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Abstract

The paper aims to investigate the forecasting ability of fuzzy rule-based classification systems

(FRBCS) on future direction of the S&P500 index. To this end, we apply four FRBCS methods.

Moreover, we compare both the forecasting accuracy and the interpretability of the results of FRBCS

with the recently used machine learning techniques. Overall, among the two approaches, we prefer

the FRBCS methods, since they allow a good balance between accuracy and interpretability, and

provide sharper results than the machine learning techniques.
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1 Introduction

Stock price prediction has always been a subject of interest for academics from many disciplines. Correctly

assessing the probability of upside of downside future price variation of the stock market is a key challenge

for most investors and professional analysts. Nevertheless, identifying the best time to buy or sell has

remained a challenging task because several factors may influence stock prices (Chang and Liu (2008)).

Many studies have dealt with the problem of input selection when it comes to mapping financial indices

and stocks. In recent decades, the quantity and quality of available information to predict future market

fluctuations have increased dramatically (Campisi et al. (2021)).

In particular, global exchange operators such as the Chicago Board Options Exchange (hereafter, CBOE)

introduce several option-based indicators that provide crucial information about the perceived level of risk,

such as the volatility and the asymmetry computed from the option-implied distribution. These indicators
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are of paramount importance for prediction tasks since the option market embeds information about the

forward-looking distribution of asset returns (Barro and Liao (2019)). Moreover, existing studies (see,

e.g., Xing et al. (2010)) suggest that option prices incorporate additional information content compared

to the one embedded in stock prices and embeds critical information about political uncertainty and tail

economic risk (see, e.g. Seo and Wachter (2019)).

The use of option-implied indicators as predictors of future market returns is investigated in several

studies, including Rubbaniy et al. (2014), Gokmenoglu and Fazlollahi (2015), Elyasiani et al. (2017),

Elyasiani et al. (2018), and Mora-Valencia et al. (2021). Even if these studies successfully identify

relationships between the option-based indicators and market returns, they focus the analysis on using

one or at most two indices, thus overlooking the possibility of combining all the available information to

improve their return forecast. Moreover, most studies use traditional methods such as OLS regression to

investigate the forecasting power of volatility and skewness indices on returns. On the other hand, a few

authors adopt machine learning methods (Campisi et al. (2021)), that are more flexible than conventional

econometric prediction approaches. In addition, recent studies show that there are more effective in

predicting stock returns than traditional methods (see, e.g., Gu et al. (2020)). While conventional

statistical and econometric methods aim to identify the relationships between the variables in the model,

machine learning methods aim at maximising the accuracy of predictions (Athey and Imbens (2019)).

Recently, Campisi et al. (2021) combined machine learning and several option-based measures to inves-

tigate the information content of option-based indicators for predicting the future direction of the stock

market. Even if they successfully combine many indicators, and the proposed approach outperforms

the classical least-squares linear regression method in forecasting the direction of S&P500 returns, their

model lacks interpretability. The higher the machine learning model interpretability, the easier it is for the

researcher or the analyst to understand why certain decisions or predictions have been made. Given that

these indices are widely adopted by investors and regulators for investment strategies, risk management

purposes, and monitoring the stock market health, many players can benefit from a better understanding

of the relationship between option-implied indicator and stock market returns. To fill this gap, in this

paper we exploit fuzzy rule-based classification systems (FRBCS) to investigate the forecasting ability of

several option-implied indicators on the future direction of the S&P500 index. The aim of the study is

twofold: to analyse the FRBCS models performance and the knowledge extracted about the risk indices.

In this way, we are able to develop a model which could become interpretable by human beings.

