
16/08/2024 09:51

Membrane systems with proteins embedded in membranes / Brijder, R.; Cavaliere, M.; Riscos-Núñez, A.;
Rozenberg, G.; Sburlan, D.. - In: THEORETICAL COMPUTER SCIENCE. - ISSN 0304-3975. - 404:1-2(2008),
pp. 26-39. [10.1016/j.tcs.2008.04.002]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

Membrane systems with proteins embedded in membranes

Robert Brijder a, Matteo Cavaliere b,c, Agustín Riscos-Núñez b, Grzegorz Rozenberg a,
Dragoş Sburlan b,d

a Leiden Institute of Advanced Computer Science (LIACS), Universiteit Leiden, Leiden, The Netherlands
b Department of Computer Science and Artificial Intelligence, University of Seville, Seville, Spain
c Microsoft Research - University of Trento, Centre for Computational and Systems Biology, Trento, Italy
d Faculty of Mathematics and Informatics, Ovidius University, Constantza, Romania

 a b s t r a c t

Membrane computing is a biologically inspired computational paradigm. Motivated by brane calculi we investigate membrane
systems which differ from conventional membrane systems by the following features: (1) biomolecules (proteins) can move
through the regions of the systems, and can attach onto (and de-attach from) membranes, and (2) membranes can evolve
depending on the attached molecules. The evolution of membranes is performed by using rules that are motivated by the operation of
pinocytosis (the pino rule) and the operation of cellular dripping (the drip rule) that take place in living cells.

We show that such membrane systems are computationally universal. We also show that if only the second feature is used
then one can generate at least the family of Parikh images of the languages generated by programmed grammars without
appearance checking (which contains non-semilinear sets of vectors).

If, moreover, the use of pino/drip rules is non-cooperative (i.e., not dependent on the proteins attached to membranes), then one
generates a family of sets of vectors that is strictly included in the family of semilinear sets of vectors.

We also consider a number of decision problems concerning reachability of configurations and boundness.

1. Introduction

Membrane computing is a biologically inspired computational paradigm introduced by Gh. Păun in 1998, [9]. The model
is based on a hierarchical structure of nested membranes, inspired by the structure of living cells. In each region (enclosed
by a membrane) some objects are present, modeling the presence of molecules inside the compartments of living cells.
Moreover, each region has an associated set of multiset rewriting rules. These rules are motivated by chemical reactions
that occur inside the regions of living cells. Membranes play a crucial role in living cells: the cell membrane separates, and
hence protects the cell from its environment and the inner membranes delimit the structure of various organelles of the
cell, e.g., the nuclear membrane separates the nucleus from the rest of the cell.

Membranes are not only “containers” but they also regulate the flow of molecules into and out of the cell. This is
facilitated by proteins that are embedded in membranes and which provide channels for the transport of molecules through
membranes.

In brane calculi, presented in [3], several operations (pino, exo, phago, mate, drip, bud) involving membranes with
embedded proteins are considered and formalized in the framework of process calculi. The important difference with

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:rbrijder@liacs.nl
http://dx.doi.org/10.1016/j.tcs.2008.04.002

membrane computing is that the evolution of the system happens on the membranes and not inside the compartments
(regions) delimited by them. The computational power of several brane calculi operations has been investigated in [2]
where universality has been obtained for systems using phago and exo. In [4] these operations from brane calculi have
been represented in the membrane computing framework and then studied by using tools from formal language theory.

In this paper we investigate operations involving membranes with embedded proteins, but we also add the ability of
proteins to attach/de-attach to/from the membranes, and also to move through the membranes. Hence, in our case, the
evolution of the system takes place both on the membranes and inside the regions, which is natural from a biological point
of view.

More specifically, we consider protein-membrane rules – rules thatmodify the structure of (themembranes of) the system
where the modifications are based on the multisets of proteins embedded in the membranes (we say that such multisets
mark the membranes). In particular, we consider the pino and drip rules inspired by the operation of pinocytosis and the
operation of cellular dripping, respectively. Both pinocytosis and dripping split off a membrane from another membrane,
however, in pinocytosis, this new (empty) membrane is found inside the original membrane, while in dripping, this new
membrane is found outside the original membrane. We also use protein movement rules, that model the attachment, de-
attachment and movement of the proteins. Also these rules are applied according to the proteins marking the involved
membranes. The protein movement rules do not change the membrane structure of the system, but they can change the
multisets of embedded proteins marking the membranes of the system.

The paper is structured in the followingway. In Section 2weprovide preliminaries concerning formal languages, recalling
in particular the definition of programmed grammars often used in the proofs. In Section 3 we recall the formal definition of
pino and drip rules, and introduce the protein movement rules, and in Section 4 we introduce membrane systems based on
these rules – the model is called membrane system with marked membranes, protein-membrane rules, and protein movement
rules, abbreviated as Ppp system.

In Section 5, we investigate the computational power of Ppp systems which use only protein movement rules, and in
Section 6 of Ppp systems using only pino (or drip) rules. In Section 7, we discuss Ppp systems using both types of rules. In
Section 8 we prove several decidability results concerning reachability of configurations and boundness of Ppp systems with
pino, drip rules, and protein movement rules. In the last section we discuss the results obtained in this paper and formulate
a number of research directions.

2. Preliminaries

We will briefly recall the main notions and results of formal language theory used in this paper. For more details the
reader can consult standard books, such as [8,12,7], and the handbook [11].

Given a set A, we denote by |A| its cardinality and by P(A) the power set of A. The empty set is denoted by ∅.
As usual, an alphabet V is a finite set of symbols. By V∗ we denote the set of all strings over V . The empty string is denoted

by λ. The length of a string w ∈ V∗ is denoted by |w|, while the number of occurrences of a ∈ V in w is denoted by |w|a. For
a language L ⊆ V∗, the set length(L) = {|w| | w ∈ L} is called the length set of L. Given a string w, a string u is a subword
of w if there exist two strings x, y, possibly empty, such that w = xuy. The string u is a scattered subword of w if and only if
there exist strings x1, . . . , xk, and y0, . . . , yk, possibly empty, such that u = x1 · · · xk, and w = y0x1y1 · · · xkyk. We use Sub(w)
to denote the set of all subwords of w, while Scub(w) denotes the set of the scattered subwords of w.

Given an alphabet V = {a1, a2, . . . , an}, with every string w ∈ V∗ we can associate the Parikh vector ΨV(w) =

(|w|a1 , |w|a2 , . . . , |w|an), where the ordering (a1, . . . , an) of V is assumed. Given a language L ⊆ V∗, the Parikh image of L
is defined as ΨV(L) = {ΨV(w) | w ∈ L}.

If FL is a family of languages, then PsFL denotes the family of Parikh images of languages in FL (w.r.t. a given alphabet
V), and NFL denotes the family of length sets of languages in FL. Note that each L ∈ PsFL is a set of vectors with a fixed
dimension.We denote by FIN, REG, CF, CS, and RE the family of finite, regular, context-free, context-sensitive, and recursively
enumerable languages, respectively. Accordingly, the family of Parikh images of languages in RE is denoted by PsRE (this is
the family of all recursively enumerable sets of vectors of natural numbers). The family of all recursively enumerable sets
of natural numbers is denoted by NRE. As usual, two language generating/accepting devices are called equivalent if they
generate/accept the same language.

