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Summary

Graphical modeling represents an established methodology for identifying complex
dependencies in biological networks, as exemplified in the study of co-expression,
gene regulatory, and protein interaction networks. The available observations often
exhibit an intrinsic heterogeneity, which impacts on the network structure through
the modification of specific pathways for distinct groups, such as disease subtypes.
We propose to infer the resulting multiple graphs jointly in order to benefit from
potential similarities across groups; on the other hand our modeling framework is
able to accommodate group idiosyncrasies. We consider Directed Acyclic Graphs
(DAGs) as network structures, and develop a Bayesian method for structural learn-
ing of multiple DAGs. We explicitly account for Markov equivalence of DAGs,
and propose a suitable prior on the collection of graph spaces that induces selec-
tive borrowing strength across groups. The resulting inference allows in particular
to compute the posterior probability of edge inclusion, a useful summary for rep-
resenting flow directions within the network. Finally, we detail a simulation study
addressing the comparative performance of our method, and present an analysis of
two protein networks together with a substantive interpretation of our findings.
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1 INTRODUCTION

Understanding the complex functions of the genes, proteins and other aspects of the genome is at the foundation of genomic
medicine1;2. Additional knowledge on thesemechanisms can aid the development of novel treatment strategies for the underlying
disease. Amajor role in this effort is played by flexible and efficient quantitative models for the analysis of dependence structures
of omics variables. Graphical models have been widely applied in genomics and proteomics to infer various types of networks,
including co-expression, gene regulatory, and protein interaction networks3;4;5.
While the standard setting of Gaussian graphical modeling assumes that each observation is drawn from the same population,

it is often the case that data originate from several distinct groups. For instance, gene expression measurements can relate to
cancer tissue samples as well as normal tissue samples. Neither the choice of assuming that the two graphs are the same, nor
that they are distinct and hence should be analyzed separately, is satisfactory, as the former fails to account for differences which
may be of interest, while the latter does not allow to take into account similarities. For example, in genomics it is fundamental to
understand whether disease subtypes can be characterized by alterations in key signaling pathways. To address this issue, a few
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proposals for the simultaneous analysis of multiple graphs have been presented. With reference to undirected graphs, Danaher
et al6 develop the joint graphical lasso for estimating the inverse covariances across multiple groups. An interesting feature of
their approach is that it does not require sparsity of the individual covariance matrices; this is also the perspective of Zhao et al7,
who propose direct estimation of the difference between two networks. The joint lasso is used by Pircalabelu et al8 to analyze
brain activity measurements at voxel level based on magnetic resonance imaging.
Turning to Bayesian approaches, Peterson et al9 propose a method for structural learning of multiple networks, whose building

block is represented by a Markov random field prior on the space of graph models that encourages common structures. Specifi-
cally, their prior favors the inclusion of an edge in the graph for a particular group if the same edge is included in the graphs of
related sample groups. Additionally, their method is able to learn which groups have a shared structure through parameters that
measure network relatedness. In this way information is shared among sample groups only when appropriate. Tan et al10 con-
sider metabolic association networks. Their prior on graph structures is an extension of the multiplicative (or Chung-Lu random
graph) model to multiple Gaussian graphical models, linking the probability of edge inclusion through logistic regression. Jalali
et al11 develop a scalable approach to jointly estimate multiple related Gaussian graphical models that exhibit complex edge
connectivity patterns across models for different subsets of edges. To achieve this goal, they introduce a novel subset-specific-
prior that for each edge aims to select the subset of models it is common to. Williams et al12 discuss multiple graphical models
with the aim of detecting differences or demonstrate replicability. To this end, they introduce two methods for comparing net-
works; one is based on the posterior predictive distribution, with Kullback-Leibler divergence as the discrepancy measure; the
second approach instead relies on the more traditional Bayes factor.
As exemplified above, most papers assume that similarities and differences between networks are driven by individual edges.

This approach however might not be appropriate in some cases, as discussed in Mohan et al13. They suggest instead to to take a
node-based approach to assess shared network structures, and identify two instances: highly-connected hub-nodes in all network
groups; and perturbed nodes exhibiting different connectivity structures across groups.
The great majority of works on multiple graphs deal with the undirected case, as in the references above. However, Directed

Acyclic Graphs (DAGs) are often preferred in genetic analyses where directed pathways are of particular interest; additionally
they represent the natural graphical framework to perform causal reasoning14. Motivated by reverse phase protein array data
from a study on acute myeloid leukemia, Yajima et al15 discuss a modeling approach based on Gaussian DAGs to contrast
refractory versus relapsed patients targeting specific biological pathways. Mitra et al16 also deal with two group structures, and
construct a prior which addresses group heterogeneity while allowing for the possibility of borrowing strength. Oates et al17
extend recent developments in exact estimation of DAGs using integer linear programming to joint estimation over multiple
DAGs, without requiring that the vertices in each DAG share a common ordering.
In this paper we also deal with DAGs. We start however from the fact that Markov-equivalent DAGs, namely those which

share the same conditional independencies, cannot be distinguished through observational data alone18. This leads us to consider
a representative for each class, named the essential graph. The main contribution of this manuscript is threefold: i) we develop
a methodology for Bayesian structural learning over multiple essential graphs, one for each of several groups; ii) we propose a
novel prior for multiple essential graphs based on the graphs’ skeletons; iii) we propose a method that identifies the direction
of the associations in the (multiple) biological networks, when possible. Note that the last feature is of practical relevance in
follow-up experiments, since, for example, the proposed method can suggest which one of a pair of connected genes should be
knocked down. We follow an objective Bayes approach with regard to parameter priors, whereas a Markov random field prior
is placed on the space of multiple essential graphs.
The rest of this paper is organized as follows. Section 2 provides the main concepts and terminology for graphical models

and model selection. Section 3 contains our model formulation in terms of likelihood, parameter priors and prior on the graph
space. Section 4 deals with the development of a computational algorithm for posterior sampling and with posterior summaries,
while Section 5 presents a detailed simulation study and compares our results with those produced by a few current competing
methods. Section 6 is devoted to the analysis of two real datasets, the protein signaling data and the leukemia data. Finally,
Section 7 contains a brief summary and discussion. All codes are written in R19 and are available upon request to the Authors.

2 BACKGROUND

In this section we provide the background material we rely on for further developments. More information on graphs and
graphical models and on objective Bayesian model selection is provided by Lauritzen20 and Berger and Pericchi21, respectively.
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2.1 Simple graphs
We denote a graph by  = (V ,E), where V = {1,… , q} is a set of vertices (or nodes) and E ⊆ V ×V is a set of edges (or arcs)
such that (u, u) ∉ E for all u ∈ V (no loops). Note that, by ruling out loops and parallel edges, which would require E to be
a multiset, we are assuming that  is simple. Figure 1 depicts three simple graphs with q = 6 nodes, which we use to illustrate
the background material in this section. The idea is that arcs represent first-hand connections between nodes, which will give
rise to second-hand connections, as described by paths and cycles (defined below).
If (u, v) ∈ E but (v, u) ∉ E we say that  contains the directed edge (or arrow) u→ v. If instead (u, v) ∈ E and (v, u) ∈ E we

say that  contains the undirected edge (or line) u − v. For instance, in Figure 1, the left graph contains the arrow 4→ 5, while
the middle graph contains the line 4− 5. In both cases there is a first-hand connection between 4 and 5, but the two connections
are of different type. We say that two vertices u, v are adjacent in  if there is any such first-hand connection between them,
be it directed or undirected. Specifically, if u − v is in  we say that u and v are neighbors, while we say that u is a parent of v
if u → v is in . For instance, in the right graph of Figure 1 node 3 is a parent of node 4 and a neighbor of node 1, while in the
middle graph of the same figure node 3 is a neighbor of both node 1 and node 4. We denote the parent set of v by pa(v), so that
pa(6) = {4, 5} in the left graph of Figure 1, whereas pa(6) = {4} in the right graph of the same figure.
A sequence of distinct vertices v0, v1,… , vk in  is a path (of length k) from v0 to vk if  contains vj−1 − vj or vj−1 → vj

for all j = 1,… , k. A cycle is defined in the same way as a path, but with v0 = vk. A path is undirected if all its edges are
undirected; a cycle is directed if it contains at least one directed edge. There are no directed cycles in Figure 1, but its middle
graph contains the cycles 1, 2, 4, 3, 1 and 4, 5, 6, 4, whose lengths are 4 and 3, respectively. There are undirected paths in the
middle and right graphs of Figure 1: for instance, non-adjacent vertices 2 and 3 are joined by the undirected path 2, 1, 3, which
represents a second-hand connection between 2 and 3. We will use directed cycles and undirected paths to define and represent
chain graphs (introduced below) but we first present a few additional concepts.
Let A be a non-empty subset of V . We denote by A = (A,EA) the subgraph of  induced by A, whose edge set is EA =

