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Abstract—Trajectory learning is one of the key components of
robot Programming by Demonstration approaches, which in many
cases, especially in industrial practice, aim at defining complex ma-
nipulation patterns. In order to enhance these methods, which are
generally based on a physical interaction between the user and the
robot, guided along the desired path, an additional input channel
is considered in this article. The hand stiffness, that the operator
continuously modulates during the demonstration, is estimated
from the forearm surface electromyography and translated into
a request for a higher or lower accuracy level. Then, a constrained
optimization problem is built (and solved) in the framework of
smoothing B-splines to obtain a minimum curvature trajectory
approximating, in this manner, the taught path within the precision
imposed by the user. Experimental tests in different applicative sce-
narios, involving both position and orientation, prove the benefits
of the proposed approach in terms of the intuitiveness of the pro-
gramming procedure for the human operator and characteristics
of the final motion.

Index Terms—Constrained smoothing B-splines, human–robot
interaction, programming by demonstration (PbD), surface
electromyography (sEMG) signals.

I. INTRODUCTION

IN AN increasing number of applications, ranging from in-
dustrial to service robotics, the use of collaborative robots is

becoming a crucial point and a key factor for competitiveness.
The original paradigm related to robot usage has changed over
the years from an initial scenario in which robots operated
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autonomously in a separate cell to a scenario in which robots and
humans work together and share the same workspace. Accord-
ingly, methods for robot programming have changed as well.
Traditional approaches for robot programming, based on offline
programming and simulation and on the use of the teach pendant
to define the sequence of desired configurations to be reached,
have been supported, and in some cases replaced, by various
methods that can be classified in a broad sense as programming
by demonstrations (PbD) [1]. In PbD, the user directly trains
the robot to perform the desired task with different forms of
interaction and different levels of abstraction. These modalities
of interacting with robots allow reducing the time needed for
programming a task while minimizing users’ errors [2]. More-
over, they also enable nonexpert users to program robots and
are, therefore, one of the key technologies that can foster the
use of robotic systems, especially in small- and medium-sized
companies.

If the medium/long-term goal of PbD of robotic systems aims
at reproducing the training processes that typically occur among
humans [1], based, for instance, on skills transfer by means of
practical demonstrations and/or vocal instructions, in industrial
applications, PbD methods, such as lead-through programming
or walk-through programming [3], [4], [5], which consist in
manually guiding the robot, recording, and then reproducing its
motion, are still the most widespread. Even if these approaches
date back to the early 1980 s, when some painting robots could
be programmed by manual guidance [6], it is in the last decade
that, thanks to the availability on the market of collaborative
robots specifically designed to safely interact with humans,
programming via direct kinesthetic teaching has become a real
option in many applications. However, the interaction between
the user and the robot is often limited to a force exchange, and
the robot task is a mere reproduction of the imposed trajectories.

A. Related Work

PbD can be categorized according to different features: the
demonstration can be performed on a virtual or on a real envi-
ronment, the user must hand guide the robot or simply perform
the task with some kind of tracking system, and different input
channels can be used (e.g., visual, kinesthetic, speech, etc.).
Moreover, the task can be encoded in different ways: typical
solutions are based on parametric curves, such as B-splines
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or NURBS [7], or on different types of probabilistic methods,
e.g., Gaussian mixture regression [8], [9], dynamical movement
primitives (DMPs) [10], probabilistic movement primitives [11],
kernelized movement primitives [12], or Gaussian process re-
gression [13]. Despite the different features, a common char-
acteristic of almost all the proposed approaches is the need for
suppressing noise and unwanted/unnecessary motions that in-
evitably affect human demonstrations. To cope with these issues,
the basic solution consists in recording multiple demonstrations,
which are performed by an expert user, and then applying some
kind of averaging or optimization method. In the context of prob-
abilistic approaches, the differences among the input trajectories
are translated into different variance levels of the stochastic
processes used to model the task [13], [14], but alternative
methods are also possible. In [15], variations between multiple
demonstrations performed by a human operator are exploited
to define the boundaries of a region free from obstacles. Then,
a piecewise linear segment trajectory, fully contained in this
admissible region, is built up to minimize the geometric path of
the robot. In this approach, the human inconsistency in repeating
the same desired trajectory is not treated as a noise to be canceled
but is considered a measure of accuracy required by the task. A
similar approach is proposed in [16], where several trajectories
obtained by observing a human operator that replicates a given
task are discretized in space and then condensed in a sequence of
pairs composed by the average point and the standard deviation.
On the basis of these pairs, a feasible space is constructed, and
then, different trajectories for a robotic system are computed
optimizing criteria such as the total length, the execution time,
or the energy consumption. In [17], the motions performed
by a force-controlled robot directly commanded by the human
operator are used to define a safe volume, i.e., a volume free
from obstacles, where the trajectory, which is needed for a
given task, can be planned according to a given optimization
criterium. In [18], NURBS curves are used for smoothing the
trajectories learned via a user demonstration in a virtual envi-
ronment. Spline curves are the tool used in [19] to design a
smooth trajectory from the user demonstration. In this article,
the reduction of the points of the input trajectory, to make the
interpolation process less expensive from a computational point
of view, has as a side effect a rejection of the noise affecting the
motion.

As abovementioned, the generality of the PbD methods relies
on multiple demonstrations of the same task, while only a few
cases are based on a one-shot demonstration despite the clear
advantages in terms of required effort and time for programming.
In [20], the points of the recorded trajectory are modified by in-
terpreting them as particles interacting among them and with the
surrounding environment. In [21], the points acquired after the
demonstration are used to define a continuously differentiable
(polynomial) trajectory that approximates the piecewise linear
path joining the points within a given tolerance, initially set by
the user. The idea of modifying a given motion trajectory with a
maximum deviation was initially proposed in [22]. In this case,
the nominal motion is defined via multiple demonstrations, but
then the user has the possibility of progressively refining the tra-
jectory inside a tube, whose radius is determined automatically,

based on the variation of the training data. The PbD approach,
that we propose in this article, is not dissimilar. It is based on
a one-shot demonstration and a procedure for approximating
the resulting trajectory in an optimal manner within a given
tolerance. However, in the framework that we propose, this
tolerance is not constant over the entire length of the path or
computed automatically but can be specified at runtime by the
operator himself. This possibility requires an additional input
channel besides the standard position recording, according to a
multimodal paradigm.

Especially, in the context of semistructured tasks, additional
modalities of interaction can be exploited in support of the
physical interaction of kinesthetic trajectory teaching. In this
way, further guidance information can be transferred to the
robot. The additional interaction modality should be naturally
and unobtrusively adjustable by the operator to convey human
intentions continuously and during the entire robot teaching
execution.

In recent years, human–robot interaction has largely bene-
fited from wearable devices for the measurements of biological
signals. Physical interaction augmented by such kinds of bioin-
terfaces allows lightweight, effective, and intuitive information
exchange with minimal constraint/encumbrance on the human
body. In [23], it has been demonstrated that human motor
intentions can be detected with good accuracy from surface
electromyography (sEMG). The online extraction of informa-
tion from sEMG signals represents a valuable approach for
the multimodal guidance of robotic devices. In particular, the
human ability to simultaneously activate antagonistic muscles
both in static postures and dynamic motions can be exploited.
The central nervous system continuously exploits muscle cocon-
traction (i.e., coactivation of antagonistic muscles) to regulate
joint mechanical impedance [24]. We experience every day that
we modulate muscle cocontraction to stiffer the joints of our
limbs during the execution of motor tasks that require higher
accuracy, while we reduce their mechanical stiffness when low
precision is required. This behavior has been experimentally
investigated and confirmed by clinical trials in [25], where
human joint stiffening induced by muscle cocontraction has been
measured by sEMG signals during a pointing task of randomized
targets. On the basis of these considerations, the idea developed
in this article consists in augmenting the kinesthetic teaching of
collaborative robots, with an sEMG-based measurement of the
forearm muscle cocontraction, that can be used by the operator
to continuously modulate the desired level of accuracy. In order
to follow the natural behavior of the human motor control,
low cocontraction levels are mapped onto large tolerance radii
and vice versa. Furthermore, the operator is provided with a
vibrotactile feedback about the actual level of cocontraction that
simplifies this operation.

B. Contribution and Structure

This article presents a novel PbD algorithm that starting from a
single kinesthetic demonstration provides an optimized motion
trajectory subject to geometric constraints directly defined by
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the user during the demonstration. In this manner, it is possible
to cope at the same time with:

1) the compliance with the task constraints that are directly
taught by the operator by varying the hand stiffness de-
duced from forearm muscles’ sEMG;

2) the smoothness of the path, which by virtue of the adopted
parameterization based on smoothing B-spline has the
minimum curvature/acceleration.