Fuzzy rule-based systems (FRBSs) are a well-known method family within soft computing and are based

on fuzzy concepts to address complex real-world problems (Riza et al. (2015)). They are based on the

fuzzy set theory proposed by Zadeh (1965), which aims at representing the knowledge of human experts

in a set of fuzzy IF-THEN rules. The FRBSs have been used for different purposes and represent a

powerful method to deal with uncertainty, imprecision, and non-linearity. They are commonly used for

identification, classification, and regression tasks. FRBSs have been successfully adopted in several ap-

plication domains, including control engineering (Babuska (1998)), finance (Boyacioglu and Avci (2010)),

robotics (Bai et al. (2005)), pattern recognition ((Chi et al., 1996)), bioinformatics (Zhu (2013)), and data

mining (Ishibuchi et al. (2005a)). Compared to traditional techniques used recently, the use of fuzzy rules

allows for more robust systems and more readily understandable even for non-expert users. Specifically,
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fuzzy modelling comes integrated into processes that previously involved the use of regressions. The main

problems of these techniques concern the restitution of approximations not always good and difficulties of

interpretation. The use of fuzzy rules beyond promoting immediate interpretability for the user reaches a

better accuracy in the approximation. Moreover, working with rules at the local level, instead of general,

it allows to represent continuous functions with significant robustness.

The advantage that FRBSs offer, even over recent machine learning (ML) techniques, lies in the identi-

fication of the preliminary knowledge of experts, which they can then integrate with that obtained from

the data. In the context of fuzzy control systems, the use of FRBS compared to traditional control

methods allow simplifying the tasks of model design, for which complex mathematical models are not

required, and enabling full use of the information available. From the very beginning, using a fuzzy

control system has allowed the development of models with an attractive balance between performance

and cost. Finally, within the fuzzy classification, they can distinguish two classification methods, the first

able to function autonomously, aiming to optimize the percentage of correct system classifications. The

second classification model is used as a tool that supports the activity decision-making by users. This

system favours the transparency of the entire process classification through a linguistic FRBS.

In this paper, we use a FRBS for classification purposes (FRBCS) based on spatial partition and ge-

netic algorithms. One feature of FRBCS consists of their straightforward interpretation, which makes

them preferable for financial analysis. In particular, we propose four FRBCS approaches for designing

interpretable-accurate models for predicting the direction of S&P500 index. The methods include: the

FRBCS with Chi et al. (1995) method (FRBCS.CHI), the Ishibuchi et al. (1999) method based on Ge-

netic Cooperative Competitive Learning (GFS.GCCL), the Ishibuchi et al. (2005b) method based on

hybridization of GCCL and Pittsburgh (FH.GBML), and the Structural Learning Algorithm on Vague

Environment (SLAVE) of González and Pérez (2001).

The use of these methods allows us to achieve a threefold goal. First, to compare FRBCSs methods

with traditional machine learning classification methods to better understand their balance between

performance and cost in predicting the direction of future market returns. Second, to investigate and

contrast the four FRBCSs methods (FRBCS.CHI, GFS.GCCL, FH.GBML, and SLAVE) in a financial

application to provide evidence and further insights about their interpretability-accuracy trade-off. Third,

to offer a wide range of stakeholders precious information about the possibility of using option-implied

indicators for financial market forecasting. We find several results. First, the adopted FRBCSs suffer

from a slight underperformance in terms of accuracy compared to traditional ML methods adopted in

citecampisiforecasting. However, the lower accuracy is rewarded by the possibility of understanding

which indicators and how they can be helpful to predict the future direction of the market. Second, the

FH.GBML and SLAVE methods are the ones that are able combine high accuracy and interpretability,

thus overperforming both the GFS.GCCL and FRBCS.CHI methods. Third, all the FRBCSs agree on

the role of the VIX index as an indicator of market fear: a large (small) value of the VIX index indicate a

bearish (bullish) market in the next 30 days. The evidence is less straightforward regarding the remaining

indicator. However, all the FRBCSs indicate that low values of the PUTCALL index are associated with

a bullish market.

The paper proceeds as follows. In Section 2 we illustrate the FRBCSs adopted in our study. In Section
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3 we describe our dataset and the estimation methods used to perform our forecasts. In Section 4 we

investigate the predictive power of the fuzzy rule-based classification methods to forecast the S&P500

returns. We also compare the four formulation of fuzzy rule-based classifier design with each other.

Section 5 is devoted to the analysis of interpretability in detail comparing the FRBCS methods with the

most used ML techniques and providing insights into the rules obtained from the four FRBCSs. The last

section concludes.

