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Abstract. Histopathological image analysis is a critical area of research
with the potential to aid pathologists in faster and more accurate diag-
noses. However, Whole-Slide Images (WSIs) present challenges for deep
learning frameworks due to their large size and lack of pixel-level anno-
tations. Multi-Instance Learning (MIL) is a popular approach that can
be employed for handling WSIs, treating each slide as a bag composed of
multiple patches or instances. In this work we propose Buffer-MIL, which
aims at tackling the covariate shift and class imbalance characterizing
most of the existing histopathological datasets. With this goal, a buffer
containing the most representative instances of each disease-positive slide
of the training set is incorporated into our model. An attention mecha-
nism is then used to compare all the instances against the buffer, to find
the most critical ones in a given slide. We evaluate Buffer-MIL on two
publicly available WSI datasets, Camelyon16 and TCGA lung cancer,
outperforming current state-of-the-art models by 2.2% of accuracy on
Camelyon16.

Keywords: Multi-instance Learning · Weakly Supervised Learning ·
Whole Slide Images

1 Introduction

The histopathological image analysis is a research area with a wide interest as it
helps pathologists to carry out accurate diagnosis [12], especially when combined
with genomic features [7,14,19]. The most common way to acquire glass slides
is by employing Whole-Slide Image (WSI) scanners, which can produce digital
high-resolution images [18]. Such resolutions are usually prohibitive for standard
deep learning frameworks, and generating pixel-level accurate annotations rep-
resent a time-consuming and labor-intensive task. As a consequence, different
strategies must be employed to perform automatic WSIs analysis and support
clinicians in the daily practice. One of the most common approaches in litera-
ture follows the Multi-Instance Learning (MIL) paradigm, where from each slide
(bag) multiple unlabelled patches (instances) are extracted. These patches have
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a much smaller size w.r.t. the original image and can be directly fed into a deep
learning network to obtain a positive or negative prediction (e.g., tumor/not
tumor). Once all the patch predictions are obtained, they must be aggregated
to provide the final outcome for the entire slide. Indeed, bags can be perceived
as a mosaic of interrelated concepts that are comprehensible only when viewed
in their entirety [23].

Unfortunately, when dealing with positive bags, we also face the problem of
class imbalance, as positive instances usually represent a low percentage of the
entire set. Without correct precautions, the model will tend to overfit, and it
might misclassify positive instances, leading to a wrong bag-level prediction. A
second problem, named covariate shift, occurs when the distribution of instances
within positive and negative bags differs between train and test data. This dif-
ference can force the model to focus on instances that are not actually related to
the correct label [26]. This becomes crucial when dealing with one-vs-all cross
attention paradigm [13], since the most critical instance drive the attention of
all the others. Conversely, the all-vs-all attention (e.g., self-attention in trans-
formers) [4,8,11] approach can suffer from high-class imbalance, with instances
that are often heterogeneous and noisy, making many comparisons irrelevant and
even potentially derailing the final decision.

Motivated by the aforementioned challenges, this work proposes Buffer-MIL
to address both class imbalance and covariate shift. To achieve this, our approach
incorporates a buffer-vs-all strategy that makes use of a buffer to keep track of
the most important instances seen during all the training process. This buffer
is updated at run-time by selecting the top-k most critical instances of each
positive slide in the training set. An attention mechanism is used to compare all
the instances against the buffer, enabling the selection of the most critical ones
to be incorporated into the learning process. This way, since the morphology
of critical instances is more robust to covariate shift, we can leverage their sta-
bility to enhance the generalization performance of the model. We evaluate our
approach on two publicly available WSI datasets, Camelyon16 and TCGA lung
cancer, which demonstrate the effectiveness of the proposed approach. Specif-
ically, Buffer-MIL outperforms the current state-of-the-art models by 2.2% in
terms of accuracy and by 2.0% in terms of AUC on a single-scale setting.

Overall, our proposed Buffer-MIL approach provides an effective solution
to address both class imbalance and covariate shift in classification tasks by
leveraging a buffer containing the most critical instances, which allows for im-
proved model performance. The source-code is available at https://github.
com/aimagelab/mil4wsi.