Note that the regularity of the trajectory obtained as a result
of a PbD approach is neglected in a large body of literature fo-
cusing on this topic. Accordingly, industrial applications where
the execution time must be minimized cannot take advantage
of these programming methods because of the high curvature
that often characterizes the resulting trajectories, which may
induce large accelerations and even vibratory phenomena. The
trajectories considered in this article are the so-called smoothing
B-splines [26], which are used in the industrial field, and in
particular in the robotic one when it is necessary to define a
trajectory as a tradeoff between the need of minimizing the
approximation error with respect a given set of via points
and the need of limiting the geometric curvature. Interesting
enough, smoothing B-splines are also a standard tool for solving
nonparametric regression problems of estimating a curve g(t)
given n observations affected by random noise, i.e., y(ti) =
g(ti) + εi for i = 1, . . . , n [27]. In our application, the curve
g(t) is the ideal trajectory that the robot should track, and
the noise εi is caused by the unwanted motions affecting the
human during the demonstration phase. Therefore, the approach
based on smoothing B-splines can be seen as an attempt of
eliminating this noise. Furthermore, to cope with the bounds
imposed by the user, the standard approach has been enhanced
with constraints on the maximum deviation with respect to the
original trajectory. To do this, a novel use of the human stiffness
estimation has been exploited. As a matter of fact, the idea
of using an estimation of the user impedance for teaching a
robot is not new in general, since many examples can be found
in the scientific literature where the impedance of the human
operator is reflected to the robot. For instance, in [28], the user
can select the stiffness of the commanded robot while teaching
its position trajectory by acting on an input interface based on
a linear spring-return potentiometer that maps a button position
to the arm stiffness. Previously, the concept of teleimpedance
was introduced in [29], where in a leader–follower teleoperation
scheme, a reference command composed of both the desired
motion trajectory and the impedance profile is sent from the
human operator to the remotely operated robot. Note that the
impedance profiles are deduced from sEMG measurements on
the operator’s arm. In [30], a framework for robot PbD based
on a single demonstration provided by the human operator is
proposed, in which the teleimpedance approach, for teaching the
robot stiffness, is integrated with a generalization of the trajec-
tories demonstrated by the user in order to let the robot adapt to
different object and environment configurations. In [31], sEMG
signals and kinesthetic control are exploited in a PbD task, where
the positions imposed by the human operator and impedance
gains deduced from the muscles activity are recorded and then
applied offline to the robot. Similarly, in [32], the trajectory

demonstrated by a human operator together with sEMG signals
is used to command both the position and the stiffness of a robot
manipulator interacting with the environment. In these cases, the
signals are encoded by using DMPs models, so that they can be
easily adapted to new tasks.

Differently from the abovementioned examples, in the frame-
work proposed in this article, we are not going to estimate the
user stiffness at her/his arm’s endpoint (i.e., Cartesian stiffness)
with the objective of making the robot replicate the human
stiffness profile. In our approach, we use sEMG to estimate the
overall stiffness of the user’s hand (fingers and wrist joints) from
the activation of the predominant extrinsic hand’s antagonistic
muscles located in the forearm, to provide the user with an
additional programming input. This can be used to specify at
runtime—i.e., during the execution of kinesthetic teaching by
physically guiding the robot—the geometric constraints for a
B-spline trajectory optimization problem, which minimizes the
noise and curvature of the trajectory taught by the user. Impor-
tantly, since the user should be able to voluntarily modulate the
additional programming input during the operation, vibrotactile
feedback is provided to inform him about the actual modulated
level of hand stiffness. This approach allows us to better capture
the human intentions and enhance the effectiveness of the PbD
method in programming complex tasks, by maintaining the same
level of intuitiveness. Experiments involving ten subjects in
teaching trajectories of a seven-degree-of-freedom collabora-
tive robot, while modulating sEMG-estimated hand stiffness,
show that the proposed system can be successfully used for
intuitive multimodal robot teaching of tasks in semistructured
environments. Without pretraining or previous experience with
sEMG/vibrotactile interfacing, subjects were required to teach
trajectories with instructed target hand stiffness levels in a
test scenario characterized by obstacle courses with narrow
passages, variations of end-effector orientation, and specific
workspace locations to be reached, with the underlying idea of
reproducing some mock-up welding process teaching trajectory.

The rest of this article is organized as follows. In Section II,
the general scheme for robot programming based on kinesthetic
teaching and sEMG signals is illustrated; then, the constrained
optimization problem for the B-spline robot trajectory definition
is formulated in Section III. In Section IV, the robotic setup used
in the experiments is presented; in Section V, the effectiveness
of the proposed PbD approach is demonstrated both in terms of
characteristics of the programmed motions and intuitiveness for
operators. Finally, Section VII concludes this article.

II. TRAJECTORY LEARNING TECHNIQUE

The proposed programming framework aims at defining an
optimal trajectory that approximates the geometric path demon-
strated by the user, directly acting on the robot, within a tolerance
defined at each time instant by modulating the cocontraction
level of forearm muscles. A block scheme representation of
this approach is illustrated in Fig. 1. The user steers the robot
along the desired trajectory by applying a wrench F h(t) at its
end-effector. It is possible to make the end-effector able to follow
and adapt to the force exerted by the operator in many ways,
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Fig. 1. Block scheme representation of the novel framework for trajectory
learning via kinesthetic teaching and sEMG-based accuracy modulation.

for instance, by imposing that the dynamical behavior of the
robot matches the dynamics of the mass–damper system [33].
A detailed description of the controller implemented in the
experimental robotic setup is reported in Section IV-C.

While the user performs the position programming task, and
the position qk of the robot is recorded with a given sampling
period Ts, the sEMG signals that activate the muscles of the
forearm are also acquired and elaborated to obtain the profile
of the desired precision ρk at each sampling instant. This basic
element of the proposed strategy is described in Section II-A.
Finally, the pairs (qk, ρk), k = 0, . . . , n, are the input of an
optimization process, illustrated in Section III, that provides the
trajectory q�(u) to be applied to the robot. It is worth noticing
that:

1) the point qk, and consequently the trajectory q�(u), can
be considered both in the robot joint space and in the robot
workspace; the difference consists in the meaning of ρk,
which in the former case is a maximum deviation with
respect to joint variable values, while in the latter is a
maximum distance from the geometric path demonstrated
by the user;

2) when defined in the workspace, function q�(·) only spec-
ifies the geometric path of the motion; in general, the
variable u can be defined independently to specify time
law along the curve.

A. Desired Precision Estimation by sEMG Analysis

As already mentioned, one of the key elements of the proposed
scheme is the mapping between the sEMG signals of the human
operator and the desired level of accuracy. This mapping is based
on a two-stage process: first, the stiffness of the operator’s hand
is estimated based on a simple consideration of the physiological
phenomena governing the regulation of the human stiffness, and
then, this value is converted in a distance via linear scaling.

Various implementations of human stiffness estimations from
sEMG have been presented in the literature. For instance, in [34]
and [35], sEMG-based human stiffness estimation methods
are developed and used for supervisory control and bilateral
teleoperation of robotic systems. Other approaches for sEMG-
based stiffness estimation involve detailed Hill-based muscle

modeling techniques [36] (see, e.g., [37]), where an assistive
control scheme control for a knee exoskeleton device has been
developed. These methods mainly differ on the desired level of
accuracy required by the specific application. As can be easily
understood, as much as a higher accuracy is requested, the higher
will be the complexity of the calibration on different users, the
difficulty of parameter identification, and the time necessary
to obtain them. In the application proposed in this article, a
very accurate stiffness estimation is not necessary, because the
objective is to obtain a rough measurement of the overall hand
stiffness continuously modulated by the operator, and therefore,
a simplified model of the stiffness regulation can be adopted.
Hand stiffness is the overall stiffness seen by the object grasped
by the human hand (in our case, the robot end-effector) and is
the result of the cumulative stiffness of each finger, which, in
turn, depends on the stiffness of each joint. It is well known that
the joints of the fingers are actuated by the muscles located in
the forearm through a net of tendons. Moreover, studies on the
human muscle geometry and joint mechanics [38], [39] have
demonstrated that the total human hand stiffness is a function of
hand muscle activations. Since the mechanical impedance of the
human hand can be seen as a consequence of the overlapping of
several muscle activations working in an antagonistic configura-
tion [40], it is possible to consider the hand stiffness as a summa-
tion of the activations of all the muscles involved in the grasping
task [39]. According to these considerations, the hand stiffness
estimation can be deduced from the sEMG signals acquired from
the operator’s forearm. This approach has been demonstrated to
be suitable in several telerobotics works [41], [42], [43], [44].
In detail, we exploit the fact that the n sEMG signals taken
from the forearm, as described in Section IV-A (in our work,
n = 8), are located on the n/2 couples of predominant hand
antagonistic extrinsic muscles [45], according to the well-known
concept of the human antagonistic actuation model [39], [41].
We can, therefore, consider that such sEMG activity captures
the information related to the activation of the predominant hand
muscular antagonistic actions. Formally, considering n sEMG
channels e1, e2, . . . , en measured by a bracelet placed around
the forearm, as described in Section IV-A, the estimation of the
stiffness σk of the operator’s hand is computed as

