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A B S T R A C T

Classification, i.e., the prediction of one or more qualitative attributes of samples based on the measured data, is
ubiquitous in chemistry, and, more specifically, in analytical chemistry. Among the possible classification stra-
tegies, class modelling techniques, which aim at describing one category at a time, present several advantages
over discriminant ones, especially when dealing with asymmetric problems featuring one category of interest
being well characterized and representatively sampled and another (made of everything that is not belonging to
the first specific group) being under-represented by definition and highly heterogeneous.
In this review, the fundamentals of class modelling are illustrated, together with an overview of the main

techniques of this kind proposed in the literature, namely Soft Independent Modelling of Class Analogy (SIMCA),
Unequal Class Spaces (UNEQ), Potential Functions (PF), Partial Least Squares (PLS)-based algorithms, One Class-
Support Vector Machines (OC-SVM) or Neural Networks (NN)-based strategies.

Abbreviations
31P NMR Phosphorus-31 Nuclear Magnetic Resonance
Alt-SIMCA Alternative Soft Independent Modelling of Class Analogy
ANN Artificial Neural Networks
ATR-FTIR Attenuated Total Reflection-Fourier-Transform Infrared

Spectroscopy
AMS Ambient Mass Spectrometry
CI-SIMCA Combined Index Soft Independent Modelling of Class Analogy
CM Class Modelling
CV Cross-Validation
DD-SIMCA Data Driven Soft Independent Modelling of Class Analogy
DD-ComDim Data Driven Common Dimensions (also known as Common

Components and Specific Weights Analysis)
DHS-GC-
ToFMS

Dynamical Head Space-Gas Chromatography-Time-of-Flight Mass
Spectrometry

FT-MIR Fourier-Transform Mid-Infrared Spectroscopy
FT-Raman Fourier-Transform Raman Spectroscopy
GBT Gradient Boost Tree
HPLC-CAD High Performance Liquid Chromatography-Charged Aerosol

Detector
HS-SPME-GC-
MS

Head Space-Solid Phase Micro Extraction-Gas Chromatography-
Mass Spectrometry

ICA Independent Component Analysis
ICP-MS Inductively Coupled Plasma-Mass Spectrometry

(continued on next column)
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Abbreviations

ICP-OES Inductively Coupled Plasma-Optical Emission Spectrometry
HSI Hyperspectral Imaging
IR Infrared Spectroscopy
kNN k Nearest Neighbors
LF-TD-NMR Low Field-Time Domain-Nuclear Magnetic Resonance
LDA Linear Discriminant Analysis
MALDI-ToFMS Matrix Assisted Laser Desorption Ionization-Time-of-Flight Mass

Spectrometry
MCR Multivariate Curve Resolution
MCR-SIMCA Multivariate Curve Resolution-Soft Independent Modelling of Class

Analogy
MF-ICA Mean Field-Independent Component Analysis
MIR Mid-Infrared Spectroscopy
NIR Near Infrared Spectroscopy
NMR Nuclear Magnetic Resonance
OC-PLS One Class-Partial Least Squares
OC-SVM One Class-Support Vector Machines
OD Orthogonal Distance
OPLS-DA Orthogonal Partial Least Squares-Discriminant Analysis
Orig-SIMCA Original Soft Independent Modelling of Class Analogy
PARAFAC Parallel Factor Analysis
PC Principal Component
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(continued )

Abbreviations

PCA Principal Component Analysis
PCA-kNN Principal Component Analysis-k Nearest Neighbors
PCA-LDA Principal Component Analysis-Linear Discriminant Analysis
PCA-SVM Principal Component Analysis-Support Vector Machines
PF Potential Functions
PGAA Prompt Gamma Neutron Activation Analysis
PLS Partial Least Squares Regression
PLS-CM Partial Least Squares-Class Modelling
PLS-DA Partial Least Squares-Discriminant Analysis
PLS-DM Partial Least Squares-Density Modelling
QDA Quadratic Discriminant Analysis
RMSECV Root Mean Square Error in Cross-Validation
RF Random Forest
SD Score Distance
SIMCA Soft Independent Modelling of Class Analogy
Sim-SIMCA Simple Soft Independent Modelling of Class Analogy
SOMs Self-Organizing Maps
SO-CovSel-
LDA

Sequential and Orthogonalized-Covariance Selection-Linear
Discriminant Analysis

SO-PLS-LDA Sequential and Orthogonalized-Partial Least Squares-Linear
Discriminant Analysis

SPORT-DA Sequential Preprocessing through ORThogonalization-
Discriminant Analysis

SVM Support Vector Machines
TD-NMR Time Domain-Nuclear Magnetic Resonance
UNEQ Unequal Class Spaces or Unequal Class Models
UV–Vis Ultra Violet-Visible Spectroscopy
Vis-NIR Visible-Near Infrared Spectroscopy
XRF X-ray Fluorescence

1. Introduction

Classification tasks are widespread in analytical chemistry applica-
tions and, more generally, in various and diverse contexts of all sciences
[1–5]. The aim of classification is to assign objects to predefined cate-
gories (or classes) on the basis of the data collected to characterize them
(a set of variables). To do this, the following steps must be taken: i)
obtaining a representative sampling of the categories to be modelled; ii)
collecting data that contain information suitable for distinguishing the
categories; and iii) defining a classification rule to assign the objects to a
given category. The basic assumption is that a "class" represents a set of
samples that share similar characteristics.