A generalized sequential machine (in short gsm) is a system Γ = (K, V1, V2, s0, F, δ), where K is a finite set of states, s0 ∈ K
is the initial state, F ⊆ K the set of final states, and V1, V2 are the input and output alphabet, respectively. The transition
function δ is defined by δ : K × V1 −→ P(V∗

2 × K). For s, s′ ∈ K, a ∈ V1, y ∈ V∗

1 , x, z ∈ V∗

2 we write (x, s, ay) 7−→ (xz, s′, y) if
(z, s′) ∈ δ(s, a). Then, for w ∈ V∗

1 , we define Γ(w) = {z ∈ V∗

2 | (λ, s0,w) 7−→
∗ (z, s,λ), s ∈ F}. The mapping Γ is extended in a

natural way to languages over V1.
A context-free programmed grammar with appearance checking is a construct G = (N, T, S, P), where N (T, resp.) is a

finite set of nonterminals (terminals, resp.), S ∈ N is the start symbol, and P is a finite set of productions of the form
(b : A → x, Eb, Fb), where b is a label, A → x with A ∈ N and x ∈ (N ∪ T)∗ is a context-free production, and Eb, Fb are
two sets of labels of productions of G (Eb is called the success field and Fb the failure field of the production). A production
(b : A → x, Eb, Fb) is applied as follows: if A is present in the sentential form, then the production A → x is applied and
the next production is chosen from those with the labels in Eb, otherwise, the sentential form remains unchanged and
we choose the next production from the set of productions labeled by some element of Fb. A derivation step is denoted

by ⇒ while ⇒
∗ denotes the reflexive and transitive closure of ⇒. If no failure field is given for any of the productions, then

we obtain a programmed grammar without appearance checking.
We denote the set of labels as Lab(G) = {b | there exists (b : A → x, Eb, Fb) ∈ P}. Also, for X ∈ N, we denote

{b | there exists (b : X → x, Eb, Fb) ∈ P} by lG(X), or l(X) for short.
The language generated by a grammar G is denoted by L(G). By PR we denote the family of languages generated

by programmed grammars without appearance checking, and by PRac we denote the family of languages generated by
programmed grammars with appearance checking. Proofs of the following results can be found in [7].

Lemma 1. CF ⊂ PR ⊂ PRac = RE.

In pure programmed grammars there is no distinction between terminals and nonterminals. Consequently, the language
generated by a pure programmed grammar is defined as the set of all strings that can be generated from the axiom, hence the
set of all sentential forms. The family of languages generated by pure programmed grammars without appearance checking
is denoted by pPR. It is easy to prove (in a constructive way) that

Lemma 2. pPR ⊂ PR.

The following normal form for programmed grammars, referred to as the lh-normal form, will be useful in this paper.

Lemma 3. For any programmed grammar G (with appearance checking) there exists an equivalent programmed grammar G′

(with appearance checking, respectively) such that there is a unique initial production (with label l0) and a unique final production
Z → λ (with label lh) in G′.

Proof. Consider an arbitrary programmed grammar G = (N, T, P, S). We recall that l(S) is the set of labels corresponding to
productions having S at the left-hand side. Given a set of labels L, we use L′ to denote the set of the primed version of the
labels in L.

Let G′
= (N′, T, P′, S′), where N′

= N ∪ {S′, Z}, S′, Z /∈ N, Lab(G′) = Lab′(G) ∪ {l0, lh}, and P′ consists of the following
productions:

{(l0 : S′
→ ZS, l′(S),∅), (lh : Z → λ,∅,∅)} ∪

{(l′i : A → α, E′

li
∪ {lh}, F

′

li
∪ {lh}) | (li : A → α, Eli , Fli) ∈ P}.

It is easily seen that L(G) = L(G′), and that the final production in any successful derivation in G′ is the one labeled by lh
(deletion of the nonterminal Z). The same construction works for both programmed grammars with or without appearance
checking (in this last case the failure fields are removed from the productions in P′). It is worth to notice that the unsuccessful
derivations in G′ are of the following types: S′

⇒
∗ Z(N∪ T)∗ or S′

⇒
∗ Z(N∪ T)∗N(N∪ T)∗

⇒ (N∪ T)∗N(N∪ T)∗, if G′ is without
appearance checking while only of the second type if G′ is with appearance checking. �

We assume the reader to be familiar with the basic notions of membrane computing, see, e.g., [10].

3. Membrane Operations with marked membranes

In [3] several membrane operations involvingmembranes and embedded proteins have beenmodeled in the framework
of process calculi. In [4] these operations have been expressed in the framework of membrane systems.

We will briefly recall these operations, however in a slightly modified form: while in [3] and [4] a region (enclosed by a
membrane) can contain other membranes but not objects, we allow a region to contain objects.

As usual in membrane computing, a membrane is represented by a pair of square brackets, []. To each membrane [] we
associate amultiset u (over a certain alphabet V) and this is denoted by []u. We say that themembrane ismarkedwith u (u is
called amarking). The objects of V are called proteins or, simply, objects. The contents of a membrane can consist of proteins
and/or other membranes.

The protein-membrane rules over V are of the following form (the subscript i stands for internal, e for external):

pinoi : []uav → [[]ux]v,

pinoe : []uav → [[]v]ux,

drip : []uav → []ux[]v.

where a ∈ V , and u, x, v ∈ V∗ (thus the restriction of having the right-hand sides of the rules nonempty, as in [4],
has been relaxed here). If uv = λ, then we have a non-cooperative rule; we add the prefix (ncoo) to denote it. Thus
(ncoo)pinoi : []a → [[]x] is a non-cooperative pinoi rule.

The described rules are applicable to anymembrane whosemarking includes themultiset indicated on the left-hand side
of the rules; all the proteins not specified in the rules are not affected by the use of the rules, but they are randomly distributed
between the two resulting membranes. When using any rule of any type, we say that the membrane from its left-hand side
is involved in the rule; the membrane involved is “consumed" while the membranes from the right-hand side of the rule
are “produced". Similarly, the protein a specified on the left-hand side of the rules is consumed, and it is replaced by the
multiset of proteins x (that might be empty).

After the application of a pinoi or pinoe rule, the contents of the consumed membrane is moved into the region of the
created external membrane (thus, membrane []v for pinoi and membrane []ux for pinoe), and after the application of a drip
rule, the contents of the consumed membrane is moved into the region of the produced membrane []v.

We also define rules that can attach/de-attach proteins to/from the membranes, and rules to move the proteins through
the membranes of the system. The protein movement rules over V can have one of the following forms (the subscript i stands
for inside, o for outside):

attachi : [a]u → []ua, attacho : []ua → []ua,

de−attachi : []ua → [a]u, de−attacho : []ua → []ua,

moveout : [a]u → []ua,

movein : []u a → [a]u,

with a ∈ V , u ∈ V∗.
The effect of the rules attachi and attacho is to attach the protein a to the corresponding membrane if the marking of the

membrane includes u.
The rulesmoveout (movein)move the protein a outside (inside, resp.) if themarking of the correspondingmembrane includes

u. We use prot to denote the set of protein movement rules.

4. Membrane systems with marked membranes

In this section we define membrane systems (also called P systems) having membranes marked with multisets of
proteins, and using the protein-membrane rules and the protein movement rules introduced in Section 3.

Formally, a membrane system with marked membranes, protein-membrane rules, and protein movement rules, in short Ppp
system, is a construct

Π = (V,µ, u1, . . . , um, R, F),

• V is a finite, nonempty alphabet of proteins;
• µ is a membrane structure with m ≥ 1 membranes;
• u1, . . . , um ∈ V∗ are the markings of the m membranes of µ at the beginning of the computation (the initial markings of

Π);
• R is a finite set of protein-membrane rules and protein movement rules over the alphabet V;
• F ⊆ V is the set of protein-flags, simply called flags (marking the output membranes).