σk = σ(kTs) =
n∑

i=1

ei(kTs)/emax (1)

where

emax = max

{
n∑

i=1

MVC(ei)

}
(2)

is the maximum value of the sum of the maximum voluntary
contractions (MVCs) [46] recorded from each sEMG channel
during a calibration operation, in which the human operator is
asked to stiffen at maximum level her/his hand for three times
while grasping the robot handle end-effector (see Fig. 2), Ts is
the sampling time, and k = 0, 1, 2, . . .. According to its defini-
tion, the hand stiffness estimation σk is an index normalized in
the range [0,1]. From σk, the desired precision ρk can be readily
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Fig. 2. Example of an sEMG calibration procedure [see (2)]. The blue-colored
zones highlight the execution of the MVC considered in (2).

obtained via a linear scaling, i.e.,

ρk = ρmin + (ρmax − ρmin)σk (3)

where ρmin and ρmax are arbitrary parameters denoting, respec-
tively, the minimum and the maximum level of accuracy in order
to match the requirements of a specific robotic task of interest.

III. TRAJECTORY PLANNING

A. Trajectory Definition

The learned trajectory is defined by using the so-called
B-spline curves. They represent a different mathematical formu-
lation of standard spline parameterization based on piecewise
polynomial functions. A B-spline of degree p is a parametric
curve s : [umin, umax] → Rd defined as convex combinations
of control points pj ∈ Rd weighted by B-spline basis functions
of degree p, Bp

j (u):

s(u) =

N∑
j=0

pjB
p
j (u), umin ≤ u ≤ umax. (4)

More details about the definition and computation of basis
functions Bp

j (u) are provided in Appendix A.
The vectorial coefficients pj , j = 0, . . . , N , determine the

shape of the curve and are generally computed by imposing
approximation/interpolation conditions on a given set of data
points. In the proposed application based on the direct control
of the robot manipulator by the human operator via physical
interaction, these points are the samples qj , j = 0, . . . , n, of
the recorded trajectory. Note that qj , and accordingly pj , are
vectors whose dimension d depends on the specific task. For
instance, in an application where only the position of the robot
end-effector must be programmed and the orientation is kept
constant, qj and pj will be 3-D vectors, while if also the
orientation is considered, the two vectors will include a minimal
representation of the orientation, like, e.g., the Euler angles, and
they will be, therefore, defined in a 6-D space.

Since the via points qj are derived from the trajectory of the
robot q(t) obtained via kinesthetic teaching, an exact interpo-
lation is certainly unsuitable because of the unwanted move-
ments that affect the user. In the consideration of the modest

precision required by the task, which is comparable to that of
a human operator, the idea is to design a trajectory path that
lies in the neighborhood of the given via points with the lowest
possible curvature and, therefore, the lowest acceleration. To
this purpose, smoothing B-splines are the ideal tool [26], being
the functions s(u) that minimize the quantity

J :=

n∑
j=0

wj‖s(u�
j )− qj‖2 + λ

∫ umax

umin

∥∥∥∥d2s(τ)dτ2

∥∥∥∥2 dτ (5)

where λ ≥ 0 is a parameter that can be freely chosen to control
their smoothness, whilewj > 0 is a parameter used to selectively
weight the contribution of the squared error at a particular
point qj . Parameter u�

j denotes the time instant at which the
approximation occurs.

If λ = 0, the problem becomes a standard least-squares error
fitting of the given trajectory points with a B-spline. In case
n = N , the spline exactly interpolates all the points qj , while
if n > N , the obtained B-spline only approximates these points
in a quadratic sense. However, in the latter case, the reduction
of the number of control points has a significant impact on the
computational load required by the optimization problem and
is, therefore, desirable. For this reason, we assume that n � N ,
considering, for instance, a fixed ratio between the number of
samples qj of the input trajectory and the number of control
points pj .

Interestingly enough, by rewriting in a matrix form the stan-
dard expression of the B-spline (4) as

s(u) = (B(u)P)T = PT BT (u) (6)

where

B(u) = [Bp
0(u), . . . , B

p
N (u)] (7)

P = [p0, . . . ,pN ]T (8)

the cost function (5) can be written as

J = J1 + λ J2 with

J1 = tr
(
(Q̂−BP)TW(Q̂−BP)

)
J2 = tr

(
(CP+ P̂)TA(CP+ P̂)

)
(9)

where tr(·) denotes the trace of a matrix, W = diag(wj) > 0,
j = 0, . . . n, is the weight matrix, and Q̂, P̂, B, C, and A
are matrices of proper dimensions, which depend on known
quantities such as qj , u�

j , and uj . The solution of the optimal
problem

min
P

J(P) (10)

is unique and can be computed analytically.
For the mathematical details, including the expression of the

matrices that appear in (9) and the expression of the optimal
solution, see Appendix B.

B. Constraint Definition

One of the main drawbacks of the optimization problem (10)
is the critical role played by the parameter λ, which must be
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selected by the user. More in general, as highlighted in [47], in
many problems related to robot navigation/trajectory planning
based on splines, it is difficult to balance the tradeoff between the
smoothness of the curve and the desired shape. For this reason,
smoothing splines with prescribed tolerance have been already
proposed in the literature [26]. According to this approach,
the parameter λ is selected with the purpose of bounding the
maximum approximation error below a given threshold ρ, i.e.,

max
j

||s(u�
j )− qj || ≤ ρ.

However, this type of bound may lead to overconservative solu-
tions, since the problem is global, i.e., involving the entire curve.
With the proposed approach, the maximum distance between
the points of the input curve and the corresponding point of
the B-spline trajectory is limited in a local sense, i.e., for each
point, and with a value of the threshold ρ, which may be different
for each of them, i.e., ρj , j = 1, . . . , n− 1 (being the first and
last point exactly interpolated). If the goal is quite clear, the
ways of implementing it can be different in terms of complexity
and implications. A possible solution is based on the pointwise
selection of weight coefficients wj , as in [48]. However, this
approach is generally based on heuristics and does not assure
the exact compliance with the bounds. For this reason, the setup
of a constrained optimization problem is preferable.

Three alternative types of constraints on the control points pj

have been identified, each one with pros and cons.
1) Polyhedron: For each point qj , it is assumed that

|(s(u�
j )− qj)k| ≤ ρj,k, k = 1, . . . , d (11)

where subscript k denotes the kth component of the vector
(s(u�

j )− qj). Note that for each component, it is possi-
ble to select a different bound ρj,k. By considering (6),
condition (11) be rewritten as

qj − ρj ≤ PT BT (u�
j ) ≤ qj + ρj (12)

where ρj = [ρj,1, . . . , ρj,d]
T . With these linear con-

straints, the optimization problem (10) becomes a con-
vex quadratic programming problem, for which efficient
solutions exist [49].

2) (Euclidean) ball: For each point qj , it must be assured that

‖s(u�
j )− qj‖ ≤ ρj ⇔ ‖PT BT (u�

j )− qj‖ ≤ ρj
(13)

where ρj is a scalar. This is clearly a nonlinear constraint,
but the convexity, and therefore the possibility of finding
a solution of the optimization problem, is ensured in any
case. In addition, only a parameter is sufficient to bound
the distance between each point and the approximating
spline, even if the meaning in the case of trajectories, that
include also the orientation, is questionable. In this case,
multiple constraints, one for the position and one for the
orientation, are preferable.

3) Cylinder: The error between the B-spline trajectory and
the points qj is decomposed by considering the tangent
direction to the motion and the orthogonal plane to this
vector (a similar approach can be found, e.g., in [50]).

Fig. 3. Different types of convex sets, defined in the 3-D space to con-
straints the approximation error of a B-spline with respect to a given point qj .
(a) Polyhedron. (b) Ball. (c) Cylinder.

Obviously, this type of constraint can be applied only to
position trajectories in the 3-D space. Let us assume that

tj =
qj+1 − qj

‖qj+1 − qj‖
and that nj is the vector of maximum norm (properly
normalized) among tj × i, tj × j, and tj × k being i, j,
and k the unit vectors defining the base frame of the ap-
plication, and where × denotes the cross product between
vectors. Finally, assume that bj = tj × nj . With these
three vectors, it is possible to define the rotation matrix
Rj = [tj nj bj ]

T that brings the approximation error in
a frame, whose x-axis is aligned with the tangent direction
while y- and z-axis are within the plane orthogonal to this
direction, i.e.,

ej = Rj(P
T BT (u�

j )− qj)

and then it is possible to impose that

−εj ≤ ej,1 ≤ εj (14)

and √
e2j,2 + e2j,3 ≤ δj (15)

with ej = [ej,1 ej,2 ej,3]
T . The definition of this feasible

set is much more complex than balls and polyhedra, but
the convexity is still preserved. Moreover, even if limited
to the 3-D position trajectory, its meaning is very clear.