The domain of classification methods is extensive, and they can be

categorized according to several criteria. However, a key distinction lies
between discriminant classification and class modelling (CM) [6–9].
Considering the objects represented in the original variable space,
discriminant classification consists in finding the best boundaries that
separate the objects belonging to different classes, whereas CM ap-
proaches independently define a boundary for each individual class
under consideration, enclosing a specific region of the variable space in
which objects belonging to that class are most likely to be found, as
shown in Fig. 1.

This difference means that discriminant methods require at least two
classes to define a boundary, and an object is uniquely assigned to one of
the defined categories. In contrast, CM approaches can handle the so-
called asymmetric case, where a single category is represented in the
training set – or anyway is of interest – and is the only one that has to be
modelled. At the same time, when two or more classes are modelled, an
object can be assigned to only one, more than one or none of the defined
categories. This reflects on the domain of applicability of the two ap-
proaches, e.g., in authentication or quality control the objective is
recognizing whether a product is compliant to what declared on its
label, or whether it respects definite specifications which translates into
a one class problem that cannot be handled by discriminant methods.
Despite this, authentication tasks are often formulated as a two-class
discrimination problem: the authentic category (class 1), and all the
rest (class 2). However, this is an ill-posed question, because class 2 does
not fulfil the aforementioned basic assumption, i.e., non-authentic
samples are not expected to share common characteristics, but will
typically be heterogeneous and will not seize a common, distinct region
within the variable space. Moreover, a representative sampling of the
alternative category, i.e., the second class, is an unattainable goal. The
same difficulties remain if discriminant analysis is applied to contrast
different known alternative categories. In fact, there will always be some
future inauthentic samples, i.e., differently counterfeited or adulterated,
that do not belong to any of the considered classes but that will be
nonetheless assigned to one of them, resulting in a wrong decision
[10–12]. To cope with these issues, some discriminant techniques have
been modified so as to enable the possibility of assigning a sample to
multiple classes or to none of the categories in the training set, and this is
especially true in the case of Partial Least Squares-Discriminant Analysis
(PLS-DA), for which different implementations have been proposed in
the literature and are available in freeware toolboxes and commercial
software suites. On the other hand, soft versions of PLS-DA [13,14], or
two-step classification approaches have also been developed [15].

Fig. 1. Schematic representation of the operating principle of A) a discriminant and B) a CM technique in an illustrative example involving two classes of samples
(blue dots and red squares). The former defines a global frontier (blue-red dashed line) partitioning the multivariate space of the registered variables into as many
subregions as the number of categories represented in the training set and always assigns an object (sample) to one and only one of them. The latter independently
estimates a contour for each individual class under study (blue and red dashed line-ellipses), delimiting a specific area where specimens belonging to it are more
likely to be found. Notice that empty dots and squares (as well as the black star) denote hypothetical test samples, i.e., samples not taken into account when defining
the classification boundaries/rules. Here, the observation lying on the upper left part of the two plots (highlighted by an arrow) would be recognized as a member of
the red square category by a discriminant approach but would be rejected by both the independent class models one could possibly construct - this is the reason why
such an observation is graphically displayed using two distinct symbols in A) and B). Reproduced from Ref. [6]. with permission from Elsevier. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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However, here it must be stressed that, although being more versatile
than their purely discriminant counterparts, these strategies still suffer
from some of the drawbacks stated above.

The focus of this work is on the CM methodology, which is less
known and applied than discriminant analysis, despite its flexibility and
applicability in many fields where the asymmetric case is the norm, such
as food authentication, process monitoring, product quality control,
drug counterfeiting detection, forensic analysis, medical diagnosis, etc.
More in detail, the available CM methods as well as the latest de-
velopments and research trends that can be foreseen in the near future
related to this particular domain will be here reviewed and discussed.

2. State of the art

Revising the manuscripts published during the last five years
including the term “class modelling” in their titles, abstracts and key-
words, and limiting the search to scientific areas only, the large majority
of the about 160 articles found dealt with food-related issues, more
specifically addressing authentication, adulteration or counterfeiting
problems. Table 1 reports the applications most related to the fields of
analytical chemistry and chemometrics [15–64], highlighting the CM
approach used, and for Soft Independent Modelling of Class Analogy
(SIMCA) also the particular implementation exploited (see section 2.1
for further details). Its sixth column details if a discriminant approach
has also been applied for comparative purposes or whether a two-step
strategy was resorted to, i.e., whether first CM was used to assess the
product origin/authenticity/integrity and then a discriminant method-
ology was applied to establish which was the specific category of
counterfeiting or adulteration observed [15,41]. It is worth noticing that
SIMCA is the prevalent CM approach, especially in its alternative
(Alt-SIMCA) and data-driven (DD-SIMCA) implementation, while One
Class-Partial Least Squares (OC-PLS) and One Class-Support Vector
Machines (OC-SVM) are much less applied. Unequal Class Spaces
(UNEQ) and Potential Functions-based (PF) approaches are rare; a
reason for that could be they are included only in a few software
packages.