We will also use VΠ , µΠ , RΠ , and FΠ to denote V , µ, R, and F respectively.
A configuration of Π consists of a membrane structure, the markings of the membranes, and the multisets of proteins

present inside the regions. In what follows, configurations are denoted by writing the markings as subscripts of the right-
hand parentheses which identify the membranes, e.g., [[]ab[aaa]b[]bb]a is an example of a configuration.

We suppose that in the initial configuration the regions are empty, thus the initial configuration is defined by µ and
u1, . . . , um.

As standard for membrane systems, we assume the existence of a global clock which marks the timing of steps (single
transitions) for the whole system.

A single transition ofΠ from a configuration to a new one is performed by applying, to eachmembrane of the system, either
(i) the protein movement rules in the nondeterministic maximally parallel manner, or (ii) one of the protein-membrane rules.

The choice between using protein movement rules or using a protein-membrane rule, for each membrane, is done in a
nondeterministic way if both types of rules can be applied for a given membrane. A membrane remains unchanged (only)
if no rules can be applied to it.

The application in the nondeterministic maximally parallel manner of the protein movement rules means that, for the
chosen membrane, the proteins (the ones marking the membrane and those present in the enclosed region) are assigned
with the rules in such a way that, after the assignment is done, no other protein movement rule is applicable to the proteins
that have no rules assigned to them. If a protein can be used by several rules, then it is assigned to one of them in a
nondeterministic way.

As usual, a sequence of transitions forms a computation. A computation which starts from the initial configuration is
successful if it halts, that is, it reaches a halting configuration, i.e., a configuration where no rule can be applied, anywhere in
the system. In the halting configuration we consider the output membranes – these are membranes whose markings contain
at least one flag from F.
Then, the result of a successful computation is the set of vectors describing the multiplicities of proteins present in the
markings of the output membranes. Owing to the nondeterminism in the choice of rules, one can get a set of (successful)
computations, and thus a set of results.
Collecting all the results, for all possible successful computations, we get the set of vectors generated by Π , and denoted
by Ps(Π).

Since a halting configuration in a Ppp system can have several membranes marked with F, we can have more than one
output membrane. Therefore, the output of a successful computation is a finite family of vectors (each vector corresponding
to an output membrane). This differs from assigning the output in “standard" membrane systems, where we have only one
output vector. However since the set of vectors Ps(Π) generated by a Ppp system is taken over the union of results of all
successful computations, this difference “disappears" in the sense that we can compare the output Ps(Π) with the output of
“standard” membrane systems.

We denote by PPm(α, prot), with α ∈ {pinoi, pinoe, drip, (ncoo)pinoi, (ncoo)pinoe, (ncoo)drip}, m ≥ 1, the class of Ppp systems
using protein-membrane rules of type α, protein movement rules, and at most m membranes (α or prot are removed if
the corresponding rules are not used). Therefore PsPPm(α, prot) is the family of sets of vectors generated by Ppp systems
from PPm(α, prot) (α or prot are removed if the corresponding rules not used). If m is substituted by ∗ then the number of
membranes considered is arbitrary.

Since one cannot mark the empty multiset by a flag, we consider the equality of families of multisets modulo the empty
multiset, i.e., if two families differ only by the empty multiset, then we consider them to be equal.

A configuration of a Ppp system Π that can be reached by a (possibly empty) sequence of transitions, starting from the
initial configuration, is called reachable. A multiset w of proteins is a reachable marking for Π if there exists a reachable
configuration of Π which contains a membrane marked by w.

5. Preliminary results

We begin with some preliminary results that follow directly from the definitions and from the Turing–Church thesis.

Theorem 4.

PsPP∗(α, prot) ⊆ PsRE, PsPP∗(α) ⊆ PsPP∗(α, prot).

PsPP∗((ncoo)α, prot) ⊆ PsPP∗(α, prot),

PsPP∗((ncoo)α) ⊆ PsPP∗(α),

α ∈ {pinoi, pinoe, drip}.

First we consider Ppp systems that use only the protein movement rules. The power of such systems is very restricted, even
when there is no bound on the number of membranes to be used.

Theorem 5. PsPP∗(prot) = PsFIN.

Proof. The inclusion PsPP∗(prot) ⊆ PsFIN comes from the fact that, using only protein movement rules, it is not possible to
increase the total number of objects (and membranes) present in a Ppp system during the computation.

On the other hand, the Parikh image of every finite language can be generated by a Ppp system from PP∗(prot): in fact, the
Parikh image of a finite language can be represented in the initial markings, where each protein is a flag, and actually there
is no need to use protein movement rules. Therefore, also the inclusion PsFIN ⊆ PsPP∗(prot) holds and then the theorem
follows. �

6. Membrane systems using protein-membrane rules

As stated by Theorem 5 the use of only protein movement rules results in a very limited generative power. In this section
we turn to the dual situation: the use of protein-membrane rules only.

In this case the membrane structure can change during the computation, but the proteins cannot move through the
regions of the system.

First we investigate Ppp systems using the non-cooperative versions of the pino and of the drip rules. In this case the
power of the system is still very limited: the family of the so generated sets of vectors is strictly included in the family of
Parikh images of context-free languages. Then we will study Ppp systems using only pino and drip rules; in this case the
power of the system increases: one can generate now at least the family of Parikh images of the languages generated by
programmed grammars without appearance checking.

First we give an example.

Example 6. Consider the regular language L = {a2n | n ≥ 1}. It is easy to show that the Parikh image of L, Ψ{a}(L) = {2n | n ≥

1}, cannot be generated by a Ppp system Π from PP∗((ncoo)pinoi). Indeed, suppose that there is such a Π . Since L is infinite,
there is a x ∈ L with |x| larger than the length of the right-hand side of any pinoi rule of Π . Thus x has some proteins that
were not involved in the application of the last pinoi rule. Since during the application of a pinoi rule one such protein could
also have moved to the other membrane, we also have x − 1 ∈ Ψ{a}(L), a contradiction. �

The previous example illustrates that the “random splitting” of the proteins that are not specified in the applied rule is a
feature that can reduce the computational power of the system.

Lemma 7. Let α ∈ {pinoi, pinoe, drip}. Then, PsPP1((ncoo)α) ⊆ PsCF iff PsPP∗((ncoo)α) ⊆ PsCF.

Proof. The “if” part of the statement obviously holds. We now prove the “only if” part. Let Π = (V,µ, u1, . . . , um, R,M) ∈

PsPPm((ncoo)α) for somem > 1. Now, letΠi = (V,µ′, ui, R,M) ∈ PsPP1((ncoo)α) for i ∈ {1, . . . ,m}, withµ′ a singlemembrane
initially markedwith ui. We have Ps(Π) = Ps(Π1)∪Ps(Π2)∪· · ·∪Ps(Πm) if eachΠi has a halting configuration, and otherwise
Ps(Π) = ∅. Since CF is closed under finite union, we have the desired result. �

Theorem 8. PsPP∗((ncoo)α) ⊂ PsCF,α ∈ {pinoi, pinoe, drip}.

Proof. By Example 8 and Lemma 7 it suffices to show that PsPP1((ncoo)α) ⊆ PsCF. Given a Ppp system Π = (V,µ, u, R,M)
from PP1((ncoo)pinoi), we show that one can construct a context-free grammar G such that the Parikh image of L(G) is exactly
Ps(Π). Note that µ must be a single membrane. Let Lab(R) = {r1, r2, . . . , rn} be a labeling of the elements of R with |R| = n.