In Fig. 3 , a pictorial representation of the three different sets
for a given point qj is reported. Note that the constraints only
affect the geometry of the curve, while the way in which the
B-spline is tracked and the related quantities, such as velocity,
acceleration, etc., are not taken into account. The choice of
a particular type of constraint has a strong influence on the
computation time required to solve the constrained nonlinear
optimization problem. In particular, it is possible to prove that
ball- and polyhedron-type constraints lead to similar computa-
tion times, while the more complex constraint based on cylinders
leads to a duration that is approximately double. Moreover, the
different types of constraints affect differently the approximation
error and the smoothness of the final trajectory, but the variation
is rather marginal, and from this point of view, the three methods
are almost equivalent.
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Fig. 4. Pick-and-place task with collision avoidance: approximated B-splines
obtained for different values of N (black lines) and input trajectory (red line).

C. Constrained Trajectory Optimization

Because of the convexity of the objective function and of
the admissible sets, the solution of (10) subject to (12), (13),
or (14) and (15) can be efficiently found with state-of-the-
art numerically optimization methods. However, since usually
n � N , and accordingly the number of constraints (n− 1) is
much larger than the number of free parameters pj , it may
happen that the intersection among all the admissible sets,
which is still a convex set, does not contain any solution.
For this reason, a two-stage optimization problem has been
devised.

In the first step, it is checked whether a number N + 1 of
control points guarantees that the intersection of all the convex
sets deriving by the constraints is not empty. This can be done
by computing the (unconstrained) approximating B-spline, by
means of (23) with λ = 0, and then by verifying if all the
constraints are met. In this case, the constrained optimization
problem can be finally solved (in the second step of the proce-
dure). If the approximating B-spline is not compliant with all
the constraints, then it is necessary to increase N . To illustrate
this procedure, we consider a simple pick-and-place task that
also requires obstacle avoidance, which is shown in Fig. 4.
It is assumed that obstacles remain stationary, and an initial
trajectory (red line) is given together with some bounds that
define a feasible space where the optimized trajectory can lie.
The approximating B-spline trajectories for increasing values of
N (varying from 3 to 14) are shown in the figure with back lines,
whose thickness is proportional to N (thin lines correspond to
B-spline with few control points and vice versa). It is possible to
notice that asN grows, B-spline curves become closer and closer
to the original trajectory (which is composed of 145 points). This
is confirmed by trend of the cumulative approximating error

J1 =
n∑

j=0

‖s(u�
j )− qj‖2 (16)

Fig. 5. Cumulative approximating error J1 =
∑n

j=0
‖s(u�

j )− qj‖2 pro-
duced by B-spline curves with respect to the original trajectory reported in
Fig. 4, as a function of the number of control points N + 1, ranging from 3 to
145, i.e., the number of samples of the initial trajectory.

as a function of the number N + 1 of control points defining
the B-spline, which is shown in Fig. 5. It can be noticed that
this error decreases as N grows, even if the trend is not strictly
monotonic, and many local minima are present. As a matter of
fact, the error tends to zero as the number of control pointsN + 1
approaches the number of given via points n+ 1, since in this
case an exact interpolation is obtained. Note that not only the
global error but also the local error at a specific via point tends to
zero, as N goes to n. On the other hand, as remarked in [51], an
error function such as (16) is not convex with respect to the knot
location. By considering a fixed knot spacing, the variation of
the number of knots also modifies their position and, therefore,
causes the local minima observed in Fig. 5.

In any case, by progressively increasing N , the bounds on the
error are certainly met. Therefore, when the initial value of N
does not assure any feasible solution, or if parameter N is not
an input of the problem but can be freely chosen, it is possible
to find the value that minimizes the dimension of the trajectory
optimization problem by starting from the given value, or from
a small value (e.g., 3), of N and then iteratively increasing this
value until the approximating trajectory is compliant with all
the constraints. Since the analytic solution for determining the
approximating B-spline is available (see (23) in Appendix B),
this procedure can be performed very efficiently and in a very
small amount of time.

Once that the value ofN has been determined, the constrained
optimization problem based on the cost function (10) with λ 	= 0
can be finally solved by using off-the-shelf convex optimization
solvers and exploiting the solution found in the first step as an
initial guess. Note that the value of N found is only a sufficient
condition for the existence of the solution, but, providing a
feasible solution used as the initial condition for the constrained
optimization, it allows us to speed up the numerical computation
process. Algorithm 1 summarizes the overall procedure.

By considering the pick-and-place example previously men-
tioned, the minimum value of N that guarantees the compliance
of the approximating B-spline trajectory with all the constraints

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



8 IEEE TRANSACTIONS ON ROBOTICS

Algorithm 1. Algorithms for the Determination of the Con-
strained Smoothing B-Spline.

Fig. 6. Pick-and-place task with collision avoidance: geometric path of input
trajectory qj , constrained smoothing B-spline sc, approximated B-spline sa,
and (unconstrained) smoothing B-spline ss.

is 14. The resulting trajectory, obtained with λ = 0.01, is shown
in Fig. 6. In the same figure, the constrained B-spline is compared
with the approximating B-spline that satisfies all the constraints
(initial solution) and with the unconstrained smoothing B-spline
defined with the same value of λ. It is clear that the unconstrained
trajectory is the smoothest one, but it collides with the obstacles
being not included in the feasible region. On the other hand,
the approximating B-spline is very close to the input trajectory
but reproduces also unwanted phenomena, such as involuntary
movements that may be superimposed to the ideal trajectory. The
constrained smoothing B-spline represents the optimal tradeoff
as confirmed also by Fig. 7, where the first and second deriva-
tives with respect to u (which are proportional to velocity and
acceleration, respectively, once the motion law u = u(t) has
been defined) are shown. In particular, the constrained B-spline
curve exhibits intermediate values between the unconstrained
smoothing B-spline and the approximating B-spline, with a
substantial reduction with respect to the input trajectory. Finally,
it is worth noticing that the devised optimization procedure only
affects the geometry of the trajectory, while the way in which
the trajectory is tracked, i.e., the motion law, is not taken into

Fig. 7. Pick-and-place task with collision avoidance: norm of the first and
second derivatives of input trajectory qj , constrained smoothing B-spline sc,
approximated B-spline sa, and (unconstrained) smoothing B-spline ss.

Fig. 8. sEMG-enhanced robot programming setup of the present work.

account, because many different approaches can be adopted
according to the needs. For instance, it is possible to reproduce
the input trajectory with the same timing or follow the geometric
path at a constant velocity or in minimum time.

IV. EXPERIMENTAL SETUP

To validate the proposed approach, the experimental setup
shown in Fig. 8 has been used. It is composed of a robot
manipulator equipped with a force/torque sensor and an sEMG
sensing device with vibrotactile feedback. In the following, a
detailed description of the hardware is given.

A. sEMG Sensing

For the sensing of the sEMG activity, eight sEMG channels
are acquired from the forearm of the operator. Specifically, a
gForcePro wearable armband (by OYMotion) has been used
for signal acquisition. Since the predominant muscles produc-
ing flexion and extension actions in the hand are the Flexor
Digitorum Superficialis and Extensor Digitorum Communis, the
armband has been placed on the forearm in the proximity of such
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muscles—that is, close to the proximal part of the forearm [45].
The sEMG provided by the armband is a raw signal at the
sampling frequency of 1 kHz, sent to a nearby PC through
a Bluetooth interface. After the acquisition, each raw sEMG
channel is processed by a chain [41] composed of a 50-Hz notch
filter for powerline interference cancellation, a 20-Hz high-pass
filter for baseline noise reduction, and the root-mean-square filter
computed over 200-ms running window.

B. Vibrotactile Feedback

The operator has been equipped with a wearable bracelet,
based on a Grove vibration motor by Seeed Technology Co.,
that produces an adjustable vibrational skin stimulation. The
intensity of such stimulation can be modulated by controlling the
motor vibration magnitude, using the electronic control board
Seeeduino V4.2, in a range of integer values from 100 to 255. In
order to provide the operator with a vibrational feedback indi-
cating the hand stiffness level in real time, σk has been mapped
in the input range of the bracelet. Note that this technological
element is not strictly necessary for the proposed application,
but is an aid that allows the user to better perceive the applied
level of stiffness.