E ∩ (A × A). We say that a (sub)graph is complete if all its pairs of vertices are adjacent. If A is complete, we also say that A
is complete (in ). A complete subset of V that is maximal with respect to inclusion is called a clique of . In the middle graph
of Figure 1, both {5, 6} and {4, 5, 6} are complete, whereas {1, 2, 3} is not, because 2 and 3 are not adjacent; it can be seen that
{4, 5, 6} is a clique, while {5, 6} is not, because it is strictly included in {4, 5, 6}. A flag is any subgraph of the form u→ v−w,
while an immorality (or v-structure) is any subgraph of the form u → v ← w; note that in both cases u and w are not adjacent.
There are no flags in Figure 1, but the left and right graphs of the figure both contain the immorality 2→ 4← 3.
A graph is called directed (undirected) if it contains only directed (undirected) edges. The undirected graph obtained from

 by removing the orientation of all its edges (replacing all its arrows with lines) is called the skeleton of . In Figure 1, the
left graph is a directed graph and the middle graph is its skeleton (as well as the skeleton of the right graph). The skeleton of
a graph preserves its first-hand connections, but drops their directions. A special class of undirected graphs is represented by
decomposable graphs, also called chordal or triangulated graphs20, Ch. 2: an undirected graph is decomposable if every cycle of
length k ≥ 4 has a chord, that is two non-consecutive adjacent vertices. The middle graph of Figure 1 is not decomposable,
because its cycle 1, 2, 4, 3, 1 has length four but no chords; in the right graph of the same figure the subgraphs induced by {1, 2, 3}
and {5, 6} are trivially decomposable (having no cycles). A special class of directed graphs is formed by acyclic directed graphs:
a directed graph with no cycles, such as the left graph of Figure 1, is called a Directed Acyclic Graph (DAG) and it is typically
denoted by  (in place of ).
Both undirected graphs and DAGs are special cases of chain graphs, defined as graphs with no directed cycles (possibly

containing both directed and undirected edges). All graphs in Figure 1 are chain graphs. For a chain graph  we call chain
component a maximal (with respect to inclusion) set of nodes � ⊆ V such that all its pairs of (distinct) nodes are joined by an
undirected path. The set of all chain components of a chain graph is denoted by  ; it forms a partition of the vertex set. As a
matter of fact, a chain graph can be seen as a DAG with vertex set  22. In particular, an undirected graph is a chain graph with
a single chain component, while a DAG is a chain graph with singleton chain components.
Let  be a decomposable graph with cliques C1,… , Cm and define recursively the corresponding histories, residuals and

separators, as Hj = Hj−1 ∪ Cj , Rj = Cj ⧵Hj−1 and Sj = Cj ∩Hj−1, for j = 2,… , m, from the base cases H1 = R1 = C1
and S1 = ∅. Since  is decomposable, it is always possible20, Prop. 2.17 to order its cliques in such a way that C1,… , Cm is a
perfect sequence20, p. 14. Given that eachSj is necessarily complete (being a clique subset) this amounts to saying thatC1,… , Cm
satisfies the running intersection property: for all j > 1, there is i < j such that Sj ⊆ Ci. Therefore, if we number the vertices
in V , based on a perfect sequence of cliques, in such a way that i < j implies lower numbers inRi than inRj , and then we direct
the edges in E from lower numbered vertices to higher numbered vertices, we obtain a directed graph < with  as skeleton
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and no immoralities (a perfect directed version of ). For instance, in the right graph in Figure 1, for the subgraph induced
by {1, 2, 3}, we have m = 2, C1 = {1, 2} and C2 = {1, 3}, therefore H1 = R1 = {1, 2} and S1 = ∅, while H2 = {1, 2, 3},
R2 = {3} and S2 = {1}. In the same graph, for the subgraph induced by {5, 6}, we have m = 1 and C1 = {5, 6}, therefore
H1 = R1 = {5, 6} and S1 = ∅. The left graph in Figure 1 can thus be seen (chain component by chain component) as a perfect
directed version of the right one.

2.2 Directed graphical models
Let Y1,… , Yq be q random variables, such as gene or protein expressions, whose joint probability density function is f (y) =
f (y1,… , yq), where y = (y1,… , yq)⊤ is a column vector. Consider a DAG  = (V ,E) with V = {1,… , q}. To each vertex j
in V we associate a variable Yj . We say that f (y) factorizes according to , or is Markov with respect to , if

f (y) =
∏

j∈V
f (yj | ypa(j)), (2.1)

where f (yj | ypa(j)) is the conditional density function of Yj given the subvector of y corresponding to the vertices in pa(j),
which we denote by ypa(j). Equation (2.1) constrains f (y) so that the structure of  determines conditional independencies
among the random variables. Specifically, assuming faithfulness23, all independencies can be read off from using the notion of
d-separation14, Ch. 1 or the moral graph approach20, Ch. 3. Moreover, if the joint distribution of Y1,… , Yq is multivariate Gaussian,
such conditional independencies correspond to constraints on the covariance matrix of Y1,… , Yq .
It is well known that distinct DAGs can encode the same conditional independencies. In such case they are called Markov

equivalent. Verma and Pearl24 showed that twoDAGs1 and2 areMarkov equivalent if and only if they have the same skeleton
and the same v-structures. If the data are only observational (i.e. passively observed) as in this paper, Markov equivalent DAGs
cannot be distinguished. We can then partition the DAG space into Markov equivalence classes, each represented by a special
chain graph called Essential Graph (EG)18 or Completed Partially Directed Acyclic Graph (CPDAG)25. The representative EG
of a Markov equivalence class is obtained as the union (with respect to the edge sets) of the DAGs contained in the class. Such
union implies that if an edge occurs with different orientations inside the class, e.g. u → v and u ← v, then the corresponding
EG will contain the undirected edge u− v. According to an important result18, Theorem 4.1, EGs are characterized as chain graphs
with decomposable chain components, no flags, and strongly protected arrows18, Definition 3.3. A different formulation of the same
result is given by Roverato26, Theorem 13 in the context of a unified characterization of representative chain graphs. If  is an EG
with set of chain components  , the probability density function of Y1,… , Yq constrained by any DAG in the class represented
by  can be written as

f(y) =
∏

�∈
f(y� | ypa(�)), (2.2)

where y� denotes the subvector of y = (y1,… , yq) indexed by � 27 and pa(�) =
⋃

v∈� pa(v) is the parent set of �. It should be
noted that all vertices in any given chain component of an EG have exactly the same parents, because the EG has no flags.

