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Abstract. The determination of the number of groups in a dataset, their 
composition and the most relevant measurements to be considered in clustering 
the data, is a high-demanding task, especially when the a priori information on 
the dataset is limited. Some different genetic approaches are proposed as tools 
for automatic data clustering and features selection. They differ in the adopted 
codification of the grouping problem, not in the evolutionary operator and 
parameters. Two of them deals with the grouping problem in a deterministic 
framework. The first directly approaches the grouping problem as a 
combinatorial one. The second wants to determine some relevant points in the 
data domain to be used in clustering data. A probabilistic framework is then 
introduced with the third one which wants to specify the statistical model from 
which data are assumed to be drawn. The evolutionary approaches are 
compared with respect to classical partitional clustering algorithms on 
s imulated data and on Fisher’s Iris dataset. 

Keywords: clustering data, genetic algorithms, string code, genetic feature 
selection.  

1. Introduction 

The determination of the number of groups in a dataset, their composition and the 
most relevant measurements to be considered in clustering the data, is a high-
demanding task, especially when the a priori information on the dataset is limited. In 
fact, to determine the number of the g most representative groups and their 
composition of a dataset composed by n items with p measurements involves a time-
unfeasible combinatorial effort when n and g are not small numbers and the effort is 
also bigger if the number of groups is not known a priori (Liu G.L., 1968). 

Cluster analysis deals with data pattern detection by forming homogeneous groups 
inside the whole dataset by determining the groups’ composition, the number of 
groups in the dataset, the relevant features to be used in forming the groups and a 
measures of similarity / dissimilarity among the items and the groups. Different 
cluster algorithms have been developed and research is still ongoing. Among the 
partitional algorithms, the so called k-means, EM (Expectation Maximization) and 
fuzzy c-means algorithms are widely known. They start with a random choice of the 
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initial seeds with respect to which, computing a measure of similarity, they determine 
the belonging of each observation to a specific group. Hovever, starting from random 
seeds, make them not always converge to the global optimum. To overcome this 
shortcoming, we focus our attention on evolutionary clustering algorithms based on 
genetic algorithms (Holland 1975). 

In this paper we introduce and discuss three different evolutionary approaches 
based on genetic algorithms. The capability of genetic algorithms  to converge to the 
global optimum within an elitist schema (Rudolph 1994) supports their validity in 
identifying the best number of possible groups in a dataset and the more relevant 
measurements to be used in forming groups in an unsupervised learning mechanism. 
We assume, in fact, no a priori information is available. The grouping is determined 
through statistical criteria that aims at minimizing the dispersion within the groups 
and, contemporarily, maximizing the dispersion between the groups or maximis ing 
the likelihood of the statistical model underlying the data. Different genetic 
approaches to the clustering problem have been proposed in literature. V.V.Raghavan 
and K.Birchand (1979) were the first to propose to use the genetic algorithms to 
directly allocate the items in one of the g groups, which have been supposed to be 
present in the dataset. A fitness function directed to minimize the squared error is 
used to determine the optimal composition of the groups in the dataset. Since then, 
different genetic codification and fitness functions have been tested to solve clustering 
and pattern recognition problems (see Bandyopadhyay S., Murthy C.A. 1998, 
Srikanth R. et all 1995; Baragona, Calzini, Battaglia, 1999). Moreover, genetic 
algorithms have been used not only to tackle directly the clustering problem but also 
through the development of hybrid algorithms, that is in conjunction with other 
standard localized clustering techniques, such as k-means, fuzzy c-means, artificial 
neural network in order to better their performance (Tseng 2001).  

Pre-processing data could be essential to remove noise and outliers and to make the 
clustering algorithms determine more homogeneous groups. To consider the whole 
dataset could prevent to discover hidden patterns and underlying structure in data. 
Moreover, to deal with huge dataset increases the computational effort and the 
efficiency of clustering algorithms. Cluster analysis could be mislead by highly 
correlated measurements and the presence of noise and outliers. Genetic approaches 
have already shown to be capable to deal with the dimensionality reduction problem 
and the choice of the most relevant measurements in a promising way (Raymer et al. 
1997, Kim Y., Street W.N., Menczer F. 2000). We tackle this problem modifying the 
genetic code to make them automatic selecting the most relevant measurements to be 
used in clustering data. 