Overall, while applications of CM are increasing in recent years the
awareness of the different implementations of these methodologies
seems limited as well as the use of proper validation approaches.

In the following subsections the basics of the available CM methods
are illustrated, focusing on the most widespread, and limiting to the ones
truly performing CM (i.e., one-class classification).

2.1. SIMCA

Among the different existing CM methodologies, Soft Independent
Modelling of Class Analogy (SIMCA), developed by Svante Wold in 1976
[65,66], is probably the most popular in the field of chemometrics.
SIMCA is a fully data-driven approach (i.e., no assumption on the sta-
tistical distribution of the collected data is preliminarily made) which, in
contrast to standard discrimination strategies, focuses on the similarities
among specimens belonging to the individual categories under study
rather than on the differences that would permit to distinguish them.
More in detail, SIMCA assumes that such similarities can be captured by
a Principal Component (PC) representation of the measurements regis-
tered for each one of the investigated classes and that, based on these
reduced PC representations, one can assess whether new incoming ob-
servations belong to one, multiple or none of them.

Practically speaking, the construction of a SIMCA model begins,
therefore, with a category-wise Principal Component Analysis (PCA)
[67,68] decomposition of the data at hand. Imagine, for example, that a
set of J-dimensional spectra or chromatograms has been collected for N
samples belonging to a single class or category (e.g., N urine or blood
extracts from healthy laboratory mice) and piled into a matrix, say X (of
dimensions N × J), sensibly pretreated (for instance, mean-centered or
auto-scaled). X is, thus, factorized as:

X = TPT + E (1)

where T (N × A), P (J × A) and E (N × J) denote PCA scores, loadings
and residuals matrices and A identifies the number of computed PCs.
These PCs (that are specifically encoded in the column vectors of P)
define a so-called class subspace describing the systematic data variation
typical of the individual category taken into account. Clearly, the larger
the distance of an observation to this class subspace, the higher the
probability that the sample corresponding to such an observation is not a
member of the modelled category. In this regard, in SIMCA, two distance
metrics are commonly exploited for evaluating whether a new object
belongs to the class under study or not: the Orthogonal Distance, OD,
and the Score Distance, SD. SD quantifies the dissimilarity of the sample
with respect to the distribution of the training objects of the modelled
class in the PC subspace, while OD accounts for how well the sample is
fitted by the class model. Both distances have been defined in different
ways across the years, but in the large majority of the implementations,
SD is calculated as the squared Mahalanobis distance from the origin of
the score subspace (also called Hotelling’s T2 statistic), while OD cor-
responds to the sum of squared residuals (i.e., the squared Euclidean
distance to the PC subspace, also called Q statistic or squared prediction
error, SPE). Accordingly, denoting as xTnew the measurement vector
associated to a generic new sample, its respective OD and SD values can
be estimated based on the following equations:

ODnew =
⃦
⃦xTnew

(
I − PPT

)⃦
⃦2 (2)

SDnew = xTnewPΛ− 1PTxnew (3)

where I is a J× J identity matrix, Λ (A× A) is equal to (N-1)− 1TTT and ||
||2 symbolizes the 2-norm. At this point, ODnew and SDnew (or some
mathematical combinations of them) are compared with characteristic
thresholds – generally related to a custom confidence level, 1-α –
calculated either by assuming certain statistical distributions for both
OD and SD or empirically from X. In other words, as also shown in Fig. 2,
SIMCA delimits a case within the space of the J original variables where
samples from the investigated category are likely to be located. Subse-
quently, if xnew falls within the boundaries of this case, the new object is
recognized as a member of this category1.

Such boundaries can be marked out in different ways depending on
the particular implementation of SIMCA resorted to. Interested readers
are addressed to Ref. [6] for a comprehensive survey of the five main
SIMCA variants that have been reported in literature so far: the original
SIMCA formulation by Wold [65,66], Simple SIMCA (Sim-SIMCA) [69],
Alternative SIMCA (Alt-SIMCA) [70], Combined Index SIMCA
(CI-SIMCA) [71] and Data Driven SIMCA (DD-SIMCA) [72,73].

When carrying out CM by means of SIMCA, a crucial step is the
optimization of the dimensionality or complexity of the SIMCA model
itself, A. Two alternative strategies exist for performing such an opera-
tion: rigorous and compliant [74]. The former utilizes uniquely data
measured for specimens of the modelled category and sets A as the
highest dimensionality yielding the true positive2 rate closest to 1-α.
Conversely, the latter estimates A by exploiting both target and
non-target category observations and finding the best compromise be-
tween true positive and true negative3 rate. Concerning compliant
tuning approaches, it is also worth mentioning that they enable, in
principle, the simultaneous optimization of A and α, a solution that was
proven effective especially in the presence of strong class overlaps [75].