2 Fuzzy rule base for classification problems

Within the fuzzy rule-based systems (FRBSs) family, fuzzy rule-based classification systems (FRBCSs)

are specialized FRBSs meant to handle classification tasks. The main characteristic of the classification

problem is that the output is a categorical variable. As a consequence, in FRBCSs we preserve the an-

tecedent part of linguistic variables while changing the consequent part to be a class Cj from a prespecified

class set C = C1, ..., CM | (Riza et al. (2015)) Depending on the available information, two main strate-

gies can be exploited to build FRBSs. The first strategy is to obtain information from human experts.

In particular, the researcher defined the FRBS knowledge manually by interviewing human experts to

extract and represent their knowledge. However, this approach is not feasible in many cases, e.g., experts

are not available, lack of enough knowledge on the problem, etc. The second strategy can overcome this

issue since it aims to obtain FRBSs by extracting knowledge from data by using learning methods. Given

that existing literature does not provide enough guidance on how to combine different option-implied

indicators to forecast the direction of future market returns, we follow the second approach. Riza et al.

(2015) classify the learning methods into different groups. In our study, we will exploit four different

FRBSs, based on space partition and genetic algorithms. We discuss the groups and the chosen methods

in detail in the following.

2.1 FRBSs based on space partition approaches

FRBS learning methods classified in this first group adopt a strategy of splitting the variable space and

then exploit this partition to obtain the parameters of the membership functions. The first technique

based on this approach is proposed by Wang and Mendel (1992). Chi et al. (1996) extend Wang and

Mendel’s method for tackling classification problems. Their algorithm is similar to Wang and Mendel’s

and is based on four steps. The first step is the construction of linguistic labels. In particular, it consists

of an equal division of the input and output spaces of the given numerical data into fuzzy regions. Since

fuzzy regions refer to intervals for the linguistic term, they are built with the same triangular shape. Thus,

their length is related to the number of linguistic terms. In the second step fuzzy rules are generated for

each example in the training data. In particular, for each instance and each variable, the linguistic label

with the highest membership degree is selected. Third, the antecedent part is determined by aggregating

degrees of membership functions in the antecedent and consequent parts, using the intersection of the

selected linguistic labels. On the other hand, the consequent is the class label of the example. In the

last step, the final rule-base is obtained after deleting redundant rules: those with a lower degree can be

eliminated, i.e., in case of duplicated or conflicting rules, only the rule with the highest weight is kept.
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2.2 Genetic fuzzy systems for fuzzy rule learning

The approach based on genetic fuzzy systems was originally introduced by Herrera et al. (1998), who

adopted a genetic algorithm to generate the structure of the fuzzy rules and the membership function

parameters simultaneously. Instead of sharing a common definition of linguistic values as in the original

Mamdani formulation, the approximate Mamdani type procedure proposed by Herrera et al. (1998) may

have a different set of linguistic values for each rule. There are two main advantages using this type of

procedure (Riza et al. (2015)). First, there is an augmented degree of freedom of parameters, and for a

given number of rules, the system can better be adapted to the complexity of the problems. Second, the

learning processes can simultaneously identify the structure and estimate the model parameters.

Within this group of FRBSs Ishibuchi et al. (1999) propose a method based on genetic cooperative

competitive learning to handle classification problems. In this method, a chromosome describes each

linguistic IF-THEN rule using integers to represent the antecedent part. Then, the heuristic method is

exploited to automatically generate the class in the consequent part of the fuzzy rules. In this method,

the evaluation is carried out for each rule, meaning that the performance is not based on the entire rule

set. The Ishibuchi et al. (1999) method is based on the following five steps. The first step consists in

the generation of an initial population of fuzzy rules. In the second step, fuzzy rules are evaluated in the

current population. The third step involves the use of a genetic operator to generate new fuzzy rules. The

fourth consists in replacing part of the current population using the rules generated in the previous step.

Finally, the algorithm is terminated if the stopping condition is met, otherwise it returns to the second

step. Additionally, the Ishibuchi et al. (1999) method introduces a tool to handle high-dimensional data.

In particular, if an attribute ”don’t care” is used in the antecedent fuzzy sets, the corresponding linguistic

values are always assumed to have a degree of one.