The three genetic approaches, we introduce, use different codification to tackle the 
clustering problem. The first, GAIE (Genetic Algorithm for Items Evolution), has a 
population of individuals which directly allocate each observation to a specific group 
considering the clustering problem from a combinatorial point of view. On the 
contrary, the second, GAME (Genetic Algorithm for Medoids Evolution), and the 
third, GAPE (Genetic Algorithm for Parameter Evolution), not only exploit the 
genetic algorithm to determine the optimal partition, but also to get additional 
information about relevant grouping points in the data domain. GAME composes the 
groups after determining the medoids of the possible groups and the belonging of 
each observation to the group with minimum euclidean distance from the group’s 
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medoid. GAPE tackles the clustering problem in a probabilistic framework, 
determining the parameters of the model from which it is assumed the data are drawn. 

In section 2 we introduce the three algorithms while in section 3 the fitness 
functions we used to drive the evolutionary process. Finally, in section 4 , we discuss 
some empirical results and draw some conclusions. 

2. Genetic Codes 

Genetic algorithms are stochastic algorithm which have been widely used in 
different fields because of their capability of searching the whole solution domain and 
of dealing with complex optimization problems. A genetic algorithm is composed by 
a population of individuals where each individual represents the map of a possible 
solution of the problem the researcher is dealing with. The population is evolved by 
genetic operators driven by a fitness function able to measure the degree of optimality 
of the individuals through the generations. The best individual of the last generation 
represents the encoding of the best solution of the problem to be solved. The genetic 
operators (selection, crossover, mutation, elitism) are inspired to natural biological 
processes, driven by the Darwinian principle of the survival of the fittest individual 
through the generations. Genetic algorithms have numerous properties. Rudolph 
(1994) has shown how a genetic algorithm converges to the global optimum within an 
elitistic schema, that is when the best individual of a generation is re-inserted in the 
population of the following generation. Moreover their flexibility, their parallel and 
straight implementation and their capability of exploring the whole search space 
support their validity and efficacy in numerous applications, even if they are often 
criticized because of their sensitivity to the control parameters (for example: the 
number of individuals, the number of generations, the mutation rate, the crossover 
rate,…).  

GAIE (Genetic Algorithm for Items Evolution) algorithm, which is the first 
proposal about using genetic algorithm to solve partitional problems (Raghavan V.V. 
and Birchand K. 1979) directly allocates each observation of a dataset nxp in one of 
the g groups. Each individual string has length equal to the number of observations in 
the dataset and each cell can contain an integer value in the interval [1,g]. But this 
codification is redundant in mapping the solution, increasing the computational time 
required for convergence (for example: 222111 string groups the data in the same 
ways 111222 string does, but they are different from the algorithmic point of view).  

In the second alternative approach we use the genetic code in order to determine 
some relevant points, called medoids to be used in grouping data. The GAME 
algorithm assumes that each individual is formed by p x g cells, which represents the 
codification of the possible values of the medoids’ measurements. Each group of p 

cells identifies the medoid coordinates in the Rp space of the measurements. The g 
groups of cells represent the g medoids of the clusters. Each cell can assume a real 
value between the lower bound and upper bound of the whole series of the 
corresponding item measurements to which the medoid value of the cell is referred to. 
The algorithm is inspired to Forgy’s approach of clustering (Forgy E.W. 1965). Once 
determined the possible values of the medoids of the g groups, the algorithm 
computes the euclidean distances between each measurement of each observation 
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with respect to the corresponding values of the p x g medoids and determines the 
belonging group. Each item belongs to the cluster with minimum euclidean distance 
with respect to the clusters’ medoids among all the computed distances between the 
considered item’s measurements and the medoids’ values of all possible groups.  