1 Notice that, in case multiple classes of samples are coped with, all the
procedure described here needs to be iterated for every one of them.
2 A true positive is an object correctly identified as a member of the category

under study.
3 A true negative is an object correctly identified as a non-member of the

category under study.
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Table 1
Recent articles related to class modelling (CM) techniques. When not specified otherwise in the fifth column of this table, classification sensitivity, specificity and
efficiency were calculated based on the data contained in the calibration set.
Sensitivity = TP/(TP + FN)
TP = True Positives (the amount of objects correctly identified as members of the category under study)
FN = False Negatives (the amount of objects mistakenly identified as non-members of the category under study)
Specificity = TN/(TN + FP)
TN = True Negatives (the amount of objects correctly identified as non-members of the category under study)
FP = False Positives (the amount of objects mistakenly identified as members of the category under study)
Efficiency = (Sensitivity × Specificity)0.5

Research objective Product studied Analytical technique CM approach Model dimensionality selection
criterion

Discriminant
approach

Reference

Adulteration detection Oregano NIR-HSI Alt-SIMCA Efficiency in CV Soft PLS-DA [16]
Edible insect flour IR Alt-SIMCA Efficiency in CV

Specificity in CV
SPORT-LDA [17]

Saffron HS-SPME-GC-MS Alt-SIMCA Efficiency in CV PLS-DA [18]
Honeybush and
rooibos tea

XRF Sim-SIMCA RMSECV
Sensitivity

​ [19]

Turmeric powder ATR-FTIR Sim-SIMCA OC-SVM Explained Class Variance ​ [20]
Cashew nuts NIR SIMCA RMSECV PLS-DA [21]
Cassava starch Raman Spectroscopy OC-SVM SIMCA Explained Class Variance in CV ​ [22]
Olive oil HPLC-CAD MCR-SIMCA DD-SIMCA Sensitivity

Specificity
Efficiency

​ [23]

Olive oil Raman Spectroscopy DD-SIMCA Classification Error in CV PLS-DA [24]
Turmeric Vis-NIR-HSI DD-SIMCA on

distribution maps from
MCR and ICA

Sensitivity ​ [25]

Cumin powder NIR
FT-MIR

DD-SIMCA Sensitivity in External Validation ​ [26]

Orange juice NIR DD-SIMCA Sensitivity Soft PLS-DA
PLS-DA
GBT
Adaboost

[27]

Goat dairy beverages NIR DD-SIMCA Unspecified ​ [28]
Milk XRF

NIR
DD-SIMCA Sensitivity PLS-DA

SVM
[29]

Coconut oil ATR-FTIR DD-SIMCA Sensitivity in CV ​ [30]
Sanqi powder NIR DD-SIMCA Sensitivity in CV ​ [31]
Grape nectar LF-TD-NMR SIMCA

DD-SIMCA
OC-PLS

Sensitivity in CV (unspecified for
DD-SIMCA)

PLS-DA [32]

Weight loss pills NIR OC-PLS RMSECV ​ [33]
Authentication Bell peppers ICP-OES Alt-SIMCA Efficiency in CV ​ [34]

Parmigiano Reggiano Raman Spectroscopy Alt-SIMCA Sensitivity in CV
Efficiency in CV RMSECV

​ [35]

Lime juice NIR Alt-SIMCA CV (unspecified criterion) PLS-DA [36]
Sweet cherries Physical and

Biochemical
Parameters

Sim-SIMCA RMSECV ​ [37]

Pork fat NIR DD-SIMCA Sensitivity in Calibration and
External Validation
Specificity in Calibration and
External Validation

​ [38]

Fish NIR
DHS-GC-ToFMS

DD-SIMCA Unspecified OPLS-DA [39]

Oolong tea AMS DD-SIMCA Unspecified PCA-kNN PCA-
LDA PCA-SVM

[40]

Caterpillar fungus ATR-FTIR DD-SIMCA Sensitivity in External Validation
Specificity in External Validation

PLS-DA [41]

Saffron Vis-NIR-HSI DD-SIMCA
MF-ICA

Unspecified PLS-DA [42]

Diesel fuel NMR
TD-NMR

DD-ComDim
DD-SIMCA

Matthew’s Correlation
Coefficient in Calibration and
External Validation

​ [43]

Materials PGAA DD-SIMCA Sensitivity (compliant approach)
Efficiency

RF
PLS-DA
Soft PLS-DA
LDA
QDA

[44]

Antibiotics drugs NIR DD-SIMCA CV (unspecified criterion) ​ [45]
Geographical/botanical/
animal origin
determination

Italian chickpeas
(geographical)

ICP-OES
MIR
NIR

Alt-SIMCA Efficiency in CV SO-PLS-LDA SO-
CovSel-LDA

[46,47]

Chestnuts
(geographical)

NIR Alt-SIMCA Efficiency in CV PLS-DA [48]

(continued on next page)
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In this regard, it must be underlined that very often the criterion for
selecting the number of components of a SIMCA model is not reported,
unclear or, wrongly set (e.g., based on the results obtained for the
external validation set). At the same time, the number of studies
adopting a compliant approach and of those relying on a rigorous
strategy are comparable. Most often when DD-SIMCA is applied these
criteria are optimized using the calibration set, while when Alt-SIMCA is
considered, they are optimized in cross-validation (CV). Besides,
explained class variance and root mean square errors in CV (RMSECV)
which do not explicitly refer to classification capability are often
employed as criteria to determine the number of components.