2 Related Work

Multi-instance learning is a popular and well established type of supervised learn-
ing, whose application to the classification of WSIs is well known [3,11,13]. In this
section, recent proposals about the application of MIL to WSIs are summarized,
and the covariate shift problem is introduced.

https://github.com/aimagelab/mil4wsi
https://github.com/aimagelab/mil4wsi


Buffer-MIL: Robust Multi-instance Learning with a Buffer-based Approach 3

2.1 Multi-instance Learning for WSI Analysis

Initially proposed for drug activity prediction [9], the multi-instance learning
paradigm gained prominence in the world of histological whole-slide image anal-
ysis. Although initially employed as a simple instance classifier, recent studies in-
troduce an attention mechanism to extract bag representations [2,6,13,16,17,20].
Among them, DS-MIL [13] is based on a dual-stream architecture. Patches are
extracted from each considered magnification (5× and 20× in their study) of
the WSIs and used (separately) for self-supervised contrastive learning. Patch
embeddings extracted at different resolutions are later concatenated to train the
MIL aggregator, which assigns an importance (or criticality) score to each in-
stance. The most critical patch is then selected and compared to all the others
(one-vs-all). Such comparison is based on a distance measure that recalls an
attention mechanism, but it has a substantial difference as two queries are com-
pared instead of using the classical key and query approach. All the distances are
then aggregated into the final bag-level prediction. Differently, Ilse et al. [11] pro-
pose a MIL framework (AB-MIL) where the final aggregation function is based
on a weighted average. The weights assigned to each instance are computed by
a gated attention mechanism. The aim of this method is to find key instances in
a fully differentiable and adaptable way, by comparing instances within a bag in
an all-vs-all fashion.

2.2 Covariate Shift

Covariate shift refers to a marginal training distribution Ptrain(X) that dif-
fers from the test one Ptest(X), maintaining stable the conditional distribution
P (y|X) [10,21]. In other words, we have a distribution shift when the training
and the test set are not independent and identically distributed. This charac-
teristic lead a neural network to learn features that are not correlated with the
correct label. To mitigate these effects a widely used approach is importance
weighting, which involves assigning a weight to each training instance x. This
weight, denoted as w(x), is calculated as the ratio of the marginal probabilities
of the instance in the test and train sets, i.e., w(x) = Ptest(X)/Ptrain(X). The
weight-based approach aims at reducing the discrepancy between the train and
test marginals improving the generalization performance of the model [22].

As observed in Stable-MIL [26], in covariate shift settings the meaning and
characteristics of noisy instances may change due to the distribution differences
between train and test sets. However, critical instances, characterized by their
morphology or inherent properties, tend to remain stable and consistent re-
gardless of the covariate shift. In other words, they exhibit robustness to the
distribution changes and their predictive behavior remains reliable. Therefore,
by focusing on instances that are less affected by the covariate shift, we can
improve model stability to also enhance the generalization performance. In our
approach, we adopt an attention module to automatically identify these critical
instances and store them in a buffer for further analysis and integration into the
model. Such buffer is then compared against all the instances of a bag to find
patches with the highest contribution.
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3 Model

3.1 Notation

Firstly, the notation that will be later used in this paper is introduced to better
define the concepts described. With X, X+, and X− are denoted generic, posi-
tive, and negative bag respectively. Instead, with x we refer to a single instance
extracted from a bag.

3.2 Critical Instances

The proposed multi-instance learning framework relies on the concept of critical
instances, which play a fundamental role in determining the bag label. Formally,
we define x as critical if it satisfies the following two conditions:

– x belongs to a positive bag X+;
– adding x to a negative bag X− would change the bag’s label from negative

to positive, that is, ϕ(X− ∪ {x}) = 1, where ϕ is the function that maps a
bag to its label.

The first condition ensures that the critical instance is informative about the
positive class, while the second guarantees that the instance is not present in
any negative bag that should have a positive label. Thus, critical instances are
those that provide evidence for the positive class and cannot be easily explained
away as noise. Intuitively, critical instances, xcrit, contain the most important
information for bag classification. On the other hand, non-critical instances,
xnoisy, may still contribute to the overall decision but their presence or absence
does not have a significant impact on the outcome.

Assumption 1 Critical instances exhibit similar patterns, unlike xnoisy. So,
given a feature extractor f pretrained via a self-supervised paradigm, the simi-
larity distance d(·, ·) across critical instances is lower than the one with other
non-critical instances:

d(f(xcrit), f(xcrit)) < d(f(xcrit), f(xnoisy)) (1)

Starting from this assumption, our model builds a buffer containing most critical
instances within each positive bag X+, which is later used to measure how other
instances are relevant. Since built over the entire training set, the buffer usage
provides a wider knowledge about what is really important w.r.t. using a single
instance, as done by DS-MIL.