C. Robotic Manipulator

The experiments have been carried out by using the collabora-
tive robot Panda (by Franka Emika GmbH, Munich, Germany)
equipped with a 3-D printed handle and a six-axis force sensor
(ATI Industrial Automation, Apex, NC, USA), placed between
the handle and the robot flange. A kinesthetic teaching interface
between the operator and the Panda robot has been implemented
by imposing a partial compensation of the robot dynamics plus a
standard proportional–derivative (PD) control along the motion
directions that are constrained during the PbD tasks [33]. By
using this mechanism, in the first experiment, the orientation
has been kept constant. Let us consider the dynamic model of
the robot manipulator, expressed in the operational space [52]

Λ(θ)ẍ+ Γ(θ, θ̇)ẋ+ η(θ) = F c + F h

where θ ∈ Rn is the vector of the joint coordinates, x =
(pT ,ϕT )T is the vector describing the end-effector position
and orientation (ϕ is a minimal representation of the orientation,
like, e.g., Euler angles), Λ(θ) = (JM−1(q)JT )−1 ∈ R6×6 is
the workspace inertia matrix, Γ(θ, θ̇) = J−TC(θ, θ̇)J−1 −
Λ(θ)J̇J−1, andη(θ) = J−Tg(θ) are the wrenches of centrifu-
gal and gravitational effects, respectively; M(θ), C(θ, θ̇), and
g(θ) are the corresponding quantities defined in the joint space.
F c = J−T τ c is the end-effector wrench corresponding to the
control (joints) torques τ c and F h is the wrench applied by the
user to end-effector. The control action

F c = Γ̂(θ, θ̇)ẋ+ η̂(θ) + F PD + αF̂ h (17)

is characterized by three terms:
1) a compensation of the Coriolis and gravity terms based on

a proper estimation of the functions Γ(θ, θ̇) and η(θ);

2) a PD controller

F PD = Kp(xref − x) +Kd(ẋref − ẋ)

whereKp andKd are diagonal matrices with nonnegative
elements; in particular, the gains of Kp equal to zero
correspond to the directions that are directly commanded
by the user (in this case, the corresponding components of
xref and ẋref are null);

3) a feedforward term proportional to the wrench F̂ h exerted
by the user and measured by the six-axis force sensor;
a low-pass filter is applied for rejecting high-frequency
vibrations elasticity induced by robot’s kinematic and
actuation chains.

By assuming F̂ h ≈ F h, the dynamics of the robot equipped
with this control along the workspace directions commanded by
the user becomes

Λ(θ)

1 + α
ẍ+

Kd

1 + α
ẋ+

ρ(θ, θ̇)

1 + α
= F h

where ρ(θ, θ̇) takes into account the mismatch between the
actual Coriolis and gravity terms and the corresponding esti-
mations and also the unmodeled dynamics like, e.g., frictional
forces. Note that, even if the used controller does not modify the
workspace inertia of the robot, the control action based on the
external force measurement has the effect of scaling the inertia
seen by the user acting on the end-effector, especially for a large
value of gainα. Moreover, this term contributes to mitigating the
consequences of the undesired dynamics represented byρ(θ, θ̇),
making the programming task by kinesthetic teaching easier.

V. EXPERIMENTAL RESULTS

In order to demonstrate the effectiveness of the proposed
approach, in terms of both the intuitiveness of the programming
method for the operator and the features of the final trajectory for
the robotic application, various experiments have been carried
out under different conditions. In particular, since the human
operator plays a key role in the programming task, ten partic-
ipants have been involved in the experiments to evaluate the
proposed approach enhanced with sEMG measurements (age:
30 ± 5) In the following, the subjects are denoted as S1, S2, . . .,
S10. The experiment has been conducted in accordance with the
Declaration of Helsinki. An informed consent form has been
signed by all the subjects, in which a detailed explanation of the
experimental protocol has been provided.

A. Experimental Session 1: Obstacle Course With Welding
Points

In this first experimental session, the subjects have been asked
to lead the robot along a specific path characterized by narrow
passages. In particular, as shown in Fig. 9, the robot must
initially track a winding path, and then, the end-effector must
be placed in specific points avoiding all the obstacles located in
the workspace. As shown in Fig. 9(b), the path has been marked
with different colors, according to a code that denotes the ideal
level of stiffness/precision that the subjects should apply while
moving the robot end-effector: maximum level (namely “highest
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Fig. 9. (a) Setup used in the first experiment and (b) task that the user is
requested to demonstrate.

accuracy level”) in the red-coded zones, medium level (namely
“intermediate accuracy level”) in the yellow-coded zones, and
minimum level in the remaining zones (namely “minimum
accuracy level”). First, the calibration has been carried out, and
thereafter, the subjects have briefly familiarized themselves with
the system and started the experimental task. Note that in this
experiment, the orientation of the end-effector has been kept
constant and the users only act on the robot position.

In Fig. 10, the procedure for the robot motion definition is
exemplified, by considering the PbD task performed by one of
the subjects (S1) considered in the experiment.

1) The user teaches the robot by moving its end-effector
along the prescribed path and modulates the stiffness of its
hand at the same time, in order to specify the required ac-
curacy. The color of the points along the trajectory denotes
the stiffness level, ranging from 0 to 1. A simple inspection
of Fig. 10(a) shows that the stiffness is augmented where
a small variance with respect to the imposed trajectory is
necessary, while lower values are applied where the final
trajectory can differ much more from the input motion.

2) The stiffness information is translated into an admissible
region about the trajectory applied by the human operator.
In particular, the bound on the variation is deduced by
exploiting (3), where the minimum and maximum levels
are selected on the basis of the specific application (in the
experiment, ρmin = 0.005 m and ρmax = 0.025 m).

3) The smoothing B-spline is finally computed by assuming
λ = 10−5 and cylindrical constraints.

By comparing the initial motion in Fig. 10(a) and the final
trajectory in Fig. 10(b), the positive effect of the proposed ap-
proach is evident: the segments that are approximatively straight
are further straightened and sharp corners are made smoother;
in addition, unwanted fast motions of the user are canceled.
These observations are confirmed by the motion profiles along
the Cartesian axes reported in Fig. 11.

In this figure, the position velocity and acceleration of the ini-
tial trajectory and of the optimal B-spline are compared. Both the
motion profiles are a function of the variable u ∈ [0, 1], obtained
by normalizing the time of the demonstration by its duration. The
use of the same parameterization also for the B-spline curve
allows reproducing the original motion, including, for instance,

Fig. 10. Sequence of the operations for the definition of the trajectory in the
first experimental test. (a) Cartesian path and stiffness level imposed by the
human operator. (b) Feasible region about the input trajectory. (c) Constrained
smoothing B-spline.

possible stops of the end-effector at some locations. The deriva-
tives of the demonstrated trajectory are obtained via numerical
differentiation (this explains the noise superimposed to the first
and above all to the second derivative), while the derivatives of
the final trajectory are available in a closed form. For a specific
insight into the optimized trajectory’s smoothness, velocity, and
acceleration characteristics, considering both single-subject and
aggregated data, see Section VI-B. In order to evaluate also
the intuitiveness of the proposed approach, the capability of
the users of modulating the hand stiffness while operating the
robot has been tested. As illustrated in Fig. 12, showing the
results of the stiffness modulation for a single subject, the user is
able to adequately modulate the stiffness in accordance with the
requested levels during the kinesthetic teaching, that is to match
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Fig. 11. Motion profiles (position, velocity, and acceleration) along the Carte-
sian axes obtained in the first experimental test. (a) Trajectory performed by the
robot under kinesthetic teaching. (b) Optimal trajectory found with the proposed
approach.

Fig. 12. Stiffness modulation for the subject S1 during the obstacle course
with welding points session.

with good approximation the maximum, medium, and lower
levels requested in the different zones of experimental test bed.
Similar performances are achieved by all the subjects involved
in the experiment, and further analyses of the aggregated data on
the hand stiffness modulation capabilities are reported in Section
VI-A.

Finally, the experiment ends with the position-controlled
robot executing the trajectories taught by the subjects and op-
timized by the constrained smoothing B-spline. The effect of
the optimization process is very clear, if the tracking errors
θ̃i in the joint space and the corresponding control torques
τi, i = 1, . . . , 7, are considered. From the profiles reported in
Fig. 13, a generalized reduction of both the tracking error and
the related control action for all the joints, due to the improved
smoothness of the optimized trajectory, is evident. A compari-
son between the peak absolute values (PAVs) of the trajectory
demonstrated by the subject S1 and the related optimal path,
reported in Table I, shows that the tracking errors are reduced
by [−57.34%,−86.30%], while the commanded torques by
[−7.69%,−72.11%].

B. Experimental Session 2: Tilted Welding Points

In this second experiment, based again on the mock-up of a
welding process, the users are asked to place the end-effector in

Fig. 13. Reference joint trajectories θ�i , joint tracking errors θ̃i = θ�i − θi,
where θi is the actual robot position, and control torques τi, i = 1, . . . , 7,
corresponding to the trajectory demonstrated by subject S1 (a) and to the related
optimal constrained smoothing B-spline (b). The actual trajectory duration is
57.45 s.