The original implementations of SIMCA, Alt-SIMCA and DD-SIMCA
have also been extended for handling higher-order data sets [76–78],

i.e., data that can be organized as three- or higher-dimensional arrays (i.
e., tensors), instead of matrices. These data arise from the use of, e.g.,
fluorescence spectroscopy when the full excitation/emission profile is
recorded for each sample, hyphenated techniques, such as
chromatography-mass spectrometry, sensory analysis when several at-
tributes are evaluated on the investigated samples by different assessors,
or from measuring the same set of variables on the available samples at
different time points or conditions. To cope with these data structures,
the proposed multi-way versions of SIMCA replace the PCA decompo-
sition step with tensor decompositions carried out by means of ap-
proaches such as Parallel Factor Analysis (PARAFAC) or Tucker3 [79]
and rely on distance metrics estimated in the resulting multi-way com-
pressed space.

Table 1 (continued )

Research objective Product studied Analytical technique CM approach Model dimensionality selection
criterion

Discriminant
approach

Reference

Lentils (geographical) ICP-OES Alt-SIMCA Efficiency in CV PLS-DA [49]
Saffron (geographical) ICP-MS Alt-SIMCA CV (unspecified criterion) PLS-DA [50]
Canadian honey
(geographical)

NMR Alt-SIMCA RMSECV PLS-DA [51]

Celery (botanical) FT-MIR Alt-SIMCA Efficiency in CV SPORT-LDA
SO-PLS-LDA

[52]

Milk (animal) 31P NMR UNEQ
Alt-SIMCA

CV (unspecified criterion) kNN [53]

Herbal tea
(geographical/
botanical)

NIR-HSI Sim-SIMCA RMSECV PLS-DA [15]

Coffee beans
(geographical)

UV–Vis DD-SIMCA
OC-PLS

Sensitivity ​ [54]

Brazilian canephora
coffee (geographical)

NIR DD-SIMCA Explained Class Variance PLS-DA [55]

Strawberries
(geographical)

Light isotope
determination

DD-SIMCA Unspecified OPLS-DA [56]

Soybeans
(geographical)

Trace element
determination

Alt-SIMCA
OC-SVM
PF

CV (unspecified criterion) SVM
RF kNN

[57]

Honey (botanical) MALDI-ToFMS Sim-SIMCA Classification Error Rate in CV PCA-kNN PCA-
LDA

[58]

Gelatin (animal) Raman Spectroscopy DD-SIMCA Sensitivity in CV PLS-DA [59]
Medical diagnosis Metabolic syndrome FT-MIR Orig-SIMCA Unspecified LDA [60]

Colorectal cancer NIR OC-PLS RMSECV ​ [61]
Non-conformity
determination

Pastry dough NIR Orig-SIMCA UNEQ Sensitivity
Specificity

Soft PLS-CM [62]

Painkillers drugs Raman Spectroscopy Orig-SIMCA CV (unspecified criterion) ​ [63]
Embryos for in-vitro
fertilization

FT-MIR DD-SIMCA Explained Class Variance ​ [64]

Fig. 2. Schematic representation of the operating principle of SIMCA. A dataset containing the values of three distinct variables (x, y and z) measured for a set of 17
samples (grey dots) belonging to the same class of objects is subjected to a PCA decomposition which yields two different principal components (PC1 and PC2). Based
on the estimates of OD and SD calculated for these samples or by assuming specific statistical distributions for both distance indices, a subregion of the three-
dimensional space of the original variables recorded where specimens from the modelled category are more likely to be located is delimited. In A), a new obser-
vation (green dot) is found to fall inside this subregion of space and the corresponding object is assigned to such a category. On the other hand, in B), the new
observation (red dot) falls outside it and the corresponding object is not assigned to the class under study but rejected as an outlier. Notice that here the outlying
observation exhibits abnormal values of both OD and SD. Reproduced from Ref. [6]. with permission from Elsevier. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
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2.2. UNEQ and potential function-based class modelling

Some CM techniques operate by making specific assumptions on the
probability density function of the samples belonging to a specific
category, so that the definition of the class space is (usually) based on
identifying a hypersurface based on the class training set samples which
encloses a given probability (usually 95 %). The first of these techniques
to be presented in the literature was UNEQ (acronym which was later
expanded as Unequal Class Spaces or Unequal Class Models), proposed
by Derde and Massart in 1996 [80]. UNEQ can be considered as the
modelling analog of quadratic discriminant analysis, as it assumes that,
for each category, observations follow a multivariate normal distribu-
tion with a class-specific variance-covariance matrix. Training set sam-
ples are then used to estimate the barycenter and the
variance-covariance matrix for the category distribution, which are, in
turn, used to estimate the Mahalanobis distance of each sample to the
class centroid and, accordingly, to define the class space. Indeed,
defining the class space translates into identifying the hyperellipsoid
which encloses the 95 % probability volume around the barycenter of
the category which, consecutively, corresponds to setting a threshold to
the squared Mahalanobis distance to the centroid. For the prediction of
new samples, such threshold is usually estimated through the F distri-
bution. An example of the use of UNEQ is schematized in Fig. 3.