We now construct a context-free grammar G = (N, T, P, S), dependent on Π , with

N = {a ∈ V ∪ {S} | a → α ∈ P for some α},where V ∩ {S} = ∅,

T = Lab(R) ∪ (V − N),

P = {a → rjx | rj : []a → [[]x] ∈ R, 1 ≤ j ≤ n} ∪ {S → u}.

In this way G faithfully simulatesΠ (ignoring the elements of Lab(R)), assuming that during each pinoi rule, all proteinsmove
to the inner membrane. We now define a nondeterministic gsm dependent on G which includes the possibility of “random
splitting” of proteins (as commented already after Example 8).

It is possible to construct a nondeterministic gsm ΓG, dependent on G, with input alphabet T and output alphabet T, such
that the set of output strings on input y ∈ T∗, denoted by ΓG(y), is

{w′x,w′
| y = w1rjxw2, a → rjx ∈ P, w′

∈ Scub(w1w2)} ∪ U,

where U = {u} if u ∈ T+, and U = ∅ otherwise. For y ∈ L(G), each decomposition of y into w1rjxw2 with r = a → rjx ∈ P
corresponds to a derivation in which r is the last production applied. The other symbols, w1w2 were nondeterministically
distributed to the outer membrane and the inner membrane. Therefore, w′x (w′, resp.) represents the set of markings of the
inner (outer, resp.) membrane. In the special case when there is no such decomposition of y, we have y = u ∈ T+ and u is a
marking of a “halting” membrane.

Let h be the morphism which deletes the elements of Lab(R), formally defined by h(a) = λ for a ∈ Lab(R), and h(a) = a
for a ∈ T − Lab(R). Now, ΨT(L) with L = h(ΓG(L(G))) precisely represents the set of multisets marking the reachable halting
membranes of Π . Since context-free languages are closed under gsm mapping and applications of morphisms, we have
L ∈ CF. We now only need to select those multisets of L which contain proteins of M. Therefore, ΨT(L′) = Ps(Π) for context-
free L′

= L ∩ V∗MV∗ (context-free languages are closed under intersection with regular languages). �

The computational power of this class increases when one uses cooperative pinoi, pinoe or drip rules. In this case the
systems can generate at least the family of Parikh images of languages generated by programmed grammars without
appearance checking — it is known that PsPR strictly contains PsCF because it also contains non-semilinear vectors of natural
numbers (see [7] for further details).

Formally, we have the following result.

Theorem 9. PsPR ⊆ PsPP∗(α),α ∈ {pinoi, pinoe, drip}.

Proof. Consider a programmed grammar G = (N, T, P, S)without appearance checking in the lh-normal form (see Lemma 3).
We construct a Ppp system Π from PP∗(pinoi) that generates exactly the Parikh image of L(G) and it is defined as follows:

Π = (V,µ, u1, u2, R, F),

where

• V = N ∪ T ∪ {E} ∪ Lab(G) ∪ {#},
• µ = [[]ESl0]λ,
• F = T.

The pino rules in R are grouped as follows (the grouping is done according to their intended use):
1. (simulation of the programmed grammar productions),
[]EAi → [[]Exj]i, for (i : A → x, Ei) ∈ P, j ∈ Ei, i 6= lh,
2. (used if a production of G cannot be applied),
[]A → [[]E##], A ∈ N,
3. (used for non-halting),
[]E## → [[]E##]#,
4. (used to keep the symbols from a sentential form on the same membrane),
[]Xi → [[]E##]i, for X ∈ (N ∪ T), i ∈ Lab(G),
5. (used to halt the computation),
[]EZlh → [[]]Elh .
The so-constructed system Π simulates G in the following way. The structure of the system contains at any time during

the computation a unique innermost membrane. The marking of this membrane contains the object E (except in the last

step of the computation), the label of the next production of G to simulate (at the beginning this label is l0), and the objects
corresponding to the current sentential form (at the beginning of a computation of Π only the object S).

The objects from N are called nonterminal objects, while the objects from T are called terminal objects.
The simulation of the application of a production in G is done by using one of the rules in group 1.
The object A is rewritten to x if (i : A → x, Ei) ∈ P.
Also the label j of the next production is produced while the old one, i, is stored on the created external membrane. Note

that we should “trash" the computation of Π if no productions of G can be simulated and there are nonterminal objects
attached to the innermost membrane of Π . This is accomplished by the rules in groups 2 and 3.

Indeed, if no rule from group 1 can be applied, then a rule of group 2must be applied, because of themaximal parallelism.
If this rule is applied, then the membrane []E## is created and the rule in group 3 is applied forever; thus the computation
does not halt – the computation is “trashed".

We have to guarantee that, after a rule of group 1 is applied (simulating the application of a production from G), the
objects not modified in the sentential form do not go to the created external membrane. To this aim the rules of group 4
are used. In fact, if any object of the sentential form is attached to a membrane not containing the object E (that is always
attached only to the innermost membrane), then the computation of Π never halts.

To make the computation halting, the symbols E and lh must be removed from the innermost membrane, and the
nonterminal object Z must be erased. To this aim we use the rules of group 5. Notice that this should be done only when
the sentential form is composed by only terminal objects. In fact, if this is not true, then in the next step, a rule of group 2 is
applied, and then the computation will never halt.

Thus, from the above explanation, it follows that, any successful derivation of G producing w can be simulated by a
successful computation in Π halting in a configuration containing a unique innermost membrane, which is also the unique
output membrane which is marked by the multiset ΨV(w).

On the other hand, unsuccessful derivations of G can be of the type S ⇒
∗ Z(N∪T)∗ or of the type S ⇒

∗ Z(N∪T)∗N(N∪T)∗
⇒

(N ∪ T)∗N(N ∪ T)∗. The simulation in Π of these two types of derivations results in non-halting computations.
Therefore Ps(Π) is exactly the Parikh image of the language generated by the grammar G.
The proof given can be easily adapted using only pinoe or using only drip rules. Therefore the theorem follows. �

7. Membrane systems using protein-membrane and protein movement rules

We will investigate now membrane systems using both protein-membrane rules and protein movement rules. As we
will demonstrate the ability to attach, de-attach, and move proteins across the system in a controlled fashion increases the
generative power of the systems.

The first indications of the increased generative power is given by Theorem 10: Ppp systems from PsPP∗((ncoo)α, prot),α ∈

{pinoi, pinoo, drip}, can generate at least the family of Parikh images of context-free languages (compare this result with
Theorem 8).

Theorem 10. PsCF ⊆ PsPP∗((ncoo)α, prot),α ∈ {pinoi, pinoe, drip}.

Proof. Given a context-free grammar G = (N, T, P, S) one can construct a Ppp system Π from PP∗((ncoo)pinoi, prot) such that
Ps(Π) is exactly the Parikh image of L(G). Without loss of generality we suppose that each nonterminal is at the left-hand
side of at least one production of the grammar.

We construct Π = (V,µ, u1, u2, R, F) with V = N ∪ T ∪ {t, E}, F = T, and µ = [[]St]E.
The rules of R are grouped according to their intended use:
1. (Pino rules),
[]a → [[]tx] for a → x ∈ P,
2. (protein movement rules – movement of terminal objects),
[]ta → []ta, for a ∈ T,
[a] → []a, for a ∈ T,
[]a → [a], for a ∈ T,
[a]E → []aE, for a ∈ T,
[]E → []E,
3. (protein movement rules – movement for non-halting),
[]tt → []tt,
[t] → []t,
[]t → [t].
Intuitively, Π simulates the context-free productions of G using the pino rules, and when terminal objects are created,

they are collected on the skin membrane. We will show that during the computation of Π the membrane structure is such
that the marking of the skin membrane contains exactly one copy of E and no copies of t, while the markings of the other
membranes contain exactly one copy of t and no copies of E.

