TILs, but from novel clonotypes that
had not previously been observed in the same tumor (146). This
suggests that the response to anti-PD-1 depends on the intrinsic
capacity of tumors to recruit novel T cell clones, which replace
pre-existing exhausted T cells that have insufficient capacity to
reinvigorate in response to therapy (151).

In addition, data obtained from melanoma samples and
peripheral blood from patients treated with anti-CTLA-4
and anti-PD-1 revealed that treatment-specific effects can be
observed. Indeed, while anti-PD-1 mainly induced the expansion
of specific tumor-infiltrating exhausted-like CD8+ T cell subsets,
anti-CTLA-4 led to the expansion of an ICOS+ Th1-like

CD4+ effector subsets other than engaging specific subsets of
exhausted-like CD8T cells (136). It was also reported that the
population of CD8+, CD45RO+, PD-1+, TBET+, EOMES+ T
cells increased after treatment only in TILs if compared to the
peripheral blood (136), and that the gene expression signature
of EOMES+, CD69+, CD45RO+ T cells was associated with
greater tumor shrinkage in both therapies (142). Likewise,
in a cohort of patients with NSCLC treated with anti-PD-
1, the presence of PD-1++ T cells within the tumor was
strongly predictive for both response and survival (138). PD-
1++ T cells indeed produce C-X-C Motif Chemokine Ligand
13 (CXCL13), which mediates immune cell recruitment to TLSs
(138). Similarly, in a cohort of patients with GMB treated with
anti-PD-1 an enhanced expression of chemokine transcripts,
higher immune cell infiltration and augmented TCR clonal
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diversity among tumor-infiltrating TILs was reported (143). In
summary, a large variability can be observed among different
patients’ cohorts concerning the abundance of different T cell
functional states. An increase in CD8+T cells with an effector-
like phenotype expressing inhibitory/costimulatory molecules
and proliferations markers has been described in several cancer
settings after therapy with ICI. However, only in few cases this
immune cellular response were correlated with a measurable
clinical response.

CD4+ T Cells
The vast majority of recent studies based on single-cell
technologies have been focused on CD8+ T cells, as their role in
cancer surveillance, editing and control is compelling. However,
a role in tumor control is also played by the CD4+ T cell
compartment, as reflected by the observation that CD4+ T
cells infiltrate the tumor, and by the prognostic value of several
CD4 subsets in different malignancies (152–154). Distinct CD4+
T cells subsets have been described by means of single-cell
technologies, including naïve cells, memory-like cells, Th1 cells,
Treg, follicular helper T cells (TFH), and even cytotoxic effector T
cells (109, 111, 121, 141, 144, 146, 155, 156).

In NSCLC tumor and blood samples, scRNA-seq allowed
to identify seven CD4+ T cell populations (109). Interestingly,
among them an “exhausted” CD4+ T subset was present and
displayed a gene signature comparable to that observed in
exhausted CD8+ T cells. Two Treg clusters were also identified
and one of them was defined as “suppressive Treg” as cells
expressed high levels of TNFRSF9 (encoding for 4-IBB), TIGIT
and CTLA-4 genes (109). A closer quantification of this cluster
in blood and tumor samples revealed that a higher percentage
of suppressive Treg cells was present in tumor if compared to
blood (109).

A combination of scRNA-seq and TCR analysis allowed
to identify a subset of “dysfunctional” CD4+ T cells in a
cohort of melanoma patients, and again these dysfunctional cells
expressed specific combinations of genes encoding for inhibitory
checkpoints that partially overlapped with those observed in
CD8+ T cells (144). The fact that in TME CD4+ T cell also
express PD-1 and/or CTLA-4 suggests that most of the current
immunotherapy strategies that use checkpoint inhibitor can
potentially leverage on these cells. Although data dissecting
the effects of these drugs on CD4+ T cells are still elusive,
it was recently found that in melanoma patients treated with
anti-PD-1/anti-CTLA4 the frequency of the T cell population
characterized by a TFH-like phenotype (CD4+, Foxp3-, PD-
1high) is modulated differently by the two drugs and is a negative
prognostic factor of response to therapy (141).

Other Cells Than T Lymphocytes
Through mass cytometry and scRNA-seq, in GMB a unique
subset of macrophages expressing high levels of CD73 able
to persist after anti-PD-1 therapy was observed (88). Notably,
a number of reports have shown that CD73 can induce
immunosuppression in GMB (157, 158).

Tumor-infiltrating B cells exist and are mainly found in
lymphoid aggregates, known as TLSs (147, 159). It was found

that the density of CD20+ B cells and TLSs, together with the
ratio of TLSs to tumor area were higher in responders than in
non-responders (147).Moreover, a prognostic B-cell-related gene
signature was found in patients with cutaneous melanoma or
RCC. Several genes, including FCRL5, IDO1, IFNG, and BTLA,
were indeed enriched in patients responding to therapy (147).

CONCLUSIONS

The interactions between tumor and immune system are ruled by
several complex mechanisms, with several main players such as
malignant cells, tumor infiltrate, tumor stroma and vasculature,
and systemic factors. Among them, the heterogeneity of intra-
tumor immune cells has been extensively studied by using
traditional approaches, including basic flow cytometry and
immunohistochemistry, which have the limitations described
above. Recently, substantial advances in emerging techniques and
bioinformatic pipelines have enabled researchers to investigate in
detail the complexity of the TME, and to interrogate in depth
previously unexplored cell types. Among single-cell approaches,
scRNA-seq has been crucial for exploratory analysis, and the
combination of scRNA-seq with mass cytometry has been even
more helpful.

The application of single-cell technologies to tumor and
blood samples has generated and will generate in the upcoming
years, an explosion of new data with a clear impact in the
translational clinical research, thanks to the identification of
possible biomarkers. It is likely that the huge amount of
information will also thoroughly revolutionize the field of basic
research in immunology and cancer biology. A big effort should
be posed to make all data, including the raw ones, available to
the scientific community and to create rigs for data extraction.
The information gathered from these technologies will add
novel hallmarks of response to immune therapy that could be
integrated in the routine clinical management.

Nonetheless, the route to the discovery of new biomarkers is
still bumpy. Due to the high sensitivity of single-cell technologies,
adequate attention must be put into experimental setup and
execution. A very careful handling of cells during pre-processing
and an adequate data analysis with potent bioinformatic tools are
critical factors to preserve the native biological profile that will
ensure meaningful conclusions.

Lastly but importantly, although a number of specific immune
cell subsets have been identified that are associated with response
or resistance to ICI, still additional studies should be planned
to address the role and function of different types of immune
cells in the TME. Investigating the role of T cell exhaustion
and/or dysfunction in the TME and translating this knowledge to
clinical practice can be considered main challenges in the battle
against cancer.
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