2.3 Model comparison through marginal likelihoods
Let1,… ,r be r competing statistical models for the n× q data matrix Y = (y1,… , yn)⊤. Under modelℎ, conditionally
on a model specific parameter �ℎ ∈ �ℎ, the vectors y1,… , yn are assumed to be independent and identically distributed obser-
vations from a q-dimensional distribution with probability density function fℎ

(y|�ℎ). Hence, the likelihood under modelℎ
is given by fℎ

(Y |�ℎ) =
∏n

i=1 fℎ
(yi|�ℎ). The goal is to compare the r models based on the support they receive from the

data, and eventually to select one. Ifℎ prescribes that fℎ
(⋅|�ℎ) is Markov with repect to a graph ℎ,ℎ is called a graphical

model. In this case model comparison amounts to learning a graphical structure from the data.
We follow a Bayesian approach and introduce a parameter prior for all model specific parameters. Let pℎ

(�ℎ) be the prior
probability density of �ℎ underℎ. The marginal likelihood ofℎ is then defined asmℎ

(Y ) = ∫ fℎ
(Y |�ℎ)pℎ

(�ℎ)d�ℎ and
provides a measure of support forℎ (based on Y ). Indeed, if prior model probabilities are introduced, posterior model proba-
bilities can be obtained from the marginal likelihoods of all models. Specifically, if Pr(ℎ) is the prior probability of ℎ, the
posterior probability ofℎ can be obtained as Pr(ℎ|Y ) = mℎ

(Y )Pr(ℎ)∕
∑r
k=1 mk

(Y )Pr(k). Then, a singlemodel sup-
ported by the data can be selected, if needed, based on a summary of the posterior distribution on the model space. Alternatively,
strategies based on model averaging can be easily implemented.
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In lack of substantive prior information, which is typically the case when different large graphical structures are to be com-
pared, an objective approach to the specification of Pr(ℎ) and, particularly, pℎ

(�ℎ) is recommended; for example, in many
applications it is typically difficult to specify an informative prior on the strength of the connections in the network. The choice
of the latter is especially critical, because default estimation priors are typically improper and their undefined normalizing con-
stants will make marginal likelihoods, hence posterior model probabilities, meaningless. In this paper, we specify parameter
priors following Consonni et al28, who solve this problem using priors based on the fractional Bayes factor 29 and compute
marginal likelihoods for directed graphical models following the procedure presented by Geiger and Heckerman30. The choice
of Pr(ℎ) is also important, and will be discussed in Section 3 in the context of EG-models.

3 MODEL FORMULATION

In this section we introduce our full Bayesian model for the data of interest, describing its likelihood, parameter prior and prior
on model space.

3.1 Likelihood
Consider observations fromK groups, such as the disease subtype or disease stage. For each k = 1,… , K , let Y [k] be the nk × q
data matrix for group k having rows y⊤[k]1,. . . ,y

⊤
[k]nk

, where nk is the sample size of group k. Note that we observe the same set
of random variables for all groups. Within group k, given �[k] (a vector) and �[k] (a symmetric positive definite matrix), we
assume that y[k]1,… , y[k]nk are independent and identically distributed random vectors following a multivariate (q-dimensional)
Gaussian distribution with mean �[k] and covariance matrix �[k]. The matrix �[k] will be constrained by a group specific EG
k = (V ,Ek), representing the conditional dependence relationships existing in the group between the q observables, where
V = {1,… , q} as in Section 2. We also assume independence across groups, conditionally on the model parameters, which
results in the sampling probability density

f (Y [1∶K]|�[1∶K],�[1∶K],[1∶K]) =
K
∏

k=1

nk
∏

i=1
fk(y[k]i|�[k],�[k]) (3.1)

for the full data matrix Y [1∶K] obtained by stacking the group data matrices Y 1,… , Y K one upon the other, where [1∶K] is the
collection of EG’s, while �[1∶K] and �[1∶K] collect all mean and covariance parameters and

fk(y[k]i|�[k],�[k]) = (2�)
−q∕2(det (�[k]))−1∕2 exp{−(y[k]i − �[k])⊤�−1[k](y[k]i − �[k])∕2}. (3.2)

Since �[k] is constrained by k, factorization (2.2) holds. Specifically, we have

fk(y[k]i|�[k],�[k]) =
∏

�∈k

fk(y[k]i� |y[k]ipak(�),B[k,�],
[k,�]), (3.3)

where B[k,�] is an unconstrained (|pak(�)|+ 1) × |�| matrix, 
[k,�] is a positive definite |�| × |�| matrix constrained by k� , and
fk(y[k]i� |y[k]ipak(�),B[k,�],
[k,�]) is the |�|-dimensional Gaussian density with mean B⊤

[k,�](1, y[k]ipak(�)) and covariance matrix

−1[k,�]; note the shorthand pak(�) for pak(�). Plugging equation (3.3) in equation (3.1), we finally obtain

f (Y [1∶K]|�[1∶K],�[1∶K],[1∶K]) =
K
∏

k=1

∏

�∈k

fk(Y [k]� |Y [k]pak(�),B[k,�],
[k,�]), (3.4)

where Y [k]� = (y[k]1� ,… , y[k]nk�)
⊤ and Y [k]pak(�) = (y[k]1pak(�),… , y[k]nkpak(�))

⊤ are component specific data matrices, and
fk(Y [k]� |Y [k]pak(�),B[k,�],
[k,�]) =

∏nk
i=1 fk(y[k]i� |y[k]ipak(�),B[k,�],
[k,�]).

3.2 Parameter priors
We assume that model parameters are a priori independent across groups and chain components, conditionally on the group
specific EGs, so that we can write the marginal density of the data as

f (Y [1∶K]|[1∶K]) =
K
∏

k=1

∏

�∈k

mk(Y [k]� |Y [k]pak(�)), (3.5)
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where mk(Y [k]� |Y [k]pak(�)) is the conditional marginal likelihood of k� , representing the contribution of the chain component
� to the marginal likelihood of k:

mk(Y [k]� |Y [k]pak(�)) = ∫ fk(Y [k]� |Y [k]pak(�),B[k,�],
[k,�])pk(B[k,�],
[k,�])d(B[k,�],
[k,�]). (3.6)

We specify the parameter prior pk(B[k,�],
[k,�]), for all k = 1,… , K and � ∈ k, as recommended by Consonni et al28. In this
way, given that k� is decomposable, we obtain

mk(Y [k]� |Y [k]pak(�)) =

∏

C∈k,�
m(Y [k]C )

∏

S∈k,�
m(Y [k]S)

, (3.7)

where k,� is a perfect sequence of cliques for k� , k,� is the corresponding sequence of separators, and, following Castelletti
et al31, we can compute

m(Y [k]�) =
Γ
|�|

(

|�|+nk−|pak(�)|−2
2

)

�
|�|(nk−|pak(�)|−2)

2 Γ
|�|

(

|�|
2

)

(

|pak(�)| + 2
nk

)

|�|(|�|+|pak(�)|+1)
2

det
(

Ê
⊤
[k]�Ê[k[�

)− (nk−|pak(�)|−2)
2 , (3.8)

for all nonempty � ⊆ �, from the partial residual matrix Ê[k]� = Y [k]� − X[k,�]B̂[k,�]� determined by the design matrix
X[k,�] = (1nk , Y [k]pak(�)) and the corresponding ordinary least squares estimator B̂[k,�]� = (X⊤

[k,�]X[k,�])−1X⊤
[k,�]Y [k]� for

the partial response Y [k]� . Note that Γ
|�| in (3.8) denotes the multivariate gamma function, which is defined by Γq(x∕2) =

�q(q−1)∕4
∏q

j=1 Γ((x + 1 − j)∕2), where Γ is the ordinary (univariate) Euler’s gamma function.