(Ishibuchi et al., 2005c) propose an alternative method based on the hybridization of genetic cooperative

competitive learning (GCCL) and Pittsburgh approach for genetic fuzzy systems. The (Ishibuchi et al.,

2005c) algorithm is based on five steps. The first step consists in generating a population where each

individual is a fuzzy rule set. In the second step, the fitness value is computed for each rule set in

the population. The third step is the generation of new rule sets by selection, crossover, and mutation

consistently with the Pittsburgh-style algorithm. Then, iterations of the GCCL-style algorithm are

applied to each generated rule set by considering user-defined probabilities of crossover and mutation. In

the fourth step, the best rule set are added in the population to newly generated rule sets to generate the

next population. In the last step, the algorithm is terminated if the stopping condition is met, otherwise

it returns to the second step.

The last method adopted in our analysis of the US stock market is the structural learning algorithm

on vague environment (SLAVE) proposed by Gonzalez and Perez (2001). Since SLAVE is based on

the iterative rule learning approach, it generates only one fuzzy rule in each execution of the genetic

algorithm. In order to eliminate the irrelevant variables in a rule, the algorithm consists of two parts.

The first part aims to represent the relevance of variables, while the second one defines the values of the

parameters. To obtain the fuzzy rules, the González and Pérez (2001) method consists of four steps. In

the first step, a genetic algorithm is used to obtain one rule for the fuzzy rule-based system. In the second

step, the obtained rule is collected into the final set of rules. In the third step, the new rule is checked and
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penalized. Finally, the system returns the set of rules as the solution if the stopping condition is satisfied,

otherwise it returns to the first step. The SLAVE method exploits binary codes as representation of

the population and conducts the basic genetic operators, i.e., selection, crossover, and mutation on the

population ((Riza et al., 2015)). Finally, the best rule is identified as the one characterized by the highest

consistency and completeness degree.

Regarding the three methodologies of the FRBCS based on genetic algorithms, it is crucial to empha-

size the competition between the various elemetns of the inference system that is created. While being

combined with fuzzy inference systems, the genetic algorithms mantain competition among individuals

of the population, leading to the creation of single rules or sets of rules. In these learning algorithms, it

is possible to define the control parameters, that is, the parameters that outline the operating mode of

the algorithm itself. What cannot be changed arbitrarily by the operator are the form of membership

functions and, in the case of Ishibuchi’s method based on hybridization of GCCL and Pittsburgh Ap-

proach, also the number of linguistic values related to the input variables. Such restrictions significantly

limit the interaction between the knowledge acquired by experts and the one that it can obtain from the

available numerical data.

The four FRBCSs illustrated above will be used to investigate the relationship between option-implied

indicators and the future direction of US market returns. In particular, the use of these FRBCSs compared

to other classification methods adopted in the literature (see e.g., Campisi et al. (2021)) will allow us

to extract and better understand the precious information content embedded in these indicators. The

option-implied indicators for the US market will be described in the next section.

3 Data and methodology

The data set consists of S&P500 index returns and option-based indicators on the US stock market.

The S&P500 is a stock index that accounts for the performance of 500 of the largest public companies

in the United States. Formally known as the Standard & Poor’s 500 Composite Stock Price Index and

commonly referred to as the S&P500, is it the most used benchmark to follow US stock performance

and determine the state of the overall economy. Many investors worldwide also exploit the S&P500 as a

benchmark for their portfolios.

3.1 The US market data

We obtain daily data for the S&P500 index and option-based indicators covering the period from October

2014 to September 2019 from the Bloomberg database, consisting of 1232 daily observations.

The choice of the option-based indicators as predictors for the S&P500 returns is strongly supported

by financial literature, which shows a significant role of option-implied information in predicting stock

market returns for many reasons. First, the option market embeds information about the forward-

looking distribution of asset returns (Barro and Liao (2019)). Since the option payoff at expiration

depends on the future underlying asset value, option prices reflect investor expectations (under the risk-

neutral measure) about future fluctuations of the underlying asset ((Gambarelli and Muzzioli, 2019)).
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Second, according to the informed investor theory (see, e.g., Xing et al. (2010)) option prices incorporate

additional information content compared to the one embedded in stock prices, i.e., information that is

not already priced into the underlying stock market. Third, several studies (see, e.g. Seo and Wachter

(2019)) provide theoretical and empirical evidence that political uncertainty and tail economic risk is

priced into the options market. Finally, these indices are widely adopted by investors and regulators for

investment strategies, risk management purposes, and to monitor the stock market health. As a result, a

large number of players can benefit from a better understanding of the relationship between these indices

and stock market returns.