3.3 Critical Buffer

To rank instances based on their importance within each slide, a standard
attention-based DS-MIL [13] is employed. In particular, given a patch x, its
embedding is computed as h = f(x), where the function f(·) is obtained from
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Fig. 1: Visual representation of the proposed model. In particular, given the
buffer B and the input slide H, the attention matrix A is computed. The g(·)
function is used to select the most informative elements from the matrix into G.

a self-supervised approach. A patch-level classifier clspatch(·) is used to find the
index of the most critical patch as:

crit = argmax(clspatch(f(x))) = argmax{Wpf(x0), ...,Wpf(xn)} (2)

where Wp is a weight vector.
The second step is to aggregate instance embeddings into a single bag embedding.
This is performed by computing a linear projection of each embedding into a
query qi and a value vi, using two weight matrices Wq and Wv:

qi = Wqhi, vi = Wvhi (3)

Next, the query relative to the most critical instance, qcrit, is obtained and
compared to all other queries qi (including itself) using a distance measure U(·, ·)
defined as:

U(hi, hcrit) =
exp(⟨qi, qcrit⟩)∑N−1

k=0 exp(⟨qk, qcrit⟩)
(4)

Finally, the bag score is given by:

cb(B) = Wb

N−1∑
i=0

U(hi, hcrit)vi (5)

where Wb is again a weight vector. The bag score is used to select all the positive
bags and extract the top-k instances within each of them. The ranking is given by
the score U(hi, hcrit). The buffer is build by training the aforementioned model;
at the end of the process it contains the most critical instances of each bag,
providing a more stable criticality representation.
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The selection of the N most important patches from each slide (N/Slide)
is repeated every freq epochs, since the network should learn to assign a bet-
ter score to bags and instances, better understanding what should actually be
considered as critical.

3.4 Bag Embedding through the Critical Buffer

Fig. 1 illustrates how the buffer B is introduced in the attention mechanism.
Given the current bag H = {h1, ..., hi, ..., hN}, composed of N instances, and
the buffer B = {b1, ..., bi, ..., bM}, composed of M critical instances belonging
from different slides, a new bag embedding can be computed. First, the weight
matrix Wq trained in the previously described steps is used to perform a linear
projection of all the instances hi and all the instances within the buffer bi,
obtaining qhi

and qbi respectively. An attention matrix A is then built, where
Ai,j = ⟨qhi

, qbi⟩. This can also be seen as a matrix multiplication, once defined
Qh ∈ MN×K as the row-wise concatenation of every qhi and Qb ∈ MM×K

as the row-wise concatenation of qbi , considering K the latent space size where
each instance get projected, the attention matrix A ∈ MN×M can be written as
follow:

A = QhQ
T
b (6)

As only a single attention score is required for each of the bag instances hi, an
aggregation function g(·) on each row of A must be used to obtain a new matrix
G ∈ MN×1 as Gi = g({Ai,j : ∀j ∈ [1,M ]}).

All the instances hi are also projected into values vhi
of size L using the

Wv weight matrix of the previous step, obtaining Vh ∈ MN×L. Finally, the bag
embedding is computed as:

b = WbG
TVh (7)

with Wb ∈ M1×L representing the weight matrix that computes the final bag
embedding. In this paper, two different function g(·) are proposed:

– mean: the attention scores are computed considering the entire buffer, under
the assumption that it is composed of critical instances only. In particular
Gi = mean{Aij : ∀j ∈ [1,M ]};

– max: considering that the buffer may also contain noisy labels, using a max-
pooling operation allows to select only the most representative instances.
Specifically, Gi = max{Aij : ∀j ∈ [1,M ]}

4 Experimental Settings and Results

4.1 Pre-processing

Each slide has been cropped using the CLAM framework [15], a state-of-the-art
tool for selecting tissue patches and removing the WSI background. In partic-
ular, each slide has been processed at thumbnail level through a combination
of Otsu thresholding [25] and connected components analysis [1], to obtain the
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tissue contours. After that, each 256 × 256 patch within the selected contours
is extracted without overlapping at 20× scale resolution (5× and 20× in the
multi-scale setting).

Finally, instance embeddings are obtained through a ViT model trained in
a self-supervised fashion by means of the DINO paradigm [5]. The training is
performed separately on each dataset/resolution. The model has been trained
for a week with two NVIDIA GeForce GTX 2080 Ti GPUs using the default
parameters proposed by the authors.