Another technique relying on the explicit calculation of a probability
density function for the definition of the class model is the so-called
potential function method [81]. The idea behind such an approach is
that the probability density function of a generic distribution can be
estimated as the superposition of “kernel” probability density functions
centered at each of the training samples and usually assumed to be
Gaussian or triangular functions [82]. In the context of CM, this trans-
lates into the fact that the multivariate probability density function
associated to the class distribution fc(x), can be calculated as the sum of
individual analytically defined density functions ϕj(x) centered around
each of the training samples for that category:

fc(x)=
∑Nc

j=1
ϕj(x) (4)

where Nc is the number of training samples from the cth category and
the kernel functions ϕj(x) are usually multivariate Gaussians. Once the
class probability density function is calculated according to Equation
(4), the class space is defined by the hypersurface enclosing a certain
probability volume (often 95 %). This is usually accomplished by setting
a threshold to the value of the probability density function, based on
experimentally determined percentiles of the respective distribution or
through the equivalent determinant approach [78]. One of the advan-
tages of the potential function approach is that the kernel functions ϕj(x)
are often parameterized so that, by choosing an adequate value of their
parameters (e.g., the width of the Gaussians), it is possible to modulate
the shape of the class space. An example is shown in Fig. 4.

2.3. PLS-based class modelling

More recently, CM approaches based on the use of Partial Least
Squares regression (PLS) have been proposed in the literature, the first of
those being One Class-Partial Least Squares (OC-PLS) [83]. OC-PLS uses
the same dummy coding as PLS-DA but, as all CM techniques, assumes
that only training set samples from the category to be modelled are
available. Accordingly, the starting point is to build a PLS model be-
tween a dummy response y (of dimensions Nc × 1, with Nc being the
number of training samples belonging to the class) which is a vector
made exclusively of ones and the uncentered class training data Xc (Nc×

J):

y=Xcb+ ec = TcqT + ec (5)

where b (J × 1) and q (1 × A, with A being the number of latent vari-
ables) are the PLS regression coefficients and the y-loadings of the PLS
model, while Tc (Nc × A) and ec (Nc × 1) are the scores and the y-re-
siduals estimated for the training set samples, respectively. In its original
formulation [83], the cross-validated values of ec were used to build
confidence intervals for the predicted response around the target value
of 1 so that if the predicted response for each new sample falls within the
calculated confidence interval the individual is accepted by the model,
otherwise it is rejected. Eventually, the method was modified to intro-
duce an acceptance criterion similar to the one adopted in Sim-SIMCA,
where, together with the value of the prediction residuals, also the
Mahalanobis distance of the sample to the center of the PLS score space
is considered [84].

Another CM technique based on PLS was proposed by Oliveri et al.
[85], and it is called Partial Least Squares-Density Modelling (PLS-DM).
The first characteristic element of PLS-DM is the way it defines the target
response for the class training samples: indeed, the response y (called
density) is defined as the sum of the distances of each training individual
to its k nearest neighbors (with k being an adjustable parameter). A PLS
regression model is then calculated between the density vector and the
class training data Xc, and then both the scores and the X-residuals (Q
statistics) of the model are used to predict if a sample is accepted or not
as a member of the investigated category. In particular, potential func-
tions are applied to the PLS scores to estimate a probability distribution
and identify an appropriate class boundary; at the same time, a critical
value for the X-residuals is calculated as it is done in SIMCA. Accord-
ingly, a sample is accepted by the model only when both the scores- and
the orthogonal distance-based classification criteria are simultaneously
satisfied. PLS-DM is more flexible than OC-PLS but at the same time it
involves the setting of more adjustable parameters (the number of
nearest neighbors k, the PLS model complexity and the width of the
potential functions used for estimating the probability distribution
within the scores space), so model selection can bemore cumbersome. In
this respect, Oliveri et al. suggest the use of an exhaustive grid search in
the parameter space and rely on the Pareto optimality approach for
model selection.

The Partial Least Squares-Class Modelling (PLS-CM) technique
described in Ref. [86], although presented as a CM approach, actively

Fig. 3. Example of UNEQ classification. The light red ellipse identifies the class
space for the red category (the modelled category) while the thick red contour
line represents the class boundary. All samples falling within the ellipse
(characterized by a Mahalanobis distance to the class centroid lower than its
corresponding threshold value, i.e., the thick red line) are accepted by the
model. Accordingly, all the blue and green samples are correctly rejected by the
red class model, whereas almost all the red samples (except for the one high-
lighted with a double circle, which falls outside the class border) are correctly
accepted by the red class model. (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)
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uses information from class/es other than the one being modelled to
define the class subspace of the category of interest; therefore it cannot
be strictly considered as a one-class classifier.