The option-based indicators embedded in the analysis include the following indices: VIX, VVIX, SKEW,

GVZ, OVX, PUTCALL, VIX9D, VIX3M, VIX6M, and VXN. The VIX index measures the expected

30-day stock returns volatility of the S&P500 and is the most followed measure of volatility and risk

worldwide. Investors widely use exchange-traded VIX futures to hedge their exposures (Tong and

Huang (2021)). The VXN (NASDAQ-100 volatility index) is the corresponding of the VIX index for

the NASDAQ-100 index, known as the US large-cap growth indices that includes 100 companies at the

forefront of innovation such as Alphabet, Amgen, Apple, Facebook, Intel, Microsoft, Starbucks and Tesla.

There is strong evidence that volatility indices provide useful information about current and future stock

returns in financial literature. The predictive power of both VIX and VXN indices on the underlying

index returns have been investigated in Rubbaniy et al. (2014). To capture the option-implied information

for shorter and longer horizons beyond the standard 30-day one commonly adopted in financial risk

measuring, the CBOE provides further indicators based on the volatility of S&P500 options. These

are the VIX9D, VIX3M, and VIX6M indices measuring the expected nine-day, 3-month, and 6-month

volatility of S&P500 stock returns, respectively. We also use the CBOE VVIX Index, measuring the

volatility of volatility, i.e., the expected volatility of the 30-day forward price of VIX, which is the price

of a hypothetical VIX futures contract that expires in 30 days. The VVIX measures how rapidly S&P500

volatility changes and is thus a measure of the volatility of how quickly market sentiment changes. Given

the relatively recent introduction of the VVIX, the information content of the index about current and

future stock returns is little investigated in the literature.

We also investigate the information embedded in two indices based on commodities: the GVZ, and the

OVX index. The GVZ (CBOE/COMEX Gold Volatility Index) measures the expected 30-day volatility

of returns on the SPDR Gold Shares ETF. Similarly, the CBOE Crude Oil ETF Volatility Index OVX

(Oil VIX) measures market expectations of 30-day volatility of crude oil prices by exploiting the VIX

methodology on the United States Oil Fund. The inclusion of the two volatility indices is motivated by

the existence of return and volatility spillovers between Gold, Oil, and the stock market. Kang et al.

(2015) show that oil price shocks drive the stock market return and volatility relationship in the US

market. Gokmenoglu and Fazlollahi (2015) exploit GVX and OVX to show that volatility in one market

can affect prices in another market.

Finally, the SKEW and PUTCALL provide information about the asymmetry between call and put option

prices. The SKEW index of the Chicago Board Options Exchange (CBOE), launched in February 2011,

measures the tail risk not fully captured by the VIX index (Elyasiani et al. (2021)). While VIX accounts

for the overall risk in the 30-day S&P500 log-returns without disentangling the probabilities attached
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to positive and negative returns, the SKEW index is aimed to measure the tail risk. Regarding the

predictability of skewness indices on future market returns, Elyasiani et al. (2018) find that asymmetry

indices provide higher explanatory power compared to volatility indices. Moreover, Mora-Valencia et al.

(2021) show that the SKEW index embeds salient information for expected financial downturns. On the

other hand, the PUTCALL is the ratio between put and call options on the S&P500 index purchased on a

given day. A high put/call ratio should indicate fear in the markets, while a low ratio signals confidence.

Existing studies suggest that options trading volume; hence, the PUTCALL ratio is a predecessor to

asset price movements (Houlihan and Creamer (2019)), and in particular, it predicts negative future

stock returns (Blau et al. (2014)).

Unlike previous studies, we will consider all the indices mentioned above in a fuzzy rule-based framework

to investigate their forecasting power on future market returns. To this end, we calculate the response

variable as the S&P500 return in the next 30 days for each day in our sample, computed at time t referring

to a window of t + 30 days.