Tests, comparing the speed of convergence of GAIE and GAME algorithms with 
respect to the same fitness function, have shown that GA ME and GAIE converge to 
the same global optimum (if we use the same evolutionary schema and parameters), 
requiring a different amount of computational time. GAME converges more quickly 
(speed ratio 1 to 10) and moreover, exploring the whole search space give additional 
information through the identification of the medoids of the dataset, which can be 
considered as separation points between different groups.  

A probabilistic and inferential framework is introduced with the third approach. 
GAPE (Genetic Algorithm for Parameters Evolution) uses the genetic codification to 
estimate the parameters of the statistical model which is supposed to be underlying 
the data and then it allocates each observation to the group with respect to which it 
has a higher probability of belonging. We considered the data as realization of 
random variables. We use the genetic algorithm to estimate the parameters in a fixed-
classification model (Bock H.H. 1996). This model assumes, for a fixed number of 
groups g,, (G1,G2,..Gg), a known parametric density family f(.,è) such that Xk~f(.,èi) 
for all k € Gi , i=1,..g where g is unknown and the parameters vector È=( è1,…,èg). It 
has been assumed that the parametric density function corresponds to the multivariate 
normal distribution and the genetic code is used to estimate the vector of the mean 
values and the diagonal elements of the variance-covariance matrix. Then, each string 
maps the parameters è k=(ìk, �k).  

Banfield and Raftery (1993) propose to decompose the covariance matrix using 
eigenvalues and eigenvector and to express it as T

kkkkk DADλ=∑ , where Dk indicates the 

orthogonal matrix of the eigenvectors and determine the orientation of the principal 
components, Ak is a diagonal matrix with elements proportional to the eigenvalues of 
�k and determine the contours of the density functions and ëk is a scalar that specific 
volume of the ellipsoids. We assume that Ι=∑ kk λ  and we introduce a genetic code 

such that three different structures of the matrix of variance are allowed. In the first 
case the matrix of covariance is constant among the groups and the measurements, in 
the second case it is constant just among the measurements and in the third case each 
group could have a different variance among the groups and the measurements. 

The density value of each observation is computed with respect to the models 
determined by the genetic algorithm for each group. Each observation is attributed to 
the group with respect to which it has maximum density value. The fitness criteria to 
be used is directed to minimize the negative form of the log-likelihood of the fixed 
classification model: 
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 where zik is equal to one if observation i belongs to group k or zero otherwise and 
where ã=(ã1,…ãn) are labels such that  ãi=k if xi belong to groups k . After processing 
each individual, genetic operator are applied to evolve the population to determine the 
best individual with associated minimum fitness value.  
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To use the genetic algorithm allows us not just to determine the optimum partition 
with respect to the adopted fitness criteria, but also to determine the parameters of the 
structure underlying the data and a probabilistic measure of the belonging of each 
observation to a specific group. 

To determine the partition of a big dataset not only requires a lot of computational 
effort, especially when hierarchical cluster algorithms are used, but also the analysis 
could be mislead by the presence of highly correlated variable and noise in the data. 
The genetic codification of the three algorithms have been modified to tackle this 
problem. p binary cells, one for each measurement, have been added to each 
individual in all the three algorithms. Then the data matrix to be processed will 
include just the measurements in correspondence of the cells which contain unitary 
values. The automatic data reduction has shown to reach a smaller number of 
misclassified items in the simulated dataset and in the Fisher’s Iris data. 

3. Fitness criteria 

As previously described the GAPE algorithm uses as fitness criteria to drive the 
evolutionary process the negative form of the log-likelihood as reported in equation 2. 
It can be shown that in the case of constant variance matrix among the groups this is 
equivalent to minimize the trace of the matrix within the groups (Banfield J.D, 
Raftery A.E., 1993). 