3.3 Linking essential graphs with a Markov prior
We here present a Bayesian hierarchical model that links the skeletons of the group specific EGs. We expect the different EGs to
have similar skeletons, but we will be able to learn from the data whether this is the case or rather skeletons should be considered
independently. We find it useful to represent the skeleton ̃k through the upper triangular part of its adjacency matrix, denoted by
G̃[k] and consisting of q(q − 1)∕2 elements. Specifically, to encourage similar skeleton structures, we assign a Markov Random
Field (MRF) prior to the elements of G̃[1],… , G̃[K]. More precisely, we let the binary vectors of edge inclusion indicators
sij = (g̃[1]ij ,… , g̃[K]ij), for 1 ≤ i < j ≤ q, have prior probability mass function

p(sij|�ij ,�) = C(�ij ,�)−1 exp(�ij1⊤Ksij + s
⊤
ij�sij), (3.9)

where �ij is a sparsity parameter specific to the set of edges indicated by sij , � is a K ×K symmetric matrix denoting pairwise
associations, 1K is the unit vector of dimension K , and

C(�ij ,�) =
∑

sij∈{0,1}K
exp(�ij1⊤Ksij + s

⊤
ij�sij) (3.10)

is the normalizing constant, which can be analytically calculated if the number of groups K is reasonably small. Each off-
diagonal element �km of � allows us to create dependency between sample groups k and m: �km = 0 implies that groups m and
k are conditionally independent, given the other groups, whereas non-zero values in � define a measure of relative skeleton
similarity across groups. Then, conditionally on � (upper triangular matrix with elements �ij) and �, we assume the vectors sij
independent over 1 ≤ i < j ≤ q, thus obtaining

p(G̃[1],… , G̃[K]|�,�) =
∏

i<j
p(sij|�ij ,�) (3.11)

for the joint prior on the skeletons. Following Castelletti et al31 for single (not multiple) Bayesian inference on EGs, among
others in the literature, we impose a prior on k, k = 1,… , K , solely dependent on specific features of the graph.We then choose
p(1,… ,K |�,�) ∝ p(G̃[1],… , G̃[K]|�,�), assigning equal prior probability to all EGs with a given skeleton. Alternative
priors, specifically targeted to EGs, to our knowledge are not available in the literature, and beyond the scope of the present paper.
Under the above described prior, the conditional probability of inclusion of edge (i, j) in ̃k, given the inclusion of that edge

in all remaining skeletons, can be expressed as

p(sijk|(sijm)m≠k, �ij ,�) =
exp(sijk{�ij + 2

∑

m≠k �kmsijm})
1 + exp(�ij + 2

∑

m≠k �kmsijm)
, (3.12)
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which shows that the parameter �km indicates pairwise similarity of the two skeletons ̃k and ̃m. Then, following Peterson et al9,
we select our prior as a spike and slab prior on the off-diagonal entries �km. The non-zero component is set to have a positive
support, because we want to encourage only skeleton similarity between two related groups. In detail, we specify the following
prior:

p(�km|
km) = (1 − 
km)�0(�km) + 
km
��

Γ(�)
��−1km e

−��km , (3.13)

where 
km is a latent indicator representing the event that skeleton k is related to skeletonm, �0(�km) is the probability mass func-
tion of a random variable almost surely equal to zero (the spike), and the probability density function of the second component
in the mixture (the slab) corresponds to a gamma distribution with fixed hyperparameters � and �. Assuming prior independence
across 1 ≤ k < m ≤ q, and identifying � with its upper triangular part, we obtain

p(�|
) =
∏

k<m
p(�km|
km), (3.14)

where 
 denotes the upper triangular matrix with elements 
km. We complete the specification of our prior on (�, 
) by defining
an independent Bernoulli prior on 
 (with hyperparameter w ∈ [0, 1]):

p(
) =
∏

k<m
w
km(1 −w)(1−
km). (3.15)

The proposed prior borrows strength between groups when appropriate without enforcing similarity if groups have different
skeleton structures.
Finally, we specify a prior for the edge inclusion probabilities �ij , 1 ≤ i < j ≤ q, to encourage sparsity of the skeletons

̃1,… , ̃K . We take � independent of � and also assume independence across edges:

p(�) =
∏

i<j
p(�ij), (3.16)

where the choice of p(�ij) is based on the following considerations. Small values of �ij correspond to small prior probability of
inclusion for edge (i, j) in each skeleton ̃k, and consequently a prior favoring smaller values of � will lead to a preference for
model sparsity, which can be attractive in high-dimensional applications. In contrast, larger values of �ij make edge (i, j) more
likely to be selected. If, for all m ≠ k, either �km = 0 or sijm is not selected, the probability of inclusion of edge (i, j) in ̃k can
be written as

p(sijk|�ij) =
e�ij

1 + e�ij
= qij ; (3.17)

see (3.12). Following Peterson et al9, we impose a prior qij ∼ Beta(a, b) and set the hyperparameters a and b to reflect our prior
assumption of sparsity. The implied prior on �ij is then

p(�ij) =
1

B(a, b)
ea�ij

(1 + e�ij )a+b
. (3.18)

When a reference skeleton is available, for example from a curated database that provides the connections within a signaling
pathways for a normal cell, this prior can be used to incorporate prior knowledge. For example, higher prior probability can be
given to edges belonging to the reference skeleton.

4 MODEL FITTING

4.1 MCMC algorithms
In Section 3.2 we derived the marginal likelihood of our model in closed form. The resulting target distribution is the posterior
of the parameters (1, ...,k,Θ, �). In this section we describe how to implement a Metropolis-Hastings algorithm that explores
the parameter space of interest, with particular emphasis on the complex space of EGs.
Let q be the set of all EGs with vertex set V = {1,… , q}. If some knowledge of sparsity is available, we can limit q to

those EGs having at most M edges32; we denote the resulting model space as M
q . To construct a Markov chain on EGs we

first need to define the transitions among them. We start from the set of operators introduced by Chickering25 and He et al32.
Such operators can modify locally an EG, each involving a pair (or a triple) of nodes only. We consider seven types of operators:
inserting an undirected edge (InsertU), deleting an undirected edge (DeleteU), inserting a directed edge (InsertD), deleting a
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directed edge (DeleteD), converting two adjacent undirected edges in a v-structure (MakeV), converting a v-structure in two
adjacent undirected edges (RemoveV) and reversing a directed edge (ReverseD). Each operator is then determined by two parts:
the type and the modified edges. Chickering25 and He et al32 introduce a set of conditions that must be satisfied by these seven
operators to guarantee that the resulting Markov chain has good theoretical properties. This leads to the definition of perfect
operator. For each EG  we can then construct the corresponding set of perfect operators that determine the transition from
 ∈ M

q to ∗ ∈ M
q (one of its direct successors). Let k be the set of perfect operators on k. The probability of transition

from k to ∗k, for each 
∗
k direct successor of k, is then

q(∗k |k) = 1∕|k |, (4.1)

where |k | is computed following the accelerated version of the algorithm in He et al.32.
In order to sample from the joint posterior distribution of (1,… ,K ),� and �, we adopt the algorithm presented by Peterson

et al9 and based on the proposal of Gottardo & Raftery33. Accordingly, we sample the graph similarity and selection parameters
� and 
 from their joint full conditional distribution. We then update �, and finally 1,… ,K , from their marginal full condi-
tionals. Specifically, in the graph similarity step, if in the current state 
km = 1, we propose 
∗km = 0 and �

∗
km = 0; conversely,

if in the current state 
km = 0, we propose 
∗km = 1 and sample �∗km from q(�∗km) = Gamma(�∗km | �
∗, �∗), for some proposal

hyperparameters �∗ and �∗. For the update of � we instead propose q∗ from Beta(a∗, b∗) and then set �ij = logit(q∗) for each
1 ≤ i < j ≤ q., for some proposal hyperparameters a∗ and b∗. More details are given by Peterson et al9. Finally, in the graph
selection step, we sample an EG ∗k from the proposal (4.1) for each k = 1,… , K .
Relative to the acceptance rate of ∗k, we distinguish three cases:

(i) if we move from k to ∗k by adding an edge between i and j, through an operator ok of type InsertU or InsertD, then

p(∗k | �,�)
p(k | �,�)

=
p(∗k | ̃

∗
k)

p(k | ̃k)
exp

{

�ij + 2
∑

m≠k
�kmsijm

}

;

(ii) if we move from k to ∗k by removing an edge between i and j, that is the operator ok is of type DeleteU or Delete D, then

p(∗k | �,�)
p(k | �,�)

=
p(∗k | ̃

∗
k)

p(k | ̃k)
exp

{

−�ij − 2
∑

m≠k
�kmsijm

}

;

(iii) if we move from k to ∗k without modifying the skeleton of k, which happens when ok is of type ReverseD, MakeV or
RemoveV, then

p(∗k | �,�)
p(k | �,�)

= 1.