TABLE I
PAV OF JOINT TRACKING ERRORS θ̃i AND CONTROL TORQUES τi,

i = 1, . . . , 7, FOR THE ORIGINAL AND THE OPTIMIZED TRAJECTORY OBTAINED

IN EXPERIMENT #1 FOR SUBJECT S1

Fig. 14. (a) Setup used in the second experiment. (b) Desired task.

specific locations according to a task that, besides a specific mo-
tion, also requires a change in the orientation. More specifically,
as can be observed in Fig. 14, from the starting point, the robot
end-effector has to be tilted while moved down-left in order to
be inserted in the first required location and then carried back to
the initial position to repeat the same task on the left side with
opposite inclination. The operator must impose a precise robot
configuration on the two trajectory ends, while during the rest
of the motion, the variation with respect to the “ideal” trajectory
can be large. For this reason, the user must impose a high
level of stiffness in the neighborhood of the mock-up welding
points, while maintaining a low level elsewhere. This behavior
can be easily achieved, as highlighted in Fig. 15, showing the
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Fig. 15. Stiffness modulation for subject S1 during the tilted welding points
session.

Fig. 16. Second experiment. (a) Position/orientation trajectory taught by the
user (the color of the points denotes the stiffness level in [0, 1]). (b) Optimized
smoothing B-spline. The arrows with RGB colors are, respectively, the x, y, and
z axes of the local reference frame.

stiffness modulation for a single subject during the test. The same
behavior is confirmed for all the subjects of the experiment, and
we refer to Section VI-A for a dedicated analysis of the related
aggregated results.

Since in this application both position and orientation are
involved, the optimization problem for defining the robot tra-
jectory has been split into two parts.

1) For the position, the same bounds considered in the pre-
vious test have been assumed (i.e., ρmin = 0.005 m and
ρmax = 0.025 m), and the optimization problem has been
based on cylindrical constraints.

2) The optimized orientation, parameterized with roll–pitch–
yaw angles, has been obtained by considering smoothing
B-splines with polyhedric constraints, where the bounds ρ
for all the angles have been obtained from the normalized
stiffness by setting ρmin = 0.1◦ and ρmax = 1◦. There-
fore, ρ ∈ [0.1◦, 1◦] = [0.0017, 0.0175] rad.

Fig. 17. Roll–pitch–yaw angles defining the orientation of the robot end-
effector as a function of the independent variable u ∈ [0, 1].

In Fig. 16, the trajectory trained by subject S1 and the final tra-
jectory are compared, and the benefits of the proposed method in
regularizing the trajectory, eliminating unwanted motions of the
operator within the limits imposed by the application, are clear.
The fact that the two-way trajectories are almost coincident is
worth noting. To better highlight the advantages of the procedure
not only for the position but also for the orientation, in Fig. 17,
the roll, pitch, and yaw angles of the original motion (with the
given bounds) and of the final one are reported as a function of
the normalized variable u, showing that, where allowed by the
application, this approach tends to eliminate all the oscillations
that affect the considered signals.

VI. DISCUSSION

In the following, observations related to the experimental
findings reported in the previous section are discussed. By inter-
preting the obtained results with respect to the experimental task
carried out, hardware/software choices, and future perspectives,
specific aspects are analyzed and contextualized for a wider
insight into the study of the proposed framework.

A. Aggregated Analysis of the Hand Stiffness Modulation

In order to analyze the aggregated results in relation to the
hand stiffness modulation within Experimental Session 1 (as
described in Section V-A), the data of all subjects have been
grouped on the basis of the requested reference level; see the
box plots reported in Fig. 18. From the aggregated results, it
can be seen that the different stiffness levels are matched by all
the subjects, with acceptable deviations (a maximum error of
0.22 and 0.096 is reported for the higher and lower reference
bands) and, importantly, reporting for a statistically significant
difference among all the requested reference levels. For the
statistical analysis, we have set the statistical significance to
p < 0.001 and conducted a one-way repeated measures analysis
of variance (ANOVA) [53]. The Shapiro–Wilk test for normality
and Mauchly’s test for sphericity has been checked, concluding
that the ANOVA assumptions have been not violated [53], [54].
The ANOVA results reveal a statistically significant difference
among all levels, F (2, 6) = 63.15. The ability of the subjects
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Fig. 18. Box plot for the obstacle course session. Symbol “*” indicates
statistical significance.

Fig. 19. Box plot for the tilted welding points session. Symbol “*” indicates
statistical significance.

in modulating the stiffness during the robot teaching task, as
requested by the instructed levels, is therefore supported by
statistical evidence.

The capability of the subjects to correctly modulate the hand
stiffness during the programming task is also confirmed in
relation to Experimental Session 2 (as described in Section
V-A). The aggregated data are reported in the box plots of
Fig. 19, which group the results on the basis of the requested
lower and higher reference levels. Similarly to Experimental
Session 1, a statistical analysis based on ANOVA has been
conducted, setting the statistical significance to p < 0.001. The
Shapiro–Wilk test and Mauchly’s test report that the ANOVA
assumptions are not violated. The ANOVA reveals a statistically
significant difference between the requested stiffness modula-
tion levels, F (1, 9) = 24.62, and p < 0.001. All the subjects
are, therefore, statistically able to successfully modulate the
stiffness (a maximum error of 0.3 is reported for the higher
reference bands) according to requested reference levels in the
presence of different orientations of the end-effector during the
sEMG-enhanced kinesthetic teaching task.

According to the analyzed aggregated results, the proposed
approach is, therefore, capable to provide the user with an

TABLE II
PEAK AND MEAN VALUES OF THE NORM OF VELOCITY AND ACCELERATION

DURING EXPERIMENT #1 FOR SUBJECT S1

additional programming input channel, which could be vol-
untarily modulated to program a specific parameter of a con-
strained B-spline optimization of the trajectory. Particularly, this
highlights a clear improvement with respect to state-of-the-art
works in which the sEMG information is exploited to observe a
biomechanical behavior of the user, as in teleimpedance-based
approaches. Indeed, in the proposed approach, the program-
ming modality estimated from sEMG sensors is not “indirectly”
emerging from human motions; instead, it is arbitrarily exploited
as a programming input in accordance with the presence of
a real-time vibrotactile feedback informing the user about the
current value of the modulated hand stiffness level. Note that the
presence of a real-time “biofeedback” represents a novelty with
respect to state-of-the-art approaches. Another aspect of novelty
also regards the usage of sEMG to estimate the level of stiffness
of the human hand instead of the stiffness at the arm endpoint:
this allowed us to provide the users with a programming input
that could be intuitively and voluntarily modulated even during
the performance of a robot kinesthetic teaching with both arms.

B. Smoothness Characteristics of the Optimized Trajectory

With reference to the results reported in Section V-A for Ex-
perimental Session 1, in Table II, the peak and mean values of the
norm of velocity and acceleration of the trajectory demonstrated
by subject S1 and the corresponding constrained smoothing B-
spline are reported. By comparing the numerical values related
to S1, it comes out that peak values of both velocity and ac-
celeration are considerably lowered by the optimization process
(−63.20% and −92.98%, respectively). The average velocity is
reduced by −19.79%. In this case, since the duration of both
the trajectory (original and optimized) is the same, this decrease
can be explained by a reduction of the total traveled distance:
in fact, the procedure that makes the trajectory smoother tends
to reduce its length, by avoiding unwanted oscillations. Similar
conclusions can be drawn by observing the data aggregated for
all the subjects in Fig. 20. The peak and mean values of velocity
and acceleration are reduced by similar amounts. In addition,
it is possible to observe that the optimization process based on
constrained smoothing B-splines causes a general reduction of
the width of the values’ distribution about the median element.
This means that the influence of the single subject on (these
features of) the final trajectory tends to become negligible.

In addition, the capability of the proposed procedure to in-
crease the smoothness of the original trajectory at the price of
larger approximation errors is confirmed by an analysis of the
cost function (5), or equivalently of (9), and in particular of
the two contributions J1 and J2. Term J1 takes into account
the overall amount of the squared errors of the optimal curve
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Fig. 20. (a)–(d) Box plots with peak and mean values of the norm of velocity
and acceleration for all the subjects involved in experiment #1.