4 Discussion of the results

In this section we compare and contrast the forecasting performance of the various FRBCSs adopted

in this study: the Chi et al. (1996) method based on space partition (FRBCS.CHI), the Ishibuchi

et al. (1999) method based on Genetic Cooperative Competitive Learning (GFS.GCCL), the Ishibuchi

et al. (2005b) method based on hybridization of GCCL and Pittsburgh (FH.GBML), and the Structural

Learning Algorithm on Vague Environment (SLAVE) of González and Pérez (2001). The metrics used for

comparison are accuracy, the area under the curve, and the F-measure. Moreover, in order to highlight

the advantage of feature selection in our analysis, for each of the FRBCSs used in the analysis we show the

results before and after feature selection, i.e. by considering all the 10 regressors and the 7 option-implied

indicators, respectively.

The results about the forecasting performance of the proposed fuzzy rule-based classification models

clearly show an improvement after feature selection (Table 1) compared to the case before feature selection

(Table 2), according to all the metrics adopted in the analysis. Moreover, two of the three performance

metrics (ACC, and F), indicate the FH.GBML and SLAVE methods as the ones with the highest accuracy

after feature selection. The only exception is the measure AUC, which attributes a slightly higher score

for FRBCS.CHI than for FH.GBML.

Table 1: Accuracy, AUC, and measure F of the proposed fuzzy rule based classification models before

feature selection

ML method ACC AUC F

FRBCS.CHI 0.7672 0.7709 0.8125

GFS.GCCL 0.7586 0.7180 0.8205

FH.GBML 0.5991 0.4983 0.7480

SLAVE 0.6595 0.5744 0.7775
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Table 2: Accuracy, AUC, and measure F of the proposed fuzzy rule based classification models after

feature selection

ML method ACC AUC F

FRBCS.CHI 0.8009 0.8031 0.8403

GFS.GCCL 0.7835 0.7363 0.8428

FH.GBML 0.8528 0.7946 0.9006

SLAVE 0.8528 0.8261 0.8931

Table 3: Accuracy, AUC, and measure F of the proposed fuzzy rule based classification models after

feature selection partitioning the dataset in 80% for training and 20% for testing.

ML method
Training set Test set

ACC AUC F ACC AUC F

FRBCS.CHI 0.7820 0.7776 0.8253 0.8009 0.8031 0.8403

GFS.GCCL 0.7710 0.6766 0.8484 0.7835 0.7363 0.8428

FH.GBML 0.7770 0.7077 0.8455 0.8528 0.7946 0.9006

SLAVE 0.7990 0.7696 0.8499 0.8528 0.8261 0.8931

In Table 3, we compare the metrics for the proposed fuzzy rule-based classification models after feature

selection and after partitioning the dataset in 80% for training and 80% for testing. Several observation

are in order. First, all the methods adopted in the analysis show a pretty good forecasting performance,

with the performance indicator for the test set ranging from 0.78 to 0.90. Second, methods based on

Genetic fuzzy systems outperforms the (Chi et al., 1996) method based on space partition approach in

terms of forecasting accuracy, with the only exception of the GFS.GCCL method that obtain the lowest

accuracy on average. Third, the FH.GBML and SLAVE methods show the highest accuracy in the test

set according to both the ACC and AUC performance metrics. In particular, the two methods obtain

the same performance according to the ACC metrics, while the SLAVE method overperforms (slightly

underperforms) the FH.GBML in terms of AUC (F-measure).

5 Interpretability of the four FRBCSs methods

In this section, we evaluate the interpretability of the four FRBCSs methods adopted in our analysis and

we provide further insights into the rules generated by the FRBCSs to better understand the relationship

between existing option-implied indicators and the direction of future S&P500 returns. Regarding the

interpretability-accuracy tradeoff, existing studies (Gacto et al. (2011)) argue that commonly used criteria

to evaluate the complexity of the rule-based system are the number of rules, and the number of conditions.