Since all EGs with a given skeleton have equal prior probability, the term p(∗k | ̃
∗
k)∕p(k | ̃k) is the ratio of the number of

EGs with skeleton ̃k to those with skeleton ̃∗k. To compute exactly the number of EGs with a given skeleton, we refer to the
freely available algorithm of Radhakrishnan et al34, which counts the EGs per skeleton by looking at the number of possible
allocations of v-structures. However, as the number of nodes increases, say for q > 12, the computational time required by the
algorithm becomes prohibitive. For bigger problems, we suggest the following heuristic approximation.
Let N̃ and N̃∗ be the number of EGs with skeletons ̃ and ̃∗, respectively. Let also n| be the number of DAGs in the

equivalence class of the EG . Accordingly, the number n|̃ of DAGs compatible with the skeleton ̃ can be obtained as the
sum n|̃ =

∑

∈̃
n|, where S̃ is the set of all EGs with skeleton ̃. Moreover, we can define the average number of DAGs

per EG in ̃ as n̃ =
∑

∈S̃
n|∕N̃. Therefore, the number of EGs with skeleton ̃ can be written asN̃ = n|̃∕n̃ (similarly

for ̃∗) and the ratioN̃∕N̃∗ becomes

N̃∕N̃∗ =
n|̃∕n̃
n|̃∗∕n̃∗

.

Since in our MCMC move ∗ and  differ at most by one edge (and so the corresponding skeletons), we can assume that
their average number of DAGs per EG are reasonably close, that is n̃∗ ≈ n̃. Accordingly, the previous ratio simplifies to
r = N̃∕N̃∗ ≈ n|̃∕n|̃∗ .As before, we can then distinguish the two cases (i) and (ii). In particular, if we move from  to ∗ by
inserting an edge, we can observe that n|̃ is at most twice n|̃∗ , because the edge insertion can be made with two orientations
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at maximum; it follows that r ∈ [1, 2] in case (i). Conversely, if we move as in case (ii) from  to ∗ by deleting an edge, we
have r ∈ [1∕2, 1]. By considering the geometric mean of the two ranges we obtain the approximation

p(∗k | ̃
∗
k)

p(k | ̃k)
≈
√

2 in (i),
p(∗k | ̃

∗
k)

p(k | ̃k)
≈ 1

√

2
in (ii). (4.2)

To assess the appropriateness of our approximation, we run T = 3000 iterations of the Markov chain proposal on the EG space
or number of nodes q = 10 and compute the exact ratio r. Results are reported in Figure 2, where we highlight different applied
operators in different shades of gray: dark gray (light gray) dots correspond to operators of type Insert (Delete), while middle
gray to all the remaining operators, which do not modify the skeleton; horizontal lines correspond to the approximated values
√

2 and 1∕
√

2. It appears that the suggested approximation works reasonably well.
Finally, for k = 1,… , K , the Metropolis-Hastings ratio for the acceptance of a newly proposed ∗k, conditionally on � and�,

and given the graph k at the current MCMC iteration, is

rMH =
f (Y [k] |∗k)
f (Y [k] |k)

⋅
p(∗k | �,�)
p(k | �,�)

⋅
q(k |∗k)
q(∗k |k)

. (4.3)

4.2 Posterior summaries
The main output of our methodology is the collection of multiple graphs visited by theMCMC at each iteration. This can be used
to approximate posterior model probabilities or to compute measures of uncertainty, such as the marginal posterior probability
of inclusion of specific edges. The marginal posterior probability of inclusion of u→ v in group k is defined as

pk,u→v(Y ) =
∑

k|(u,v)∈Ek

p(k | Y ), (4.4)

where Ek is the edge set of k. This quantity can be approximated from our MCMC output as

pk,u→v(Y ) ≈
1
T

T
∑

t=1
1u→v

{

(t)k
}

, (4.5)

where 1u→v
{

(t)k
}

is the indicator function taking value 1 if (t)k contains u → v and 0 otherwise. Note that the undirected edge
u − v is equivalent to the union of u→ v and u← v.
Starting from the above probabilities, we can also provide an estimate of the true EGs, for comparison purposes. In this

regard, we adopt the projected median probability graph model31, constructed as a consistent extension to the EG space of the
median probability (graph) model. The latter is obtained by including all edges whose posterior probability exceeds 0.5, as in
the median probability model introduced by Barbieri & Berger35. The median probability graph model is not in general an EG
(nor a DAG), but a partially directed graph. If we require our point estimate to be an EG, one possibility is to first construct a
consistent extension of the median probability model, which is now a DAG, and then consider the EG representing its Markov
equivalence class. The final output is called the projected median probability (graph) model. Since all consistent extensions
belong to the sameMarkov equivalence class36, the projected median probability model is unambiguously defined. However, the
median probability model may not have any consistent extension, e.g. because by orienting some edges we necessarily introduce
additional v-structures or cycles. Nevertheless, in our applications it always existed. As for uniqueness, since all consistent
extensions belong to the same Markov equivalence class36, the projected median probability model does not introduce any
degree of arbitrariness in the resulting EG.

5 SIMULATIONS

In the current section we perform simulation studies under diverse settings, to test the validity of the proposed approach. In
more details, we construct different scenarios by varying the group sample size nk ∈ {50, 100} and the distance s ∈ {0, 4,∞}
of each group-specific graph from a common unique DAG. We use the Structural Hamming Distance (SHD), defined as the
number of edge insertions, deletions or flips needed to transform a graph into another. Clearly, if s = 0 all DAGs are equal,
while by convention s = ∞ corresponds to four independently generated graphs. Under each of these scenarios the number of
nodes and groups are fixed to q = 20 and K = 4 respectively. For each replication we first generate a DAG 0 with probability
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of edge inclusion pedge ≈ 0.08, as in the sparse setting presented by Castelletti et al31, and then we construct four DAGs having
distance s from 0. In the intermediate case s = 4, we perform, separately for each group, four local moves from 0 to create
the group-specific DAG. Under each DAG  data are generated according to

yij = �j +
∑

l∈pa(j)
�ljyil + "ij , (5.1)

for i = 1,… , n, j = 1,… , q, where "ij ∼  (0, �2j ) independently. For each j we fix �j = 0 and �2j = 1, while regression
coefficients �lj are uniformly chosen in the interval [−1,−0.1] ∪ [0.1, 1]37. Accordingly, we generateN = 12 multiple datasets
each consisting of K distinct nk × q data matrices Y [1],… , Y [K].
To speed up MCMC mixing, we constrain the EG space by fixing the sparsity parameterM = 40 (Section 4.1), that is we

constrain the model space to those graphs having at most 40 edges. Such a threshold is not restrictive since well above the
expected number of edges in the true graphs (about 15). As hyperparameters for the slab portion of p(�km | 
km) we choose
� = 2 and � = 5, while we set w = 0.9 in the Bernoulli prior on 
km. In the Beta prior on qij we instead choose a = 0.5, b =
(2q − 2)∕3 − 1. For q = 20 this results in a prior edge inclusion probability of about 0.04 which is smaller than the expected
level of sparsity (pedge = 0.08) as recommended by Peterson et al9. We finally set the proposal parameters to a∗ = 2, b∗ = 4 and
�∗ = 1, �∗ = 0.5.
We compare our method with two benchmarks: the first is the Objective Bayes Essential graph Search method (OBES)31,

which is equivalent to our multiple EG search method without accounting for possible shared structures between graphs (equiv-
alently with each element in � fixed equal to 0); the second benchmark is the Greedy Equivalence Search method (GES)25;38.
GES is computed for three different optimization criteria: the Bayesian Information Criterion39 and the Extended Bayesian
Information Criterion with tuning coefficient 
 ∈ {0.5, 1}40.
Under each scenario and for each method we evaluate the performance in learning the graphical structure of the true EG in

terms of misspecification rate, specificity, sensitivity, precision and Matthews correlation coefficient, defined as