4.2 Metrics

The evaluation metrics considered are the Area Under the Curve (AUC) and
the accuracy. As the name suggests, the AUC measures the area under the
ROC curve, representing the relationship between the true positive rate, TPR =
TP/(TP+FN), and the false positive rate, FPR = FP/(FP+TN), for any pos-
sible threshold. Once the best threshold for the ROC curve is found, we measure
the accuracy as the quantity of TP over the entire test set. Each experiment
has been executed with 3 different seeds, reporting the average and the standard
deviation .

4.3 Datasets

The proposed method has been extensively tested over two different datasets:
Camelyon16 and TCGA Lung. The former has been created with the purpose
of automatic detection of metastases in Hematoxylin and Eosin (H&E) stained
whole-slide images of lymph node sections, as part of the homonymous chal-
lenge held at the International Symposium on Biomedical Imaging (ISBI) in
2016 [2]. The dataset comprises a total of 398 WSIs, out of which 128 are desig-
nated as “official test set”. The images were acquired through two slide scanners,
namely RUMC and UMCU, respectively equipped with 20× and 40× objective
lenses. The specimen-level pixel sizes are comparable, i.e., 0.243µm × 0.243µm
for RUMC and 0.226µm × 0.226µm for UMCU. Official training and test set
have been employed for our experiments.

The second dataset, publicly available on the GDC Data Transfer Portal,
comprises two sub-types of cancer: Lung Adenocarcinoma (LUAD) and Lung
Squamous Cell Carcinoma (LUSC), counting 541 and 513 WSIs respectively. In
this case, the task is the classification of LUAD vs LUSC. To provide a fair
comparison with Li et al. [13], we employ the same split between train and test
set and remove ten corrupted slides as suggested in the original publication.

4.4 Results

Tab. 1 compares the proposed Buffer-MIL with state-of-the-art approaches:
two MIL models with simple aggregators like mean-pooling and max-pooling,
Attention-based MIL (AB-MIL) [11], DS-MIL, and its multi-scale version [13].
We also extend the buffer-based approach to consider multiple resolutions.
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Table 1: Performance comparison on Camelyon16 and TCGA Lung dataset.
The “†” identifies multi-scale approaches. Buffer aggregation is based on mean
in these experiments.

Camelyon16 TCGA Lung

Model Accuracy AUC Accuracy AUC

mean-pooling 0.723± 0.004 0.672± 0.010 0.823± 0.002 0.905± 0.001
max-pooling 0.893± 0.015 0.899± 0.007 0.851± 0.008 0.909± 0.002

AB-MIL 0.724± 0.015 0.744± 0.016 0.864± 0.009 0.933± 0.004
DS-MIL 0.915± 0.013 0.952± 0.005 0.888± 0.005 0.951 ± 0.002
Buffer-MIL 0.935 ± 0.012 0.971 ± 0.005 0.891 ± 0.008 0.950± 0.002

DS-MIL† 0.909± 0.020 0.955± 0.010 0.913 ± 0.005 0.966 ± 0.002
Buffer-MIL† 0.940 ± 0.008 0.969 ± 0.005 0.897± 0.020 0.956± 0.010

Table 2: Comparison between the usage of max and mean aggregation (Agg.) by
setting the buffer update frequency to 10.

Agg. N/slide Accuracy AUC

Mean
1 0.934± 0.012 0.970± 0.006
2 0.932± 0.012 0.968± 0.006
10 0.935 ± 0.012 0.971 ± 0.005

Max
1 0.925± 0.012 0.966± 0.004
2 0.927± 0.020 0.967± 0.005
10 0.930± 0.021 0.967± 0.003

From a single scale perspective, using the buffer improves the baseline by an
average of 2.2% in accuracy and 2.0% in AUC on the Camelyon16 and 0.3% in
accuracy for the TCGA Lung dataset. Employing multiple resolutions generally
provide better performances: on Camelyon16 the buffer improves the baseline
by an average of 3.4% in accuracy and 1.5% in AUC.

4.5 Model Analysis

Our experiments provide evidence that Buffer-MIL is effective at tackling co-
variate shift, as demonstrated by the higher performance improvement obtained
on Camelyon16 compared to TCGA Lung (Tab. 1). Given the smaller size of
Camelyon16, overfitting can become a critical issue, slightly attenuated by the
multi-scale approach.

Aggregation Function. Two different aggregation functions have been studied
and presented in Tab 2. Experimental results reveal that producing the final
attention scores by averaging critical representations in the buffer outperforms
the use of a max operator.
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Table 3: Contribution of buffer update frequency (Freq.) when using mean-based
aggregation.