The system Π works in the following way. The rules of group 1 simulate the rewriting in G. Each time a pino rule is
applied, then the “special" object t is also attached to the created internal membrane. If a membrane with two (or more)

objects t attached is produced, then the computation will not halt because at least a membrane with a marking containing
two objects t is produced, and then the rules from group 3 can be used forever.

This guarantees that each membrane present in the system, except the skin membrane, is marked with objects from
N ∪ T and exactly one t. This object t is used to de-attach the terminal objects from the membranes and to make them
migrate toward the skin membrane where they remain attached. This is done by using the rules from group 2 (this process
of migration can start at any moment during the computation; it does not interfere with the result of the computation).

Finally, the object E attached to the skin is removed; it can be removed only when all objects from T present in Π have
been moved and attached to the skin membrane, otherwise these objects move through the regions of the system forever
and the computation will not halt.

In this way for any string w in L(G) one can obtain, at the end of a halting computation, a marking of the skin membrane
corresponding to the Parikh vector of w. In fact, this can be done by applying the pino rules and then moving all the objects
from T to the skin membrane in the above described way.

On the other hand, each multiset w produced by Π is a marking of the skin membrane in a halting configuration, and it
can be only obtained in the way described above – hence, there exists a derivation in G that produces a string with its Parikh
vector corresponding to w.

The proof can be adapted for systems using (ncoo)pinoe or (ncoo)drip rules by adapting the proteinmovement rules. Hence,
the theorem holds. �

If Ppp systems are equipped with both protein-membrane and protein movement rules, then they are computationally
complete, in the sense that they are able to generate the family of Parikh images of recursively enumerable languages.

So, informally, it seems that the ability to move the proteins (in a controlled way) through the regions of the system is
important for reaching computational completeness. On the other hand, it is interesting to notice that the generative power
of protein movement rules, when used alone, is very “weak" (Theorem 5).

By comparing the following proof with the proof of Theorem 9 we clearly notice similarities. The main difference is the
second group of rules, used to simulate the appearance checking mechanism present in the programmed grammar.

Theorem 11. PsPP∗(α, prot) = PsRE,α ∈ {pinoi, pinoe, drip}.

Proof. We first prove the theorem for systems from PP∗(pinoi, prot).
The inclusion PsPP∗(pinoi, prot) ⊆ PsRE follows from the Church–Turing thesis. The reverse inclusion, PsRE ⊆

PsPP∗(pinoi, prot) can be proved by simulating a programmed grammar with appearance checking G by a Ppp system Π from
PP∗(pinoi, prot).

To this aim, consider G = (N, T, P, S) in the lh-normal form. Let Lab′(G) = {i′ | i ∈ Lab(G)}.
The Ppp system Π is defined as follows.

Π = (V,µ, u1, u2, R, F),where

• V = N ∪ T ∪ {E} ∪ Lab(G) ∪ Lab′(G) ∪ {#, d, d′, h} ∪ {h′

i, h
′′

i | i ∈ Lab(G)};
• µ = [[]ESl0h]λ;
• F = T;
• The pino rules and the protein movement rules in R are given in groups, according to their intended use during the

simulation of G by Π .

1. (simulation of the productions of the programmed grammar),
[]hEAi → [[]hExj]i, for (i : A → x, Ei, Fi) ∈ P, j ∈ Ei, i 6= lh,
2. (simulation of the skipping of a production – appearance checking),
[]Ehi → [[]Eh′

ih
′′
i
]i, i ∈ Lab(G), i 6= lh,

[]Eh′
ih

′′
i

→ []Eh′
i
h′′

i , []Eh′′
i

→ [[]E##]h′′
i
, i ∈ Lab(G), i 6= lh,

[]Eh′
iA

→ [[]E##]h′
iA
, for (i : A → x, Ei, Fi) ∈ P,

[h′′

i]i → []h′′
i i
, i ∈ Lab(G),

[]h′′
i i

→ [[]j′d]i, i ∈ Lab(G), j ∈ Fi,
[]j′d → []dj′, j ∈ Lab(G),
[]Ej′ → []Ej′ , j ∈ Lab(G), j 6= l0, j 6= lh,
[]Ej′h′

i
→ [[]Ejh]j′ , i, j ∈ Lab(G),

3. (used to produce non-halting),
[]E## → [[]E##]#,
4. (used to keep the symbols from a sentential form on the same membrane),
[]Xi → [[]E##]i, X ∈ (N ∪ T), i ∈ Lab(G) ∪ Lab′(G),
5. (used to halt a computation),
[]Elh → []lhE,
[]lhZ → []lhZ,
[]lhh → []lhh,
[]lh → []lh,

[]Elh → []Elh ,
[]Z lh → []Zlh ,
[]hlh → []hlh ,
[]X lh → []Xlh , X ∈ N.
The so-constructed system Π works as follows.
Each computation starts from the initial configuration [[]ESl0h]λ. At each step, there is a unique membrane of Π marked

by a multiset composed by the object E, the objects corresponding to the current sentential form of G (only the object S at
the beginning of a computation), the label of the next production of G to simulate (l0 at the beginning of a computation), and
the “support" object h.

The pino rules of group 1 simulate the application of a production (i : A → x, Ei, Fi) of G, not used in the appearance
checking mode (i.e., the nonterminal A is present in the multiset marking the membrane to which E is attached). In this case
the pino rule corresponding to the production A → x, with label i is applied, and together with the objects x also the label of
the next production to simulate (j ∈ Ei) is produced.

If a production cannot be applied (because A is not present in themultisetmarking themembrane towhich E is attached),
then the production has to be used in the appearance checking mode (i.e., has to be skipped) and, for this goal, the rules of
group 2 are used. The system “guesses", by applying a rule []Ehi → [[]Eh′

ih
′′
i
]i from group 2, that the production of G with

label i that should be currently simulated, cannot be executed.
For instance, consider the configuration [· · · []hExi · · ·], with x a string representing a multiset over N ∪ T (it represents

the current sentential form of G) and i the label of the next production of G to simulate. By applying []Ehi → [[]Eh′
ih

′′
i
]i we

obtain the configuration [· · · [[]Eh′
ih

′′
i x

]i · · ·]. Then, the rule []Eh′
ih

′′
i

→ []Eh′
i
h′′

i is applied (the other rules that could be applied
lead to a non-halting computation). So the configuration [· · · [[]Eh′

ix
h′′

i]i · · ·] is obtained. In the next step, in parallel, the rule
[]Eh′

iA
→ [[]E##]h′

iA
with (i : A → x, Ei, Fi) ∈ P is applied (if possible) and the rule [h′′

i]i → []h′′
i i
is applied (this is certainly

possible). If the first rule is applied, then this means that the production with label i could be simulated and the (guess)
decision to skip it was wrong. In this case the proteins E## are attached to the created membrane and the computation
never halts. If the first rule is not applied, then the next configuration reached is [· · · [[]Eh′

ix
]h′′

i i
· · ·]. Now only the pino rule

[]h′′
i i

→ [[]j′d]i, j ∈ Fi, can be applied. Therefore, the next configuration obtained is the following one (notice the movement
of the contents in the pino operation): [· · · [[]j′d[]Eh′

ix
]i · · ·]. Now the protein j′ is de-attached using the rule []j′d → []dj′. So

the next configuration obtained is [· · · [[]dj′[]Eh′
ix
]i · · ·]. The protein j′ is added to the marking of the membrane where the

protein E is already attached, by using []Ej′ → []Ej′ . In this way the configuration [· · · [[]d[]j′Eh′
ix
]i · · ·] is obtained. Finally,

the pino rule []Ej′h′
i
→ [[]Ejh]j′ can be applied. So the next configuration is [· · · [[]d[[]Ejhx]j′]i · · ·]. Therefore, the process can

be iterated by applying (or skipping) the production of G with label j, in the way described above. Also, the rules of group
4 ensure that the sentential form is always entirely attached to the membrane where E is attached, and it is never divided
randomly between the membranes created by the pino operation.