MISR = FN+FP
q(q−1)

, SPE = TN
TN+FP

, SEN = TP
TP+FN

,

PRE = TP
TP+FP

, MCC = TP ⋅TN−FP ⋅FN
√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)
,

where TP , TN , FP , FN are the numbers of true positives, true negatives, false positives and false negatives (respectively).
Results for n ∈ {50, 100} are reported in Tables 1 and 2 respectively.
In both tables, in the scenario s = ∞, we find that OBES performs in line with GES, with the choice of the tuning parameter

strongly affecting the performance of the latter; similar results were obtained by Castelletti et al31. Furthermore, the proposed
Multiple OBES (MOBES) does not suffer relative to the other benchmarks, a result we consider satisfactory since, contrary
to the others, our method is not specifically designed for independent graphs. Once we move from s = ∞ to s = 4 and to
s = 0, more and more dependence among the graphs is introduced: while all the other methods worsen all their measured
performance indicators, MOBES reveals its superiority, with respect to the benchmarks and to MOBES itself in scenarios with
less dependence among the graphs.
Furthermore, we measure the Structural Hamming Distance (SHD) between the four graphs estimated under each method

and the corresponding true EGs, that is the EGs representing the Markov equivalence classes of the four true DAGs. Results
for n ∈ {50, 100} and s ∈ {0, 4,∞} are reported in the boxplots of Figure 3. As expected, GES with BIC criterion is the worst
performer, while the GES methods with EBIC are comparable to OBES in the case of independent graphs. MOBES is clearly
the closest to the true graphs in the scenarios with shared structures, having the edge over OBES and GES with BIC also in the
independent settings.
We also consider two additional biologically-driven simulated scenarios.We first fixK = 4 true EGs equal to the EG estimates

obtained from the Leukemia data in Section 6.2 below. For each true EGwe then consider a DAGwithin its equivalence class and
generate nk i.i.d. observations, k = 1,… , K , from the (DAG-constrained) set of linear equations in (5.1), everything repeated
forN = 12multiple datasets. In the first additional scenario, we fix all sample sizes as being equal, by setting nk = 50 for all k,
while in the second scenario we differentiate sample sizes among groups with n1 = 25, n2 = 50, n3 = 100 and n4 = 50. We
compare the results with the OBES method (where the K EGs are estimated independently) in terms of SHD between true and
estimated EGs, and summarize the results in the first row of Figure 4. Finally, on the same scenarios, we also implement the
method of Peterson et al9, which returns multiple estimates of the graph skeletons. We compare it with OBES and MOBES and
evaluate the performance of the various methods in terms of SHD between the skeletons of estimates and true EGs (Figure 4,
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second row). All comparisons in these biologically motivated scenarios, with both homogeneous and heterogeneous sample
sizes, confirm results that favor our methodology.
Note that, despite the complexity of the model, there are only five hyperparameters to be set, all related to theMRF prior. Three

hyperparametersw, �, � concern network similarity, and the other two (a and b) network sparsity. As described in Li and Zhang
(2010)41, � and � should be set to avoid phase transition, i.e. to avoid that larger values of parameters �km lead to a extremely
sharp increase in the expected number of edges included in all networks. In our context, phase transition would result in the
selection of the same identical graph for all groups. As noted by Peterson et al9, � = 2 and � = 5 can be considered a default
choice that avoids phase transition. We then perform sensitivity analyses with respect to w and to a, b, by applying our method
to a single fixed (multiple) dataset, as generated in our new simulation setting. We first vary w ∈ {0.3, 0.5, 0.7, 0.9}, while
keeping the other hyperparameters fixed as in the original setting, and evaluate the effect on the average Posterior Probability
of Inclusion (PPI) for the elements �km, k ≠ m. We then vary the mean of the prior Beta(a, b) in (3.18) in the range [0.05, 0.30],
with variance fixed as in the original setting, to assess the impact of the prior probability of edge inclusion on the average PPI.
Results are reported in Figure 5 and at the end of Section 5 in the paper. The average edge PPIs showed a steady increase from
just below 0.100 to 10.125 in whole range considered for the prior mean, and from 0.42 to 0.47 in the set of studied values of
w. The direction of the effect in both cases is expected, and the overall difference in levels is not strong.
Finally, we investigate the computational time of our method as a function of the number of variables q, the number of

groups K and the sample size n, as measured on a PC Intel(R) Core(TM) i7-8550U 1,80 GHz. We report the computational
time (averaged over 12multiple datasets) per iteration for q = 20 as a function ofK ∈ {2, 3, 4, 5} (Figure 6, right panel) and for
K = 4 as a function of q ∈ {5, 10, 20, 40} (Figure 6, left panel), with n = 50. The behavior of all curves suggests a polynomial
dependence of the computational time from both q andK , while we do not show for brevity that processing times are insensitive
to the group sample sizes nk.

6 DATA ANALYSIS

6.1 Perturbed protein signaling networks
We first investigate the datasets of Sachs et al42 on multiple phosphorylated proteins and phospholipid components in individual
primary human immune system cells. Observations are obtained from flow cytometry which also allows to measure protein
modification states. Specifically, measurements of q = 11 phosphorylated proteins and phospholipids are collected after a series
of stimulatory and inhibitory interventions obtained from the administration of different reagents. This results in a collection
of distinct datasets. Some of these can be related to interventions on observed variables and were analyzed by Castelletti and
Consonni43 to infer a unique graph called interventional essential graph which reflects modifications in the edge structure
due to interventions on nodes. The same dataset was instead analyzed by Peterson et al9 from a multiple undirected graphs
perspective. In our study we includeK = 5 datasets that are not linked to interventions on specific variables, but rather to general
perturbations of the system. The sample size of each dataset ranges between 700 and 1000 observations. We set the prior and
proposal parameters as in the simulation setting of Section 5 and run T = 25000 iterations of the MCMC scheme presented in
Section 4.1. The first 5000 iterations are discarded as a burn-in period.
We report the five EGs estimated byMOBES in Figure 7, where similarities in the skeletons are highlighted with dotted edges.