2.4. SVM- and ANN-based approaches to class modelling

Differently from what happens in the case of discriminant ap-
proaches, since the definition of class spaces involves the identification
of bound (closed) regions in the measured variable hyperspace, CM
techniques are always non-linear, the extent of non-linearity being
moderate for SIMCA, UNEQ and PLS-derived techniques, and tunable in
the case of potential functions. In this section, other approaches
providing a tunable degree of non-linearity and involving the use of
Support Vector Machines (SVM – coupled to non-linear kernel trans-
formations) or Artificial Neural Networks (ANN) will be briefly illus-
trated and discussed. These methods, especially the ones based on ANN,
are still rarely used in the literature (also because they commonly
require a larger number of training samples), but they anyway exhibit
some interesting features. Undoubtedly, the most popular among these
approaches is One Class-Support Vector Machines (OC-SVM) [87].
Briefly, OC-SVM defines the margin problem in a different way with
respect to other types of SVM, as it is focused on novelty/outlier
detection. Operationally speaking, it searches for the smallest hyper-
sphere enclosing all training samples from a particular class or, in order
to make the model not too sensitive to noise, only a certain fraction of
them. Of course, if an enlarged feature space is used instead of the
original variable one through the kernel trick, the class space can assume
a more complex shape than the volume enclosed by the hypersphere.

On the other hand, two different strategies for CM were proposed in
the framework of ANN. The first one is based on Kohonen ANN [88].
Kohonen self-organizing maps (SOMs) operate a non-linear topology
preserving the projection of samples from the original multivariate
space to a discrete 2D space made up of a grid of Nx x Ny positions
(neurons) [89]. To turn an unsupervised ANN (the SOM) into a super-
vised CM tool, the algorithm first augments the class training set with an
opportunely chosen set of random vectors, so that only a fraction of the
positions in the resulting 2D map are occupied by the samples of the

modelled category. Then, a suitable probability distribution for the class
under study is calculated as a function of the positions of the samples on
the 2Dmap (usually through a kernel density estimation approach) [79].

The second strategy involves the use of an auto-associator network,
which is a neural network architecture characterized by the combina-
tion of a set of encoding layers for data compression (returning features
that can be considered as sorts of non-linear principal component scores)
and a set of decoding layers for data approximation based on the
extracted features [90]. When training the network, the same data are
used as inputs and target outputs. For CM, each category is described by
an auto-associator network, and the corresponding class space is defined
according to a distance to the model criterion which, in its first formu-
lation, took into account only the residual standard deviation of the
reconstructed input vectors (similarly to the original version of SIMCA)
[65,66]. Such a criterion was later modified to account also for the
distance to the center of the scores space resulting from the features
extracted by the encoding layers [91].

3. Brief comparison of the presented techniques

Based on the overview of the techniques presented in the previous
section, some general considerations can be drawn. It was already
highlighted how SIMCA is, by far, the most used CM technique. The
reasons for this may be sought not only in the fact that, differently from
the other ones whose implementations are restricted to custom-written
routines or, at most, toolboxes running under programming environ-
ments such as Matlab, R or Python, it is the only one to be coded in most
commercial software for chemometric data analysis. Indeed, other ad-
vantages of SIMCA include its ability to deal straightforwardly with
high-dimensional data thanks to the PC compression step, the direct
interpretability of the models it yields (that, for instance, can be
inspected through a graphical assessment of the corresponding PCA
loadings) and its versatility, related not only to the possibility of
generalizing it for handling higher-order data structures (e.g., multi-way
or multi-block) but also to the different criteria one could rely on for
defining the model subspace. This last aspect, though, can also represent
a drawback for the less experienced user, as it can be the fact that the

Fig. 4. Example of CM using potential functions. The two panels show the effect of choosing a higher (A) or lower (B) width of the Gaussian kernel functions on the
definition of the overall potential density function (whose isodensity levels are represented as contour lines) and on the shape of the class space of the modelled
category (enclosed by the black dashed line). The black squares denote the training samples used for building the class model. It is evident how the use of a wider
kernel function results in a smoother density and, subsequently, in a less irregular class space.
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assumption of multivariate normality of the PC scores, which is implicit
in the choice of the T2 statistic, may be insufficient when the classes are
highly heterogeneous or the class boundaries are, in general, more
irregular. The latter limitation can be partially mitigated by the use of
potential functions, which allow to model, at least in principle, any class
probability distribution through kernel density estimation. However, for
high-dimensional data the use of potential functions requires a pre-
liminary data compression, e.g., through PCA (or PLS, in the case of PLS-
DM), so that the model selection phase, which already involves the
tuning of the width of the potential functions themselves, involves also
the optimization of another metaparameter. On the other hand, UNEQ
has the advantages of being firmly rooted in classical statistics, since it is
the CM equivalent of quadratic discriminant analysis, and of guaran-
teeing a straightforward model interpretation. However, as for potential
functions, when high-dimensional data are coped with, UNEQ requires
an initial data compression step and, as discussed in the case of SIMCA,
the multivariate normality assumption may lead to class subspaces
which do not match the actual distribution of the samples. SVM with
non-linear kernel transformations and ANN exhibit a higher flexibility in
terms of the shape of the class space they are able to model but, at the
same time, their training requires the optimization of a higher number of
metaparameters which is, in general, more cumbersome and less
straightforward; moreover, especially in the case of ANN, a higher
number of training individuals is also needed. Lastly, both ANN and
SVM do not enable a direct interpretation of the resulting models in
terms of importance of the original measured variables.