GAME and GAIE algorithms have been tested using different fitness criteria which 
aim to minimize the dispersion within the groups and/or to maximize the dispersion 
between the groups. In fact the total dispersion in the dataset could be decomposed as 
T=B+W, where T indicates the total scatter matrix of the n observation, W the 
pooled-within groups scatter matrix and B the between groups scatter matrix. 

Different fitness functions (Calinski T., Harabasz J., 1974, Marriott F.H.C., 1982, 
Ricolfi L. 1992) have been used to drive the evolutionary operators towards the 
identification of the optimal partition of the dataset. If we suppose that the number of 
groups is known a priori, GAIE and GA ME could be used to determine the optimum 
value of the following fitness criteria and the associated best partition of the dataset: 
min(trace(W)),max( trace(B/W)), max(trace(B/T)), min(det(W)/det(T)). 

However, the number of groups is usually not known a priori. We wanted the 
algorithms to determine also the best number of natural groups in the dataset. Then, 
two different fitness functions , which include a penalisation factor depending on the 
number of groups , have been used to determine both the composit ion of the clusters 
and the best number of groups in the dataset.  

They are respectively: min(g2det(W)/det(T)) (MC, Marriott’s criterion, 1982) and 
max({tr(B)/(g-1)}/{tr(W)/(n-g)}) (VRC, Variance Ratio Criterion, Calinski T., 
Harabasz J., 1974). The selection of the number of groups, g, has not been included 
within the evolutionary process. An iterative approach, limited to the maximum 
available number of groups has been proposed. The algorithm stops when increasing 
the number of groups, the fitness value of the best individual in the last generation is 
greater than the optimal fitness value of the previous iteration. This mixed iterative-
evolutionary schema implies the exploration of disjoint solution subspaces where the 
number of groups is fixed. 
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4. Results and conclusions 

GAIE, GAME and GAPE have been at first tested on simulated dataset composed 
by random observations drawn from multivariate normal distribution with different 
location and equivalent and not covariance structure. When data do not contain 
overlapping clusters, the three algorithm identify correctly the real classification. The 
number of misclassified items increases when the parameters used to specify the 
distribution from which to draw the data could lead to generate overlapping clusters. 
Table 1 shows the average error with respect to the real classification on simulated 
datasets. The average error refers to ten different simulated dataset of two hundred 
observations with four measurements. Fifty observations have been generated from 
each multivariate normal distribution respectively with parameters: µ1=[1,1,1,1], 
Σ1=I; µ2=[5,5,5,5], Σ2=2I; µ3=[9,9,9,9], Σ3=3I; µ4=[13,13,13,13], Σ4=4I. For each 
dataset 500 simulations have been performed. Overlapping clusters may be formed. 
We compared our evolutionary approaches with standard techniques. GAPE, GAME 
and GAIE outperforms the standard k-means algorithm, and the Expectation 
Maximization (EM)  algorithm with diagonal and full specification of the covariance 
matrix (see table 1). Moreover, GAME and GAIE converges to the same optimal 
value while the other algorithms, except the fuzzy c-means and the EM with spherical 
structure, tend to fall in local minima leading to variability in the number of 
misclassified items. The usage of GAPE algorithm has been useful to determine the 
specification of the underlying model. In fact, the best individual reports values of the 
parameters to be estimated which are very near to the real values used to generate the 
data. The genetic approach not only allows to determine the optimal partition of the 
data, but also gives further inside about the structure of the model underlying the data. 

 
Clustering Algorithm Average error. 

GAPE 2.3% 
GAIE/GAME 
(with MC as Fitness Function) 

1.9% 

GAIE/GAME 
(with VRC as Fitness Function) 

1.5% 

K-means 4.4% 
Fuzzy c-means 0.9% 
EM diagonal 4.6% 
EM full 5.9% 
EM spherical 0.7% 

Table 1. Cluster algorithms performance when data are generated from multivariate normal 
with parameters: µ1=[1,1,1,1], Σ1=I; µ2=[5,5,5,5], Σ2=2I; µ3=[9,9,9,9], Σ3=3I; 
µ4=[13,13,13,13], Σ4=4I. The average error has been evaluated on 10 different simulated 
datasets. For each dataset 500 runs were performed so the average is on 5000 different runs.  