An edge is included in our graph estimate if its marginal posterior probability of inclusion is estimated to be higher than 0.5.
Such probabilities are reported in the heatmaps of Figure 8. The posterior probabilities of inclusion for the elements �km in �,
given by PPIkm(Y ) = Pr(�km ≠ 0|Y ), for k ≠ m = 1,… , K , and the number of shared edges between estimated graphs across
groups are the following:

PPI(Y ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∗ 0.508 0.516 0.522 0.492
∗ 0.483 0.509 0.466

∗ 0.435 0.448
∗ 0.459

∗

⎞

⎟
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⎟

⎟

⎟

⎟

⎟

⎠

;

note that the shared edge counts on the diagonal correspond to the number of edges in the estimated graphs.
We also compare MOBES with alternative approaches for structural learning of EGs which do not account for similarities

between graphs, namely the OBES method and the GES algorithm as presented in the simulation setting of Section 5. Results
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for each group are shown in Table 3, where we report the SHD between estimated graphs. Differences between OBES and
MOBES are relatively small, so that there seems to be no substantial gain from the adoption of a “multiple graphs” approach if
the sample size of each group is sufficiently large as in this case. Conversely, the GES algorithm is more sensitive to the choice
of the tuning parameter; in particular the differences are more noticeable between GES 0 (
 = 0) and MOBES.
In Figure 9 a proper mixing of the sampling algorithm is shown by the MCMC chains of a few features of the visited EGs,

for the first dataset: number of undirected and directed edges, of v-structures and of chain components. From the five EGs, it is
clear that there is a common structure shared by the graphs. Convergence diagnostics results based on Geweke statistics44, not
reported for brevity, show appropriate convergence for all groups, for various features of the graphical structures visited by the
MCMC: number of edges, directed edges, undirected edges, v-structures and chain components.
In comparison with the results of Peterson et al9, our analysis reveals some similarities, such as the identification of the same

chain components, and some unique findings, notably the directed arrows that link PIP3, and its component, as well as Erk,
and its component, to PKC in the network of group 3 (top-right graph in Figure 7). These findings suggest that the perturbation
corresponding to group 3 may have triggered an alternative regulatory cascade.

6.2 Leukemia Protein Networks
In this subsection we analyze data on protein levels for 213 Acute Myeloid Leukemia (AML) patients presented in the supple-
mentary material of Kornblau et al45. Subtypes of statistical units are based on cytogenetics and cellular morphology criteria,
among which it is reasonable to expect interactions, justifying an estimation method that accounts for heterogeneity9. Accord-
ingly, we infer an EG for each of the following subtypes: M0 (17 subjects), M1 (34 subjects), M2 (68 subjects), and M4 (59
subjects). We emphasize that sharing information among EGs is particularly appropriate in this setting, because of the small to
moderate sample sizes. We exclude from the analysis further subtypes whose sample sizes are even smaller9.
The estimated EGs for the four subtypes are shown in Figure 10. The inter-dependency is reflected in the matrix PPI(Y )

containing the posterior probabilities of inclusion of common edges, and the number of shared edges between estimated graphs
across groups

PPI(Y ) =

⎛

⎜

⎜

⎜

⎜

⎝

∗ 0.552 0.564 0.522
∗ 0.543 0.527

∗ 0.498
∗

⎞

⎟

⎟

⎟

⎟

⎠

, Shared edge count =

⎛

⎜

⎜

⎜

⎜

⎝

9 6 7 6
9 6 5
15 6

12

⎞

⎟

⎟

⎟

⎟

⎠

.

The inferential advantage of MOBES is apparent in comparison with OBES and other alternative methods that do not account
for commonalities among graphs, and therefore are bounded to rely on small to moderate number of observations for each
subtype. As a matter of fact, the same graphs estimated with OBES are too sparse, while GES estimates are strongly affected
in terms of sparsity by the tuning parameter 
 ∈ {0, 0.5, 1}. As an example, with reference to the group M0, GES 0 (
 = 0)
returns 31 edges, while GES 1 (
 = 1) only one edge. Such information is included in the main diagonals of Table 4. In the same
table, the off-diagonal elements report the SHDs between graphs estimated using the five methods under comparison. Again,
appropriate MCMC convergence diagnostics is confirmed, for all groups and features, by Geweke statistics44.
Some of the findings of our analysis are of particular interest. For example, GSK3 was found to regulate, or be regulated by,

AKT in theM2 network. The correlation of GSK3.pwith a number of proteins includingAKTwas recently established byRuvolo
et al46; the same authors reached the conclusion that AKT/GSK3 is a critical axis in AML, which may be a therapeutic target
in AML patients with intermediate cytogenetics, i.e. M2 patients. In agreement with Peterson et al9, we identified associations
between the BAD and PTEN proteins (specifically PTEN-BAD.p155 and PTEN.p-BAD.p136) to be present for all four groups;
beyond the findings reported also by Peterson et al9, the proposed method detected a direct effect of BAD.p136 on PTEN.p, in
M1 and M4 patients.

7 SUMMARY AND DISCUSSION

Statistical methods for the reconstruction of gene and protein networks under multiple conditions are a viable tool for studying
the biological mechanisms underlying genomic driven diseases. To this end we have introduced a Bayesian model for structural
learning of a collection of Essential Graphs (EGs), each identifying an equivalence class of DAGs. In the context of multiple
networks, this represents the first attempt at learning the directionality of an arrow, whenever this is doable. The centerpiece
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of our approach is a prior distribution on the structure of multiple EGs that directly models the skeletons of these graphs and
encourages skeleton similarity, when supported by the data. Our modeling approach includes parameter priors that are free from
hyperparameters and produce a closed-form expression for the marginal likelihood of an EG based on the fractional Bayes factor,
which greatly enhances computational efficiency.
Using simulation studies, we demonstrate the superior performance of our approach in comparison with state-of-the-art meth-

ods, and the gain in network reconstruction accuracy yielded by an approach that jointly infers multiple related networks. We
apply our model to two datasets. First, an analysis of protein networks from primary human immune system cells revealed that
some types of perturbations may lead to alternative regulatory mechanisms that warrant further investigation; further findings
were consistent with the literature. Second, our analysis of the protein networks of AML patients, grouped by subtype, revealed
novel (potential) regulatory mechanisms, and the direction in which these mechanisms operate. In this application, groups have
varying sample sizes with larger groups resulting in denser networks; between-group analyses of graph structure differences
should be performed with particular care.
In many applications, including the ones discussed in this paper, the number of groups K is assumed to be small. If K grows

larger, the normalizing constant of equation (3.10) cannot be analytically computed, and we would need to rely on computational
strategies for doubly-intractable distributions, such as the one proposed by Murray et al47, among others. From a broader per-
spective, our model is predicated on the assumption that the observations follow a Gaussian graphical model. When this setup
is not appropriate, a robust version could be developed using Dirichlet t-distributions48 or a more elaborate non-parametric
Bayesian approach based on hierarchical normalized completely random measures49.
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FIGURE 1 Three chain graphs with V = {1, 2, 3, 4, 5, 6}. The DAG with E = {(1, 2), (1, 3), (2, 4), (3, 4), (4, 5), (4, 6), (5, 6)}
on the left, its skeleton in the middle, and its essential graph on the right. There are six (singleton) chain components in the left
graph and a single chain component V in the middle graph, while  = {{1, 2, 3}, {4}, {5, 6}} in the right graph.
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MISR SPE SEN PRE MCC

s = 0

MOBES 2.36 (0.82) 99.33 (0.49) 71.68 (11.18) 87.61 (8.75) 78.24 (8.38)
OBES 4.56 (0.97) 99.33 (0.37) 36.15 (12.96) 77.02 (11.97) 51.60 (11.70)
GES 0 6.80 (1.73) 95.97 (1.24) 51.59 (10.73) 46.36 (11.49) 48.89 (9.42)
GES 0.5 3.99 (1.26) 98.95 (0.60) 51.36 (13.05) 76.26 (12.93) 61.66 (11.70)
GES 1 4.29 (1.05) 99.32 (0.38) 40.63 (13.51) 79.05 (11.08) 55.45 (11.96)

s = 4

MOBES 2.74 (0.93) 99.16 (0.54) 66.79 (11.37) 82.26 (10.71) 73.18 (9.37)
OBES 4.30 (0.83) 99.44 (0.40) 34.64 (10.87) 78.99 (12.00) 51.01 (9.56)
GES 0 7.41 (1.25) 95.63 (0.96) 46.68 (10.30) 38.27 (8.82) 42.67 (8.15)
GES 0.5 3.76 (1.00) 99.12 (0.44) 49.84 (10.83) 76.66 (10.03) 61.01 (9.52)
GES 1 3.89 (0.86) 99.46 (0.42 ) 41.50 (11.26) 82.66 (11.20) 57.25 (9.55)

s = ∞

MOBES 3.96 (1.23) 99.10 (0.61) 45.65 (13.87) 75.46 (14.43) 57.79 (12.94)
OBES 4.42 (0.94) 99.45 (0.39) 31.25 (13.51) 78.18 (12.84) 47.79 (12.28)
GES 0 7.52 (1.29) 95.17 (0.91) 48.26 (11.95) 37.61 (9.79) 43.06 (9.09)
GES 0.5 3.68 (0.96) 99.05 (0.58) 51.00 (10.81) 77.92 (11.29) 61.99 (8.76)
GES 1 4.13 (1.05) 99.47 (0.44) 36.14 (14.06) 81.50 (13.83) 52.66 (12.89)

TABLE 1 Simulations. Misspecification rate (MISR), specificity (SPE), sensitivity (SEN), precision (PRE) and Matthews cor-
relation coefficient (MCC) for MOBES, OBES and GES, for number of nodes q = 20, sample size n = 50 and distance of the
data generating DAGs from a common unique DAG s ∈ {0, 4,∞}. Average values (standard deviations) are computed over
N = 12 multiple datasets.