The correct halting of the computation is assured by applying the rules of group 5. The computation can be halted when
the production with label lh should be simulated. In this case, it is necessary to remove the nonterminal Z and to check that
the objects attached to the membrane containing the current sentential are terminals.

For instance, consider the configuration [· · · []hExlh · · ·], where x is a string representing a multiset over V (the current
sentential formofG). First, the proteins E, Z (present in x) and h are de-attached, obtaining the configuration [· · · []x′ lhhEZ · · ·].
Then, finally, also lh is released yielding to the configuration [· · · []x′ lhhEZ · · ·]. The release of lh cannot be done earlier, since
otherwise lh would be re-attached because of the presence of E, Z or h. Once lh has been released, it is attached again to the
same membrane if and only if a nonterminal object is attached to this membrane (rule []X lh → []Xlh); this label is released
again by the rule []lh → []lh and this attachment/de-attachment runs forever. This guarantees that, when the computation
halts, the unique output membrane (the one where is attached at least a flag) contains only objects from T.

From the above explanation it is easily seen that any successful derivation of G producing w can be simulated in Π by
a successful computation halting in a configuration with a unique output membrane marked with the multiset ΨT(w). The
simulation in Π of this type of derivation leads to a non-halting computation.

Therefore it follows that Ps(Π) is exactly the Parikh image of L(G).
Moreover the proof given can be easily adapted by using pinoe or by using drip rules (by adjusting the protein movement

rules). Thus the theorem follows. �

8. Decision problems

Since the set of proteins attached to amembrane determines the set of rules that can be applied to thismembrane,wewill
consider now the following decision problem: Is it decidable whether or not an arbitrary multiset w is a reachable marking
for an arbitrary Ppp system?

Wewill demonstrate that this problem is decidable for Ppp systems using (i) only pino and/or drip rules, or (ii) only protein
movement rules, while it is not decidable for Ppp systems using both pino (or drip) rules and protein movement rules.

Theorem 12. It is undecidable whether or not, for any Ppp system Π and any multiset w of proteins over VΠ , w is a reachable
marking of Π .

Proof. Sketch. The result follows from the universality results proved in Theorem 11.
For any programmed grammar G with appearance checking it is possible to construct a Ppp system Π that can simulate

the derivations in G. Consider now the construction given in Theorem 11. If there exists an algorithm to check if an arbitrary
multiset w is a reachable marking of Π , then the same algorithm together with the construction from Theorem 11, could
be used to decide whether or not for an arbitrary Parikh vector v a sentential form z with Parikh vector equal to v can be
generated in G. This, however, contradicts the universality of programmed grammars with appearance checking (which has
been proved in a constructive way, see [7]). �

If Ppp systems use only protein movement rules, only pino rules, or only drip rules, then the above problem becomes
decidable.

Theorem 13. It is decidable whether or not, for any Ppp system Π from PP∗(prot) and any multiset w of proteins over VΠ , w is a
reachable marking of Π .

Proof. Given a Ppp system Π from PP∗(prot) the number of possible distinct reachable configurations for Π is finite and
therefore the problem is decidable (e.g., by using an exhaustive search). �

Theorem 14. It is decidable whether or not, for any Ppp system Π from PP∗(α), α ∈ {pinoi, pinoe, drip}, and any multiset w of
proteins over VΠ , w is a reachable marking of Π .

Proof. We first show that the set of strings representing all the reachable markings for Π ∈ PP∗(pinoi) can be generated by
a programmed grammar G without appearance checking.

Let Π = (V,µ, p1, p2, . . . , pm, R, F) where R = {r1, · · · , rk}.
In what follows, in order to avoid writing an entire pino rule ri : []uav → [[]ux]v wewill often refer directly to the strings

u, v, and x and to the symbol a. Thus, e.g., we may write “consider a string u of ri".
We also use the morphism h : V −→ V ′ defined by h(x) = x′, x ∈ V , and V ′

= {a′
| a ∈ V}.

Let G = (N, T, P, S) be a pure programmed grammar, thus N = T, where N is the set V ∪ V ′.
In what follows, in order to simplify the notation, we assume that several productions of G can have the same label (in

this case the production to be applied is chosen nondeterministically among the ones with the same label). Note that this
assumption is only a notational convenience: it is easy to see that for each such G there is an equivalent pure programmed
grammar having an injective labeling of the productions.

For the sake of readability we will use lbeg to denote the set of labels of G which correspond to productions that are used
to initiate the simulation of pino rules. Thus, lbeg (the set of beginning labels) is defined as

lbeg = {l′ri,1 | ri has u 6= λ, 1 ≤ i ≤ k}

∪ {l′ri | ri has u = λ, 1 ≤ i ≤ k} ∪ {l′′ri,1 | ri has v 6= λ, 1 ≤ i ≤ k}

∪ {l′′ri,r+1 | ri has v = λ, 1 ≤ i ≤ k}.

The label used to start the simulation of a pino rule ri can be different according to the presence of strings u and v in the
rule ri. In fact, if in the chosen rule ri, u or/and v are missing, then some of the productions of G need to be skipped.

The set of productions P is divided into several groups, according to their intended use during the simulation of Π .
1. (nondeterministic choosing of one membrane and of one pino rule),
(l0 : S → pi, lbeg), for 1 ≤ i ≤ n,
If the pino rule ri : []uav → [[]ux]v, 1 ≤ i ≤ k, is present in R, with u = u1u2 · · · uj, v = v1v2 · · · vr and x = x1x2 · · · xp, then

we add to P the following productions.
2(a). (prime the symbols of the string u),
(l′ri,1 : u1 → h(u1), {l′ri,2 }),
(l′ri,2 : u2 → h(u2), {l′ri,3 }),
· · ·

(l′ri,j : uj → h(uj), {l′ri }),
3(a). (prime the symbol a),
(l′ri : a → h(a), {l′ri,j+1

}), if ri has v 6= λ,
(l′ri : a → h(a), {l′ri,j+r+1

, l1,i}), if ri has v = λ,
4(a). (delete the symbols of v),
(l′ri,j+1

: v1 → λ, {l′ri,j+2
}),

(l′ri,j+2
: v2 → λ, {l′ri,j+3

}),
· · ·

(l′ri,j+r
: vr → λ, {l′ri,j+r+1

, l1,i}),
5(a). (delete nondeterministically),
(l1,i : d → d, {l′ri,j+r+2

}), d ∈ N, if ri has u 6= λ,
(l1,i : d → d, {l′ri,2j+r+2

}), d ∈ N, if ri has u = λ,
(l′ri,j+r+1

: d → λ, {l′ri,j+r+1
, l′ri,j+r+2

}), d ∈ V , if ri has u 6= λ,

(l′ri,j+r+1
: d → λ, {l′ri,j+r+1

, l′ri,2j+r+2
}), d ∈ V , if ri has u = λ,

6(a). (de-prime the symbols of u),
(l′ri,j+r+2

: u′

1 → u1, {l′ri,j+r+3
}),

(l′ri,j+r+3
: u′

2 → u2, {l′ri,j+r+4
}),

· · ·

(l′ri,2j+r+1
: u′

j → uj, {l′ri,2j+r+2
}),

7(a). (apply a → x and choose the next pino rule),
(l′ri,2j+r+2

: a′
→ x, lbeg),

2(b). (prime the symbols of v),
(l′′ri,1 : v1 → h(v1), {l′′ri,2 }),
(l′′ri,2 : v2 → h(v2), {l′′ri,3 }),
· · ·