Freq. N/slide Accuracy AUC

1 10 0.919± 0.012 0.963± 0.004
2 10 0.917± 0.009 0.967± 0.001
10 10 0.935 ± 0.012 0.971 ± 0.005

One possible explanation is that selecting only the most representative disease-
positive buffer instances produces a final representation that is not aligned with
all the bags. This approach may not capture the diversity of the disease-positive
instances and may lead to sub-optimal performance. In contrast, the mean op-
erator takes into account all the critical instances, which allows for a stronger
consensus. This approach is better at capturing the diversity of disease-positive
instances and is less likely to overfit specific patches. Furthermore, the mean
operator is less sensitive to outliers and noise that may be contained in the
buffer.

Buffer Update Frequency. This hyperparameter regulates the interval (mea-
sured in epochs) between each buffer update. In Tab. 3, we also investigate the
impact of buffer update frequency, which is found to be an important parameter
for both max and mean operators.

Our analysis suggests that updating the buffer fewer times generally leads to
better performances, as it allows for a better selection of the most representa-
tive disease-positive instances across the entire training set. Updating the buffer
with an higher frequency prevents its consolidation, and may cause it to be filled
with noisy or irrelevant information. Instead, updating the buffer less frequently
increases the time interval between buffer creations, causing it to become out-
dated and failing to capture the most relevant instances. Setting an appropriate
interval is required by the model to learn and generalize from the initial training
data before incorporating new information into the buffer. In other words, the
model can better consolidate the knowledge from the initial training data, and,
consequently, perform a better selection of new instances. It is essential to find
the right trade-off.

Buffer Size. The buffer is built considering the N most critical instances from
each slide. As illustrated in Tab. 4, our analysis demonstrates that the impact
of buffer size is less significant w.r.t. buffer update frequency. Our experiments
also suggest that increasing the buffer size does not always lead to improved
performance.

One possible explanation is that when the buffer frequency update is low,
increasing the buffer size may include more irrelevant or noisy instances, which
could negatively impact the model performance. In this scenario, selecting a
larger number of instances per slide could cause the buffer to become more
“diluted” with irrelevant instances. As a result, the model may not be able to
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Table 4: Buffer size contribution at different update frequencies when using
mean-based aggregation.

Freq N/slide Accuracy AUC

1
1 0.922± 0.008 0.962± 0.002
2 0.925 ± 0.012 0.961 ± 0.003
10 0.919± 0.012 0.963± 0.004

10
1 0.934± 0.012 0.970± 0.006
2 0.932± 0.012 0.968± 0.006
10 0.935 ± 0.012 0.971 ± 0.005

Table 5: Comparison with random sampling when using mean-based aggregation
and a frequency update of 10.

Our Method Reservoir Sampling

N/slide Accuracy AUC Accuracy AUC

1 0.934± 0.012 0.970± 0.006 0.922± 0.014 0.962± 0.003
2 0.932± 0.012 0.968± 0.006 0.922± 0.008 0.963± 0.004
10 0.935 ± 0.012 0.971 ± 0.005 0.925± 0.012 0.964± 0.004

properly consolidate and learn from the most critical instances, leading to a
decrease in performance.

On the other hand, when the buffer update frequency is high, the buffer can
better capture the most critical disease-positive instances, even if the buffer size
is small. In this case, the mean operator typically works better on bigger buffers,
but small buffer sizes can still perform comparably well. Selecting the optimal
buffer size depends on the specific dataset and task, as well as the buffer update
frequency.

Sampling Selection. To provide evidence that selecting proper patches mat-
ter, in Tab. 5 we show a comparison between our proposed method, and the
reservoir sampling strategy [24], which is a random-based selection technique.
The results demonstrate that our approach outperforms the random selection
strategy regardless of the parameters used.

5 Conclusion

In conclusion, our analysis demonstrates that Buffer-MIL is an effective approach
for addressing the problem of covariate shift when multi-instance learning is
applied to the histopathological context. In particular, the results suggest that
performing an appropriate buffer selection approach and identifying the correct
interval for updating the buffer are critical to achieve optimal performance.
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Further research is needed to investigate how relevant buffers are in more
difficult and diverse tasks such as survival prediction. In that case, tissue mor-
phology is not directly connected to the patient outcome and a better storage
strategy (e.g., multiple buffers per concept) would be probably needed.
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