In particular, the best model is the simplest one fitting the system behavior well according to the principle

of Occam’s razor. Therefore, the set of fuzzy rules must be as small as possible until the model accuracy

is preserved to a satisfactory level. Regarding the number of conditions in the antecedent of a rule must,

the number should not exceed the threshold of 7 ± 2 distinct conditions, which corresponds to the number
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of conceptual entities a human being can handle ((Miller, 1956), Gacto et al. (2011)).

In the previous section, we compare and contrast the ability of different FRBCSs to predict the direction of

future S&P500 returns. In this section, we propose a comparison between the four FRBCSs methods and

traditional ML methods. Moreover, we provide further insights into the rules generated by the FRBCSs to

provide investors with more information about the relationship between existing option-implied indicators

and the direction of future S&P500 returns.

The FRBCS.CHI, GFS.GCCL, FH.GBML, and SLAVE methods produce 196, 9, 4, and 4 rules, respec-

tively. Based on the discussion above, the FRBCS.CHI method based on space partition, producing a

very large number of rules compared to the others, fails to reach a good balance between accuracy and

interpretability. Despite the complexity of the output, we will still try to provide more insight about the

rules generated by FRBCS.CHI method. While the rules obtained using the methods based on genetic

fuzzy systems can be easily arranged in a table to represent the large number of rules obtained using the

FRBCS.CHI method, we create a histogram plot (Figure 1). In particular, for each of the six variables

exploited by the FRBCS.CHI method, the height of the green (resp. red) bar indicates the number of

occurrences in which a small, medium or large value of an option-based indicator is associated with a

bullish (resp. bearish) behaviour of the S&P 500 index in the following 30 days. Several observations are

noteworthy. First, a small (resp. large) value of the VIX is associated most of the time with a bullish

(bearish) direction of the US stock market. This result is consistent with existing studies since a high

(resp. low) value of the VIX indicate a high (resp. low) value of fear in the market and thus is commonly

associated with negative (positive) market returns. Second, a similar pattern can be observed for the

PUTCALL index. More specifically, a small (resp. large) PUTCALL value is generally associated with

a bullish (resp. bearish) market. From an economic point of view, this result could be motivated by the

fact that investors buy put options when they expect negative outcomes from the stock market. Since

the PUTCALL is computed as the ratio between put and call options on the S&P500 index purchased

on a given day, if investors buy put options for their hedging purposes, the PUTCALL index is expected

to increase. On the contrary, if the market is expected to be bullish, investors sell put options and buy

call options, resulting in a decline of the PUTCALL index. Third, the remaining option-based indicators

do not provide clear patterns to predict the direction of future S&P500 returns. However, a large value

of the VVIX is commonly associated with a bearish stock market, suggesting that the VVIX acts as a

fear indicator for the US stock market. On the other hand, small OVX index values are associated with

a bullish stock market, suggesting the existence of a link between commodity and stock volatilities. The

rules extracted from the remaining FRBCSs are arranged in Table 4. The GFS.GCCL method generates

eight rules, but we can see only one clear pattern in the data: a large value of the VIX index is associated

with a bearish market. On the other hand, small or medium values of the VIX index are associated to a

bullish stock market. The same pattern for the VIX index is also found for the FH.GBML method, with

one exception: if the VIX and the PUTCALL are high, but all the remaining indices are low, the future

market direction is bullish. A possible interpretation for this result is as follows: if volatility becomes

extremely high, then the market has already discounted all the fear, and positive returns can be expected

(Elyasiani et al. (2018)). Finally, the rules generated by the SLAVE method are arranged in Panel C.

A large (resp. medium) value of the VIX index is associated to a bearish (resp. bullish) stock market.
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Moreover, a small value of the PUTCALL, independently from the value of the other indices, is associated

with a bullish stock market.

Figure 1: number of occurrences in which a small, medium or large value of an option-based indicator is

associated with a bullish (in green) or bearish (in red) behaviour of the S&P 500 index

6 Conclusions

In this paper, we investigated the forecasting ability of fuzzy rule-based classification systems (FRBCSs)

on the future direction of US market returns. In recent decades, the increasing availability of informa-

tion about the financial market and new efficient decision-making algorithms pushed financial research

towards models characterized by an ever-better performance in forecasting financial markets. In par-

ticular, researchers focused on improving the model accuracy without paying particular attention to

interpretability (Gacto et al., 2011). Even if many studies successfully combined several variables using

machine learning methods to predict future market returns (see e.g. Campisi et al. (2021)), most existing

models lack interpretability. As a consequence, investors and regulators have been left without a clear

indication of which variables, and how, can be helpful to predict the future direction of the stock market.