(l′′ri,r : vr → h(vr), {l′′ri,r+1
}),

3(b). (prime the symbol a),
(l′′ri,r+1

: a → h(a), {l′′ri,r+2
}), if ri has u 6= λ,

(l′′ri,r+1
: a → h(a), {l′′ri,r+j+2

, l2,i}), if ri has u = λ,
4(b). (delete the symbols of u),
(l′′ri,r+2

: u1 → λ, {l′′ri,r+3
}),

(l′′ri,r+3
: u2 → λ, {l′′ri,r+4

}),
· · ·

(l′′ri,r+j+1
: uj → λ, {l′′ri,r+j+2

, l2,i}),
5(b). (delete nondeterministically),
(l2,i : d → d, {l′′ri,r+j+3

}), d ∈ N,
(l′′ri,r+j+2

: d → λ, {l′′ri,r+j+2
, l′′ri,r+j+3

}), d ∈ V ,
6(b). (delete the symbol a′),
(l′′ri,r+j+3

: a′
→ λ, {l′′ri,r+j+4

}), if ri has v 6= λ,
(l′′ri,r+j+3

: a′
→ λ, lbeg), if ri has v = λ,

7(b). (de-prime the symbols of v and choose the next pino rule),
(l′′ri,r+j+4

: v′

1 → v1, {l′′ri,r+j+5
}),

(l′′ri,r+j+5
: v′

2 → v2, {l′′ri,r+j+6
}),

· · ·

(l′′ri,r+j+4+r−1
: v′

r → vr, lbeg),
The so-constructed grammar G simulates Π in the following way.
The underlying idea is that G stores in its sentential forms the strings corresponding to reachable markings of Π (with

one reachable marking stored in one sentential form).
The grammar simulates, by using its productions, the evolution of a single membrane from a reachable configuration of

Π ; if a membrane has several possible evolutions then G “chooses" only one of them in a nondeterministic fashion. When a
pino rule is simulated, then the grammar chooses, nondeterministically, to follow the evolution of either the created internal
membrane or the created external membrane.

Initially, the grammar G applies one of the productions present in the group 1, having label l0. So the symbol S is rewritten
in a nondeterministic way into one of the strings p1, p2, . . . , pm corresponding to the initial markings ofΠ . The choice can be
done in a nondeterministic manner since in the systems we consider here, the evolution of a membrane present in a certain
configuration is independent from the evolution of the other membranes present in the same configuration.

The next production is selected by choosing, in a nondeterministic way, a label in the set lbeg associated with the
production with label l0.

We will discuss the functioning of G when it simulates a pino rule in which both contexts u and v are nonempty (the
reader can easily verify the functioning of G in the case when one or both contexts are empty).

Given a pino rule ri : []uav → [[]ux]v, the label l′ri,1 is used to start the sequence of productions that simulate the pino rule
ri, in the case G follows the evolution of the created internal membrane; on the other hand l′′ri,1 is used to start the sequence
of productions that simulate the pino rule ri in the case G follows the evolution of the created external membrane.

The productions in group (a) are used in the former case, while the productions in group (b) are used in the latter case.
(i): We now analyze the former case. Thus we suppose that, after applying the production labeled by l0, we have chosen

the production with label l′ri,1 and ri is the pino rule []uav → [[]ux]v. Therefore, the grammar simulates the rule ri and
chooses to follow the evolution of the created internalmembrane.

First, the productions of the group 2(a) are executed in sequence – they are used tomark all the symbols in the sentential
form corresponding to the objects of the string u of the pino rule ri.

Then the production a → h(a) is applied, and the object a is primed (group 3(a)).

After that, the productions of group 4(a) are applied in sequence (we suppose v 6= λ). This corresponds to the deletion
from the sentential form of the objects from the string v of the pino rule ri. These objects are deleted because the grammar
has chosen to follow the evolution of the created internal membrane.

When this phase is completed, then some (possibly none) of the symbols in the sentential form are randomly deleted.
This is used to simulate the random distribution of the objects between the two newly createdmembranes, and in particular
the deletion simulates the nondeterministic distribution of some of the objects to the created external membrane.

This deletion can be stopped by choosing to execute the productionwith label l′ri,j+r+2
(notice that the deletion can be even

totally skipped by choosing the special “dummy" production with label l1,i).
When the deletion is stopped, then the introduced symbols of u are de-marked by applying, in sequence, the productions

from group 6(a), and finally the symbols of the string x are introduced by using the rules of group 7(a). Moreover, when this
last production is applied, a new pino rule is nondeterministically selected by choosing a label in lbeg and the above described
process is repeated.

(ii): Now we analyze the latter case. Thus we suppose that, after executing the production with label l0, we have chosen
the production with label l′′ri,1 where the pino rule ri is []uav → [[]ux]v. Therefore, the constructed grammar simulates the
application of the pino rule ri with the choice to follow the evolution of the created externalmembrane.

This is done by applying, in a way analogous to the one described above, the rules of the group (b), in the order described
by groups 1, 2(b), 3(b), 4(b), 5(b), 6(b), and 7(b).

Since G is pure, the language L(G) consists of all reachable sentential forms. Notice that during the intermediate steps of
the simulation of a pino rule there are always primed symbols in the sentential forms produced by G.

By Lemma 2, L(G) can also be generated by a programmed grammar without appearance checking.
We are interested in the set of strings corresponding to reachable markings of Π and to obtain this set, we only need to

intersect L(G) with the regular set V∗, filtering out in this way the strings from L(G) containing primed symbols (note that
these are the only strings in L(G) not corresponding to reachable markings of Π).

The family of languages generated by programmed grammars without appearance checking is closed under intersection
with regular sets (see, e.g., [7]); therefore, the language Lreach = L(G)∩V∗ can also be generated by such grammars (the proof
of this closure property is constructive, i.e., we can construct the grammar generating Lreach starting from G and from the
automaton for V∗).

Therefore to check if a multiset of proteins w is a reachable marking of Π , we only need to decide if (any permutation of)
the string w is in Lreach, and this is decidable (see, e.g., [7]).

Since the membrane structure is not really important in the described simulation then it is easy to adapt the given proof
for Ppp systems using only pinoe rules or using only drip rules. Therefore, the theorem holds. �

We conclude this section by investigating two more decision problems. The first problem concerns the reachability of a
configuration in Ppp systems. The second problem concerns the boundness of Ppp systems.

First, we observe that, given an arbitrary Ppp system Π and an arbitrary configuration C of Π , one can compute an
upper bound mapΠ (C) on the number of applications of pino and drip rules that can be used in deriving C from the initial
configuration of Π (in case that C is reachable in Π).

Clearly, one can generate in a systematic fashion all reachable configurations ofΠ containing nomore than rmembranes.
Since each application of a pino or drip rule increases the number of membranes this generation process takes a bounded
number of steps. If C appears among these configurations, then it is reachable, otherwise C is not reachable in Π .

Thus, we have the following result:

Theorem 15. It is decidable whether or not, for any Ppp system Π and any configuration C of Π , C is a reachable configuration
of Π .

It is perhapsworthwhile to discuss Theorem15 in the light of the universality result stated in Theorem11. The reason that
Theorem 15 holds is that, for a given configuration C, one can, a priori, provide an upper bound mc such that C is reachable
in Π if and only if it is reachable by computations that do not exceed mc steps.