 
Fisher’s Iris dataset is a well-known target dataset to be used in testing the validity 

of new clustering algorithms. Data are collected from three different species of iris 
flower, where observations from just one specie have clearly distinctive features. It is 
composed by 150 observation with four measurements each. Table 2 reports the 
number of misclassified items in correspondence of our evolutionary approaches 
compared with classical approaches and with results reported in literature. We also 
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report results related to different fitness criteria. The results show that the 
evolutionary algorithms are capable to identify the correct belonging of each 
observation but three items, which it is the best result up to now reported. Automatic 
data mining, as the third column shows, allow to reduce the number of misclassified 
items. Moreover, respectively in the fourth and fifth columns, the best fitness values 
reached by the GAIE/GAME algorithm and the one in correspondence of the real 
correct classification are reported. 

 

  
Minimum number 

of misclassifed 
items  

Average number of 
misclassified items on 

500 runs 

Misclassified Items 
with Automatic data-

mining 
Best FV Real FV 

GACE/GAIE 
1/tr(B/W) 3 3 3 0.029 0.038 

GACE/GAIE 
MC 

3 3 3 0.198 0.210 

GACE/GAIE 
VRC 16 16 8 0.0018 0.0021 

GACE/GAIE 
trW 

16 16 6 7885 8930 

GAPE 
Ók=ëI 16 24.5 6 1635 1693 

K-means 16 25.9 ---   

Fuzzy c-means 16 16 ---   

EM-spherical 16 16 ---   

EM-diag 9 23.7 ---   

EM-full 5 17.2 ---   

Friedman, Rubin, 1967 
tr(W/B)  3 --- --- --- --- 

Friedman, Rubin, 1967 
det(T)/det(W) 3 --- --- --- --- 

Fraley and Raftery, 1999
EM 5 --- --- --- --- 

Table 2. Fisher’s Iris data. Comparison among the evolutionary algorithms, the standard 
partitional algorithms and the literature reported results in grouping the Iris dataset. The 
number of misclassified items with automatic data mining and not, the best fitness values 
reached by GAIE/GAME/GAPE and the fitness values in correspondence of the real 
classification with no automatic data mining are reported. (FV=Fitness Value; the Fitness 
Functions we used are reported in italics) 

It should be noticed that GAME/GAIE identify a partition with associated smaller 
fitness values. The choice of the fitness criteria to be used is therefore crucial. A 
deeper look inside the data shows that the three misclassified items are more 
homogeneous with respect to the group they are assigned by the clustering algorithms 
than to the group they actually belong. The possible presence of errors in collecting 
data and the existence of anomalous data should be considered when looking at the 
partition given by the algorithms. If we compare evolutionary with classical 
approaches (see Table 2) we note that standard partitional clustering algorithms, 
which start from the random choice of the initial seeds, as GAME and GAPE do, lead 
at most to misclassify 5 observations and how they, except the fuzzy c-means and the 
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EM with spherical covariance structure, can easily fall in local minima. The average 
number of misclassified items in 500 runs is well above the minimum number of 
misclassified items, showing that they are not stable in global convergence. On the 
contrary the evolutionary clustering algorithms show a very stable and robust 
convergence reaching the same state in all the 500 runs starting from different random 
seeds. The iterative evolutionary procedure has also determined as optimal number of 
groups the number of the species in the dataset in correspondence of the Variance 
Ratio Criterion. 

The comparison between our proposed evolutionary clustering with standard 
clustering algorithms shows the validity of the approach in developing more efficient 
clustering algorithms which have strong convergence properties. These results 
encourage further research in improving the described algorithms and in testing and 
building new statis tical criteria to be used. Moreover, analysis in a probabilistic 
framework could be further developed in testing different possible models coming 
from different distributions and in validating criteria, such as the BIC criterion, to 
automatically detect the number of groups, within an iterative approach. 
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