To fill this gap, we investigate the ability of four FRBCSs methods in combining several option-implied

indicators to predict the direction of S&P500 future returns. The objective of the study is threefold.

First, to compare FRBCSs methods to traditional machine learning classification methods in predicting

the direction of future market returns, in order to understand how much does the interpretability cost

in terms of accuracy. Second, to compare and contrast different FRBCSs methods in terms of their

interpretability-accuracy trade-off. Third, to provide investors and regulators with a better understand-

ing of the relationship between option-implied indicators and the direction of future market returns. The

FRBCSs methods adopted in the analysis are the Chi et al. (1996) method based on space partition

approaches (FRBCS.CHI), the Ishibuchi et al. (1999) method based on Genetic Cooperative Competi-

tive Learning (GFS.GCCL), the Ishibuchi et al. (2005b) method based on hybridization of GCCL and
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Table 4: List of rules obtained through methods based on Genetic fuzzy systems

VIX VVIX SKEW GVZ OVX PUTCALL MARKET

Panel A:

large medium medium medium medium medium bearish

large small don’t care small small don’t care bearish

large don’t care medium medium large medium bearish

medium medium medium small medium medium bullish

small small medium medium medium medium bullish

medium medium medium medium medium medium bullish

small medium medium don’t care medium small bullish

medium medium medium large large medium bullish

small medium large large don’t care medium bullish

Panel B:

high small small small small high bullish

high don’t care small medium medium don’t care bearish

small small don’t care don’t care high high bearish

high high don’t care small high medium bearish

Panel C:

large large medium medium medium medium bearish

large don’t care don’t care don’t care don’t care don’t care bearish

medium small medium large medium medium bullish

don’t care don’t care don’t care don’t care don’t care small bullish
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Pittsburgh (FH.GBML), and the Structural Learning Algorithm on Vague Environment (SLAVE) pro-

posed by Gonzalez and Perez (2001). To predict the direction of future S&P500 returns, we exploit

several option-based indicators listed by the CBOE. The choice of these indicators is strongly supported

by financial literature that suggests a significant role of option-implied information in predicting stock

market returns. Moreover, the relationship between these indicators and the direction of market returns

has been investigated in Campisi et al. (2021) using traditional machine learning methods, allowing an

appropriate comparison. For this reason, we also adopt the same sample period used in Campisi et al.

(2021) (daily data from October 2014 to September 2019). We found several results. First, when com-

pared with the traditional ML methods such as Logistic Regression, LDA, Random Forest classification,

Bagging classification, and Gradient Boosting classification, the FRBCSs adopted in our study suffer

from a slight underperformance in terms of accuracy (possiamo dare un ordine / metrica di grandezza?).

However, they can provide crucial information about the use of option-based indicators in forecasting

future market returns. Second, among the FRBCSs, methods based on Genetic fuzzy systems outperform

the standard FRBCS.CHI method based on space partition approach in terms of forecasting accuracy.

In particular, the FH.GBML and SLAVE methods show the highest accuracy in the test set according to

both the ACC and AUC performance metrics. At the same time, the FH.GBML and SLAVE generate

a limited number of rules (4) compared to both GFS.GCCL (8) and FRBCS.CHI (196), highlighting far

superior interpretability. Last, the rules obtained from the FRBCSs indicate an important role of the

VIX index in predicting the direction of future market returns. More specifically, a large value of the

VIX index is associated with a bearish market in the next 30 days. There is only an exception: if the

VIX and the PUTCALL are high, but all the remaining indices are low, the future market direction is

bullish. On the other hand, small or medium values of the VIX index are associated to a bullish stock

market. Regarding the other option-implied indicators, the SLAVE method shows that a small value of

the PUTCALL, independently from the value remaining indices, indicate a bullish direction for the stock

market.
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