4. Perspectives

Although the history of CM began almost 50 years ago, thanks to the
seminal work of Svante Wold and his collaborators, in the last decades
new life seems to have been breathed into this particular domain. In fact,
the capability of CM approaches to deal with complex multivariate
datasets as well as their inherent robustness against effects that can be
extremely deleterious when utilizing more classical discriminant ap-
proaches (e.g., category unbalancedness, unequal sample size, etc.) have
lately attracted much attention from users and practitioners of a wide
variety of fields of interest. For this reason, it goes without saying that
the job of chemometricians in this sense is not finalized yet. This is
especially demonstrated by the significant advances that they have
recently made, mainly inspired by the novel challenges that the inno-
vative measurement devices of the modern era of Big Data, Industry 4.0
and Internet of Things currently pose. Just to mention a few, such ad-
vances encompass: i) the development of new CM strategies based on
alternative approaches of multivariate data analysis like Multivariate
Curve Resolution-Alternating Least Squares (MCR-ALS [23]), ii) the
integration of non-parametric, semi-parametric or Bayesian decision
rules into existing CM solutions [92–94] and iii) the extension of
available CM methodologies for probabilistic [95], multi-block [43,96]
and multi-way classification [76–78]. Also CM-based weak classifiers
have been recently proposed [97]. Still, further un- or partly-explored
research lines can be easily envisioned in this context: as examples,
adapting algorithms like SIMCA, OC-PLS and PLS-DM for the analysis of
non-linear data structures (relying, e.g., on the principle of non-linear
kernel transformations [98]) or designing tools for the visualization of
the importance or relevance of the recorded variables in SIMCA and
UNEQ models [99] (exploiting, for instance, the ideas behind the
well-established contribution plots [100] and/or the projection of
pseudo-samples [101,102]) may represent intriguing subjects of study.
Finally, another aspect that would be worth investigating is the possi-
bility of evaluating the uncertainty associated to the classification of
individual samples.
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Four levels of pattern recognition, Anal. Chim. Acta 103 (1978) 429–443, https://
doi.org/10.1016/S0003-2670(01)83107-X.

[70] Eigenvector Research, Inc, SIMCA model builder GUI. https://www.wiki.eige
nvector.com/index.php?title=SIMCA_Model_Builder_GUI, 2021.

[71] H.H. Yue, S.J. Qin, Reconstruction-based fault identification using a combined
Index, Ind. Eng. Chem. Res. 40 (2001) 4403–4414, https://doi.org/10.1021/
ie000141+.

[72] A.L. Pomerantsev, Acceptance areas for multivariate classification derived by
projection methods, J. Chemom. 22 (2008) 601–609, https://doi.org/10.1002/
cem.1147.

[73] A.L. Pomerantsev, O.Y. Rodionova, Concept and role of extreme objects in PCA/
SIMCA, J. Chemom. 28 (2014) 429–438, https://doi.org/10.1002/cem.2506.

[74] O.Ye Rodionova, P. Oliveri, A.L. Pomerantsev, Rigorous and compliant
approaches to one-class classification, Chemometr. Intell. Lab. Syst. 159 (2016)
89–96, https://doi.org/10.1016/j.chemolab.2016.10.002.

[75] R. Vitale, F. Marini, C. Ruckebusch, SIMCA modeling for overlapping classes:
fixed or optimized decision threshold? Anal. Chem. 90 (2018) 10738–10747,
https://doi.org/10.1021/acs.analchem.8b01270.

[76] C. Durante, R. Bro, M. Cocchi, A classification tool for N-way array based on
SIMCA methodology, Chemometr. Intell. Lab. Syst. 106 (2011) 73–85, https://
doi.org/10.1016/j.chemolab.2010.09.004.

[77] M. Cocchi, M. Li Vigni, C. Durante, in: S. Brown, R. Tauler, B. Walczak (Eds.), 2nd
ed.Comprehensive Chemometrics, 3, Elsevier, Oxford, 2020, pp. 701–721,
https://doi.org/10.1016/B978-0-12-409547-2.14590-1.

[78] A.P. Pagani, G. Camargo, G.A. Ibañez, A.C. Olivieri, A.L. Pomerantsev, O.
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[94] T.H. Avohou, P.-Y. Sacré, P. Hubert, E. Ziemons, Interpretable one-class
classification of Raman spectra using prediction bands estimated by wavelet
regression, Anal. Chem. 94 (2022) 4183–4191, https://doi.org/10.1021/acs.
analchem.1c04098.

[95] R. Vitale, F. Marini, C. Ruckebusch, A. Smolinska, p-SIMCA: a Non-parametric
Probabilistic Version of the SIMCA Classifier, Chimiométrie XXII, Virtual
Meeting, 2021.

[96] O. Rodionova, A. Pomerantsev, Multi-block DD-SIMCA as a high-level data fusion
tool, Anal. Chim. Acta 1265 (2023) 341328, https://doi.org/10.1016/j.
aca.2023.341328.

[97] T. Lemos, J.H. Kalivas, Self-optimized one-class classification using sum of
ranking differences combined with a receiver operator characteristic curve, Anal.
Chem. 92 (2020) 5354–5361, https://doi.org/10.1021/acs.analchem.0c00017.

[98] B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and beyond, MIT Press, 2002.

[99] A. Grandi, Sviluppo di approcci per valutare l’importanza delle variabili in
modelli di classe, Master’s thesis, Corso di Laurea Magistrale in Chimica
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