On the other hand, if wewant to checkwhether or not a particularmultisetw is in the output of a successful computation
of Π , then, in general, there is no upper bound mw such that: w ∈ Ps(Π) if and only if w is an output of a successful
computation which takes no more than mw steps.

In fact, in general, there is no relationship between the size ofw and the maximal size of a halting configuration in which
w is marking one of the output membranes.

A Ppp system Π is bounded if there exists an integer k, such that, any reachable configuration of Π has less than k
membranes.

Theorem 16. It is decidable whether or not an arbitrary Ppp system Π from PP∗(α),α ∈ {pinoi, pinoe, drip}, is bounded.

Proof. Given a Ppp system Π from PP∗(α) α ∈ {pinoi, pinoe, drip}, one can construct a programmed grammar G without
appearance checking such that L(G) consists of strings corresponding to all the reachable markings of Π . Such a grammar G
can be constructed in the way described in the proof of Theorem 14.

Since it is decidable whether or not the language of an arbitrary programmed grammar without appearance checking is
finite (see, e.g., [7]), we can decide whether or not L(G) is finite. If L(G) is infinite, then, obviously, Π is not bounded. Assume

Table 1
Computational power for Ppp
systems using pinoi and protein
movement rules (prot)

w/o prot prot
w/o pinoi PsFIN
(ncoo)pinoi ⊂ PsCF ⊇ PsCF
pinoi ⊇ PsPR PsRE

The same table holds also for pinoe
and drip operations.

now that L(G) is finite. Note that still Π can be unbounded because, e.g., many membranes can have the same marking in a
certain configuration. It is easy to see that L(G) can be effectively constructed from G: by iteration we can find a k such that
L(G) ∩ VkV∗

= ∅, where V is the alphabet of G, and we now need to check the membership of w in L(G) (which is decidable)
for only a finite number of w ∈ Vk−1.

By analyzing L(G) it is possible to decide if a pino (or a drip) rule can be applied an unbounded number of times. This
is done by constructing a graph having nodes labeled by the strings of L(G). We add directed edges between the nodes in
the following way. If a node x is labeled by w1 and a node y is labeled by w2, then there is an edge between the two nodes,
directed from w1 to w2, if and only if there is a pino (or a drip) rule in Π that applied to the membrane []w1 can produce two
membranes where at least one of them is marked by w2.

Clearly, if the so-constructed graph has a loop, then Π is unbounded; otherwise Π is bounded. �

9. Concluding remarks

We have investigated membrane systems using operations involving membranes marked with multisets of proteins.
These systems use two different kinds of operations: the ones that involve membranes and proteins (pino and drip
operations) and the ones that attach, de-attach, and move the proteins across the regions of the system (protein movement
operations).

Membrane systems using both types of operations are shown to be computationally complete. When the protein-
membrane rules are restricted to be non-cooperative, then one generates at least the family of Parikh images of context-free
languages.

We have also analyzed membrane systems whose evolution is based on only one of the two types of operations.
In particular we have shown that (in terms of Parikh sets) membrane systems using only pino (or only drip) rules are at

least as powerful as programmed grammars without appearance checking.
Our current knowledge about the computational power of membrane systems considered in this paper is summarized

in Table 1.
A number of problems have to be settled in order to get a more complete understanding of membrane systems with

marked membranes. Some of them are suggested by the results obtained in this paper.

1. Is the inclusion of PsCF ⊆ PsPP∗((ncoo)α, prot) α ∈ {pinoi, pinoe, drip}, strict?
2. Is the inclusion PsPP∗((ncoo)α, prot) ⊆ PsRE, α ∈ {pinoi, pinoe, drip}, strict?
3. Is the inclusion PsPR ⊆ PsPP∗(α), α ∈ {pinoi, pinoe, drip}, strict?
4. Is the inclusion PsPP∗(α) ⊆ PsRE, α ∈ {pinoi, pinoe, drip}, strict?

Also the following “natural” decision problem should be settled for membrane systems with marked membranes: is it
possible to decide whether or not an arbitrary multiset of proteins is a reachable marking for an arbitrary Ppp system from
PP∗((ncoo)α, prot), with α ∈ {pinoi, pinoe, drip}?

The problem is challenging since it is proved to be decidable for Ppp systems from PP∗(prot), i.e., using only protein
movement rules (see Theorem13), and for Ppp systems from PP∗(α),α ∈ {pinoi, pinoe, drip}, i.e., using only protein-membrane
rules (see Theorem 14), while it is undecidable for arbitrary Ppp systems (Theorem 12).

A more general research line is to consider a more realistic model of the way that proteins are embedded in membranes.
A possible starting point is to accommodate within our model the concept of the parametric regular spherical membrane
presented in [1].

An interesting research topic is to consider protein rules with different execution times (following, for instance, the idea
of timed P systems introduced in [5]). Also, it would be interesting to consider proteins marking only one of the two sides
of a membrane, similar as defined in [6]. In this way, these proteins would only have an effect on one side of the membrane.

Acknowledgments

The authors are indebted to the European Research Network SegraVis for supporting this research. R. Brijder and
G. Rozenberg are supported by the Netherlands Organization for Scientific Research (NWO) project 635.100.006 “VIEWS”.

References

[1] D. Besozzi, G. Rozenberg, Formalizing sphericalmembrane structures andmembrane proteins populations, in: H.J. Hoogeboom, G. Paun, G. Rozenberg,
A. Salomaa (Eds.), Workshop on Membrane Computing, in: Lecture Notes in Computer Science, vol. 4361, Springer, 2006, pp. 18–41.

[2] N. Busi, R. Gorrieri, On the computational power of brane calculi, in: C. Priami, G. Plotkin (Eds.), Transactions on Computational Systems Biology VI,
in: Lecture Notes in Computer Science, vol. 4220, Springer, 2006, pp. 16–43.

[3] L. Cardelli, Brane calculi - interactions of biological membranes, in: V. Danos, V. Schachter (Eds.), Computational Methods in System Biology,
CSMB2004, Paris, France, May 2004, in: Lecture Notes in Computer Science, vol. 3082, Springer, 2005, pp. 257–280. Revised Papers.

[4] L. Cardelli, Gh. Păun, An universality result for a (mem)brane calculus based onmate/drip operations, International Journal of Foundations of Computer
Science 17 (1) (2005) 49–68.

[5] M. Cavaliere, D. Sburlan, Time-independent P systems, in: G. Mauri, Gheorghe Paun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa (Eds.), Workshop
on Membrane Computing, in: Lecture Notes in Computer Science, vol. 3365, Springer, 2004, pp. 239–258.

[6] V. Danos, S. Pradalier, Projective brane calculus, in: V. Danos, V. Schächter (Eds.), CMSB, in: Lecture Notes in Computer Science, vol. 3082, Springer,
2004, pp. 134–148.

[7] J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer, Berlin, 1984.
[8] J. Hopcroft, J. Ulmann, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 1979.
[9] Gh. Păun, Computing with membranes, Journal of Computer and System Sciences 61 (1) (2000) 108–143. Also, Turku Center for Computer Science-

TUCS Report No. 208, 1998.
[10] Gh. Păun, Membrane Computing. An Introduction, Springer, Berlin, 2002.
[11] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, vol. 1–3, Springer, 1997.
[12] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

	Membrane systems with proteins embedded in membranes
	Introduction
	Preliminaries
	Membrane Operations with marked membranes
	Membrane systems with marked membranes
	Preliminary results
	Membrane systems using protein-membrane rules
	Membrane systems using protein-membrane and protein movement rules
	Decision problems
	Concluding remarks
	Acknowledgments
	References