MISR SPE SEN PRE MCC

s = 0

MOBES 1.55 (0.94) 99.16 (0.67) 88.06 (9.28) 87.77 (9.53) 87.17 (7.81)
OBES 2.93 (0.90) 99.24 (0.38) 63.92 (11.92) 84.32 (8.31) 72.41 (9.04)
GES 0 5.60 (1.36) 96.72 (0.97) 59.29 (10.94) 54.55 (10.59) 56.34 (9.14)
GES 0.5 2.80 (0.98) 99.34 (0.40) 64.69 (11.33) 86.83 (7.82) 73.90 (8.29)
GES 1 3.01 (0.96) 99.37 (0.41) 60.38 (12.35) 86.00 (9.70) 71.01 (9.96)

s = 4

MOBES 1.57 (0.97) 99.17 (0.65) 86.69 (10.52) 85.86 (10.32) 85.53 (8.86)
OBES 2.46 (0.99) 99.43 (0.45) 67.16 (12.38) 87.31 (8.77) 75.58 (9.23)
GES 0 4.88 (1.31) 97.14 (0.82) 64.42 (11.41) 56.26 (11.32) 59.64 (10.33)
GES 0.5 2.50 (0.97) 99.27 (0.47) 68.81 (12.28) 84.14 (10.31) 75.24 (10.36)
GES 1 2.67 (0.79) 99.50 (0.36) 61.68 (11.28) 87.76 (9.23) 72.54 (8.76)

s = ∞

MOBES 2.42 (1.21) 99.25 (0.65) 69.97 (13.82) 85.11 (12.22) 76.35 (11.32)
OBES 2.69 (0.77) 99.38 (0.43) 62.55 (11.59) 85.87 (8.55) 72.32 (8.64)
GES 0 5.07 (1.46) 96.95 (1.05) 61.89 (11.60) 55.37 (11.78) 58.03 (10.32)
GES 0.5 2.52 (1.07) 99.27 (0.54) 67.79 (12.85) 85.02 (9.47) 75.08 (9.85)
GES 1 2.71 (0.80) 99.52 (0.48) 59.87 (11.09) 88.59 (9.30) 71.74 (8.20)

TABLE 2 Simulations. Misspecification rate (MISR), specificity (SPE), sensitivity (SEN), precision (PRE) and Matthews cor-
relation coefficient (MCC) for MOBES, OBES and GES, for number of nodes q = 20, sample size n = 100 and distance of
the data generating DAGs from a common unique DAG s ∈ {0, 4,∞}. Average values (standard deviations) are computed over
N = 12 multiple datasets.
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FIGURE 3 Simulations. Structural Hamming Distances between estimated EGs and true EGs, over 12 multiple datasets, for
number of nodes q = 20, sample size n ∈ {50, 100} and distance of the data generating DAGs from a common unique
DAG s ∈ {0, 4,∞}. The five methods under comparison are: our Multiple Objective Bayes Essential graph Search (MOBES),
the Objective Bayes Essential graph Search (OBES) and the Greedy Equivalence Search (GES) computed for three different
optimization criteria (BIC and EBIC with tuning parameter 
 ∈ {0.5, 1}).
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variables q = 20 (right panel); group sample size nk = 50, k = 1,… , K , averaged over 12 multiple simulated datasets.

praf

Mek

PLC

PIP2

PIP3 Erk

Akt

PKA

PKC

P38

JNK

Powered by TCPDF (www.tcpdf.org)

praf

Mek

PLC

PIP2

PIP3 Erk

Akt

PKA

PKC

P38

JNK

Powered by TCPDF (www.tcpdf.org)

praf

Mek

PLC

PIP2

PIP3 Erk

Akt

PKA

PKC

P38

JNK

Powered by TCPDF (www.tcpdf.org)

praf

Mek

PLC

PIP2

PIP3 Erk

Akt

PKA

PKC

P38

JNK

Powered by TCPDF (www.tcpdf.org)

praf

Mek

PLC

PIP2

PIP3 Erk

Akt

PKA

PKC

P38

JNK

Powered by TCPDF (www.tcpdf.org)

FIGURE 7 Sachs data. EGs estimated by MOBES for the five datasets included in the study.
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FIGURE 8 Sachs data. Heat maps of marginal posterior probabilities of edge inclusion for the five datasets included in the study.
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FIGURE 9 Sachs data. First dataset. MCMC trace plots of four EG features: number of undirected and directed edges, v-
structures and chain components.
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Group Method MOBES OBES GES 0 GES 0.5 GES 1

MOBES 10 0 8 3 3
OBES 10 8 3 3

1 GES 0 11 5 5
GES 0.5 9 0
GES 1 9

MOBES 10 1 4 4 4
OBES 9 5 3 3

2 GES 0 11 8 8
GES 0.5 8 0
GES 1 8

MOBES 11 1 4 1 2
OBES 10 3 0 1

3 GES 0 11 3 4
GES 0.5 10 1
GES 1 9

MOBES 10 0 1 0 1
OBES 10 1 0 1

4 GES 0 11 1 2
GES 0.5 10 1
GES 1 9

MOBES 10 3 5 3 2
OBES 9 4 0 1
GES 0 11 4 5

5 GES 0.5 9 1
GES 1 8

TABLE 3 Sachs data. Structural Hamming distances between graphs estimated with the five methods under comparison for
each dataset (group); number of edges in the estimated graphs are reported on the main diagonal of each sub-table. The five
methods under comparison are: our Multiple Objective Bayes Essential graph Search (MOBES), the Objective Bayes Essential
graph Search (OBES) and the Greedy Equivalence Search (GES) computed for three different optimization criteria (BIC and
EBIC with tuning parameter 
 ∈ {0.5, 1}).
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FIGURE 10 Leukemia data. Estimated EGs for subject subtypes, from top-left to bottom-right, M0, M1, M2 and M4.
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Group Method MOBES OBES GES 0 GES 0.5 GES 1

MOBES 9 9 32 11 8
OBES 0 31 8 1

M0 GES 0 31 24 31
GES 0.5 8 8
GES 1 1

MOBES 9 10 32 11 7
OBES 2 35 12 3

M1 GES 0 34 28 32
GES 0.5 11 9
GES 1 2

MOBES 15 13 22 7 13
OBES 5 28 10 0

M2 GES 0 30 20 28
GES 0.5 14 10
GES 1 5

MOBES 12 8 24 8 7
OBES 4 26 9 1

M4 GES 0 28 18 26
GES 0.5 12 9
GES 1 5

TABLE 4 Leukemia data. Structural Hamming distances between graphs estimated with the five methods under comparison
for each dataset (group); number of edges in the estimated graphs are reported on the main diagonal of each sub-table.
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