TABLE III
NUMERICAL VALUES OF THE TERMS J1 :=

∑n

j=0
wj‖s(u�

j )− qj‖2 AND

J2 :=
∫ umax

umin
‖ d2s(τ)

dτ2 ‖2dτ COMPOSING THE COST FUNCTION FOR THE

DEFINITION OF SMOOTHING B-SPLINES OBTAINED BY OPTIMIZING THE

TRAJECTORY DEMONSTRATED BY SUBJECT S1 IN EXPERIMENT #1 WITH

DIFFERENT PARAMETERS’ VALUES

with respect to the original trajectory, while J2 is a measure
of the smoothness of the optimal curve based on the integral
of the acceleration. The data, reported in Table III and related
to the experiment with subject S1, reveal that the constrained
smoothing B-spline has an intermediate behavior between a
simple approximating spline, which takes into account only
the approximation error by assuming λ = 0 and accordingly
minimizes J1, and a standard smoothing B-spline without any
additional constraint. Interestingly enough, by reducing the size
of the bound ρ with respect to the initial value denoted by ρ�, the
approximation error J1 decreases, while the term J2 becomes
larger. This means that, if the admissible region becomes smaller,
the optimal trajectory tends toward an approximating curve. On
the other hand, by relaxing the constraint, e.g., by considering
ρ = 2ρ�, the approximation error grows, but the smoothness
of the curve is improved, being J2 smaller. In this case, the
constrained curve gets closer to an unconstrained smoothing
B-spline. It is possible to conclude that with the introduction
of the constraints in the optimization process, it is possible to
transform a subjective choice of the parameters, i.e., λ, whose
final effect on the overall trajectory cannot be predicted a priori,
into an objective parameter selection, since the constraints (ρmin

TABLE IV
QUALITATIVE EVALUATION OF VIBROTACTILE FEEDBACK

and ρmax) depend on the geometry of the problem, while it is
sufficient to assume λ small enough.

Therefore, the proposed approach allows the operators to
program trajectories that are smoother with respect to the ones
demonstrated by means of kinesthetic teaching only, with also
the advantage of having the possibility to specify spatial pre-
cision constraints. Importantly, at the same time, the resulting
trajectory is completely determined in geometrical terms and,
therefore, applicable by definition to any timing law. This is
a clear advantage with respect, for example, to state-of-the-art
methods for task parameterization, based, e.g., on DMPs, that
require the knowledge of additional motion information, such as
velocity and acceleration, which are typically affected by noise
when computed from position information.

C. Subjective Vibrotactile Feedback Evaluation

In accordance with the architecture described in Section IV,
the subjects performed the experimental sessions described in
the previous section by exploiting a vibrotactile feedback con-
veyed on the upper arm’s skin by a wearable bracelet, with a
range of vibration intensity proportional to the modulated hand
stiffness level. In order to qualitatively evaluate its usage, we
provided the subjects with a questionnaire to subjectively assess
the influence of the vibrotactile feedback during the experimen-
tal session executions. In particular, the questionnaire required
the subjects to rate three statements related to the perceived
ease of use (PE), perceived usefulness (PU), and comfort (C)
in exploiting the vibrotactile feedback, on the basis of a Likert
scale from 1 (entirely disagree) to 7 (entirely agree), as reported
in Table IV. As can be observed by the questionnaire results
reported in the table, all the average scores computed over the
subjects were greater than or equal to 6, showing a qualitative
positive evaluation of the interpretability and usefulness of the
vibrotactile feedback for the voluntary modulation of the hand
stiffness level during the experimental tasks.

D. Hand Stiffness Level and Trajectory Sharpness

Sections V-A and V-B report how the subjects involved in
the experiments were successfully able to modulate their hand
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stiffness, according to the levels instructed by the task protocol
during the physical teaching of end-effector robot trajectories.
However, the characteristics of the trajectories that have been
taught by the subjects with respect to the three different levels
of stiffness (minimum, lower, and higher) are worth analyzing.
In particular, we want to have an insight into the relationship
between the sharpness of the human motion/demonstrated tra-
jectories and different modulations of the stiffness, since this
may have an impact on the actual capability of performing
desired robot teaching as well as on how the robot is perceived
by the user during the physical interaction, and then, we also
want to check the effect obtained by the application of the
constrained B-spline trajectory optimization. To this aim, we
use jerk measures to quantify the level of trajectory sharpness,
since it has been shown that—in a comparison scenario—the
lower the trajectory’s jerk amplitude, the more smooth and
natural the performed motion (minimal jerk of the human
motion [55]). Conversely, higher jerk amplitudes correspond
to motions/trajectories with higher sharpness. Specifically, we
consider the entire sample of jerk values shown by each subject
over the robot teaching tasks. On this basis, we report for the
mean absolute value (MAV) of the trajectory jerk, which is
simply the average value of all the rectified jerk values, and for
the mean higher absolute value (MHAV) of the trajectory jerk,
which is the average value over the rectified jerk values that
are greater than 1.5 times the interquartile range (i.e., the mean
value of the higher outlier values w.r.t. the jerk values distribution
itself) for each subject and grouped according to the different
levels of stiffness modulation during the experiment executions.
According to their definitions, the MAV of the jerk is related to
the average trajectory sharpness, whereas the MHAV is related to
less frequent sharper behaviors that are not appreciable looking
only at the total average jerk. Fig. 21(a) and (b) reports the box
plot of the jerk MAV and MHAV of the demonstrated trajectory
for the subjects, grouped by the different hand stiffness levels
performed during the teaching task. Since the Shapiro–Wilk test
reports that the considered data groups violate the assumption of
normality, the Kruskal–Wallis test was performed, revealing that
both the MAV and MHAV jerk in Fig. 21(a) and (b) were affected
by the level of stiffness, H(2) = 13.65, p < 0.01. Thereafter, a
Tukey test was performed for pairwise comparison, reporting
statistically significant smaller values for both the MAV and
MHAV jerk in the case of the higher stiffness level with respect
to the minimum and lower stiffness levels. We can, therefore,
conclude that during the teaching of trajectory paths with higher
stiffness, the subject performed less sharp trajectories with sta-
tistical evidence. This is reasonably related to the fact that, when
the subjects most stiffened their hand, they were less prone to
execute motions characterized by rapid oscillations and abrupt
variations with respect to the case with lower stiffness levels.
Therefore, higher stiffness may be interpreted as an injection
of higher dumping in the motion generation process of the
user during the teaching phase. Although this aspect did not
affect the correct execution of the tasks, as described in Sections
V-A and V-B, we will conduct future investigations to further
study and characterize the role of this behavior. On the other

Fig. 21. Box plot of the trajectory MAV and MHAV jerk (a),(b) demonstrated
by the subjects and (c),(d) after the B-spline optimization, grouped by the
different hand stiffness levels modulated during the teaching task. Symbol “*”
indicates statistical significance.

hand, looking at Fig. 21(c) and (d), it is possible to observe
the MAV and MHAV jerk after the application of the B-spline
trajectory optimization. As expected, it is appreciable how the
jerk amplitude was tremendously reduced by five to six orders of
magnitude, with no statistically significant difference among the
trajectory sections related to the different levels of stiffness, as
reported by the Kruskal–Wallis test based analysis (H(2) = 0.8,
p = 0.671) performed in an analogous manner as for the data
of Fig. 21(a) and (b). An aspect of particular interest observable
by looking at Fig. 21(c) and (d) is related to the fact that the
B-spline optimization almost completely cancels the presence
of MHAV jerk values for the case of the lower stiffness level,
since, in this case, straight paths were taught by the user to the
robot end-effector trajectory (see Fig. 9). This result has been
allowed by the possibility of selecting smoothing parameters α
particularly small because the constrained optimization problem
guarantees, in any case, the compliance with the limits on
the maximum deviation with respect to the original trajectory,
without the need for a difficult tradeoff between smoothness of
the curve and interpolation error.

E. Future Work and Perspectives

The results obtained so far are based on two pillars, which
represent also the two main novelties of the article:

1) smoothing B-splines enhanced with a bound on the max-
imum deviation with respect to the demonstrated trajec-
tory;
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2) sEMG signals related to the modulation of the hand stiff-
ness of the operator for the continuous specification of this
bound.

The former contribution has been completely developed with
the proposed two-step optimization procedure that guarantees
the definition of a minimum complexity trajectory, i.e., charac-
terized by the minimum number of parameters (in the specific
case, the control points of the B-spline function) compliant with
the bound on the maximum deviation from the demonstrated
path. The latter aspect will be the subject of further research. In
particular, the use of sEMG signals as an independent commu-
nication channel between the user and the robotic system will
be addressed to improve PbD tasks. Regarding the proposed
application, the mapping between the muscle activation and the
desired level of precision will be improved, by studying more in
depth the role of vibrotactile feedback. In addition, novel PbD
methods, based on multimodal interaction, namely force and
stiffness, between the user and the robot will be developed.

1) Mapping Between Muscles Activation and Desired Pre-
cision: Future studies will include the consideration of differ-
ent types of mapping relations between muscle activation and
desired precision constraints that the user wants to instruct
to the system. In particular, since from biomechanics, it is
known that the muscle activation characteristics are nonlin-
ear [38], a very interesting perspective regards the investigation
of a nonlinear mapping also between muscle activation and
precision-level modulation in terms of intuitiveness for the users.
Furthermore, since in the present work we have implemented a
linear mapping that actually enabled the users to modulate the
hand stiffness level in accordance with the levels requested by
the tasks/experimenters, we can observe how the presence of
the vibrotactile feedback played an important role in allowing
the users “compensating” for the nonlinear muscle activation
characteristics by means of their cognitive control exploiting
the provided vibrotactile feedback. We are, therefore, planning
to carry out a future dedicated study in order to determine the
most intuitive mapping relation between muscle activation and
precision level modulation. Such future investigation should
include properly designed experimental protocols in which a
group of subjects will test different combinations of: 1) linear
mappings; 2) nonlinear mappings; and 3) presence/absence of
vibrotactile feedback, during kinesthetic teaching.

2) Vibrotactile Feedback Influence: Future experiments will
also be considered to investigate the influence of the vibrotactile
feedback on the modulation of the hand stiffness level and
related precision constraint of the trajectory. More specifically,
we plan to carry out tests of the capability of the users in
modulating the hand stiffness level/inferred trajectory precision
during kinesthetic teaching tasks with and without the presence
of vibrotactile feedback. In addition, we will also further analyze
the influence of the vibrotactile feedback by comparing vibration
profiles different from the one used in the present work (i.e.,
modulation of the intensity of a continuous vibration), such as
the modulation of the frequency of intermittent vibrations, and
more structured profiles combining asynchronous “vibrations
bursts” when certain meaningful values of the hand stiffness
level are matched by the users. Finally, we also plan to test

different body locations for the placement of the vibrotactile
device, such as in the proximity of the wrist or ankle.

3) Novel PbD Methods Based on Stiffness Modulation: Stiff-
ness modulation can be exploited not only for specifying the
desired precision of the trajectory to be planned, but, being an
additional input channel, it can also be used for other different
forms of interaction between the robot and the user. Future
research will focus on the possibility for the human to physically
interact with the (already) planned trajectory and locally reshape
it according to the needs by modifying the stiffness level of the
hand.

VII. CONCLUSION

The proposed multimodal teaching approach, based on
kinesthetic interaction and information extracted from forearm
sEMG, can be effectively used to enhance robot PbD procedures.
The estimation of the desired accuracy level from the hand
stiffness of the user that guides the robot along the desired path
allows obtaining a smooth motion trajectory with a one-shot
procedure that combines intuitiveness for the user, due to the
natural tendency of humans to modulate their stiffness according
to the requested precision, and optimality of the trajectory in
terms of minimum curvature/acceleration within the bounds
imposed by the tasks. Based on a single demonstration, this
method leads to a significant reduction of the time and effort
required to program robotic tasks, with an important impact
on industrial applications, at the price of using a (low-cost)
wearable device for recording sEMG signals.

APPENDIX A
B-SPLINE DEFINITION AND MAIN PROPERTIES

A B-spline of degree p is a parametric curve s :
[umin, umax] → Rd defined as convex combinations of control
points pj ∈ Rd weighted by B-spline basis functions1 of degree
p, Bp

j (u)

s(u) =

N∑
j=0

pjB
p
j (u), umin ≤ u ≤ umax.

Letu = [u0, . . . , um] be a vector of real numbers (called knots),
with uj ≤ uj+1. The jth B-spline basis function of degree p is
defined, according to the Cox–de Boor recursive formula [56],
as

Bp
j (u) =

u− uj

uj+p − uj
Bp−1

j (u) +
uj+p+1 − u

uj+p+1 − uj+1
Bp−1

j+1(u)

(18)
with

B0
j (u) =

{
1, if uj ≤ u < uj+1

0, otherwise
.

Note that Bp
j (u) ≥ 0 ∀u, and, in particular, Bp

j (u) = 0 every-
where except in the interval [uj , uj+p+1). The number of control
points, N + 1, the number of the knot, m+ 1, and the degree
of the B-spline are related by m = N + p+ 1.

1The basis functions that appear in the definition of a B-spline are usually
called basis B-splines.
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Since the focus of this article is on the definition of the geo-
metric path that the robot must track to accomplish a given task,
the knots, that implicitly determine how this path is covered, are
considered with a uniform distribution, i.e.,

u = [umin, . . . , umin︸ ︷︷ ︸
p+1

, . . . , uj , . . . , umax, . . . , umax︸ ︷︷ ︸
p+1

]

where the internal knots uj are computed according to

uj = umin + j
umax − umin

N − p+ 1
, j = 1, . . . , N − p.

Therefore, fixing the degree p of the B-spline (in robotics ap-
plications, cubic B-splines, i.e., p = 3, are usually considered
because of the continuity of velocities and accelerations) and
the support [umin, umax] where the curve is defined (typically
= [0, 1], but other choices are also possible, the B-spline curve
is completely defined by the sequence of control points pj ,
j = 0, . . . , N .

APPENDIX B
SMOOTHING B-SPLINE DERIVATION

Smoothing B-splines are standard B-spline functions s(u)
whose control points pj are determined by minimizing the cost
function

J :=

n∑
j=0

wj‖s(u�
j )− qj‖2 + λ

∫ umax

umin

∥∥∥∥d2s(τ)dτ2

∥∥∥∥2 dτ (19)

where λ ≥ 0 is a free parameter, and which, therefore, rep-
resent a tradeoff between the (squared) approximation error
with respect to the given via points qj , j = 0, . . . , n, and the
smoothness of the curve, which is measured by taking into
account its curvature/second derivative. Generally, the number
N + 1 of control points defining the spline is equal to the
numbern+ 1 of data points to be approximated. However, when
the number of data points is very large, it may be convenient
for computational reasons to choose n > N and, in particular,
n � N . By recalling that points qj , j = 0, . . . , n, are obtained
by sampling the demonstrated trajectory with a constant period
Ts, one can assume a fixed ratio betweenn andN , by considering
a new control point every m via points. In this case, the values of
u, at which the approximation of points qj occurs, are obtained
by normalizing the actual sampling instant jTs with respect to
the total duration nTs of the trajectory, i.e.,

u�
j =

j

n
, j = 0, . . . , n. (20)

By exploiting (6) and the relationship between the derivatives
of a B-spline and its control points (for more details, see [26]),

the cost function (19) can be written in a matrix form as

J = J1 + λ J2 with

J1 = tr
(
(Q̂−BP)TW(Q̂−BP)

)
J2 = tr

(
(CP+ P̂)TA(CP+ P̂)

)
(21)

where tr(·) denotes the trace of a matrix, W = diag(wj) > 0,
j = 0, . . . n, is the weight matrix, and P = [p1, . . . ,pN−1]

T is
the matrix with the internal control points2 to be determined.
Note that the first and the last via points are supposed to be
perfectly interpolated, i.e.,

s(umin) = q0 and s(umax) = qn

and, accordingly,

p0 = q0 and pN = qn.

The analytic expression of the other matrices appearing in
the cost function (19) is reported below. The matrix B ∈
R(n−1)×(N−1) is built up with the vector of the basis functions
at “time instants” u�

j , j = 1, . . . , n− 1:

B =

⎡
⎢⎢⎢⎣

Bp
1(u

�
1) Bp

2(u
�
1) . . . Bp

N−1(u
�
1)

Bp
1(u

�
2) Bp

2(u
�
2) . . . Bp

N−1(u
�
2)

...
...

...
Bp

1(u
�
n−1) Bp

2(u
�
n−1) . . . Bp

N−1(u
�
n−1)

⎤
⎥⎥⎥⎦ .

For cubic B-spline (p = 3), the expressions of matrices A ∈
R(N−1)×(N−1) and C ∈ R(N−1)×(N−1) are unnumbered equa-
tion shown at the bottom of this page.

and C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c0,2 c0,3 0 · · · 0

c1,1 c1,2 c1,3 0
...

0
. . . 0

... 0 cN−3,1 cN−3,2 cN−3,3

0 · · · 0 cN−2,1 cN−2,2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cj,1 =
6

uj+1,j−1 uj+1,j−1

cj,2 = − 6

uj+1,j−1

(
1

uj+1,j−1
+

1

uj+2,j−1

)
cj,3 =

6

uj+1,j−1 uj+2,j−1

2For the sake of simplicity, we use the same name of the matrix containing
all the control points, which has been defined in (8). Note that the difference
between the two matrices only consists of the first and last control points, which
are already known.

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

2u1,0 u1,0 0 · · · 0

u1,0 2(u1,0 + u2,1) u2,1 0
...

...
. . . 0

0 uN−2,N−3 2(uN−2,N−3 + uN−1,N−2) uN−1,N−2

0 · · · 0 uN−1,N−2 2uN−1,N−2

⎤
⎥⎥⎥⎥⎥⎥⎦
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and ui,j = ui − uj with

uj =

⎧⎪⎨
⎪⎩
umin, if j < 0

umin + j
umax − umin

N − 2
, if j = 0, . . . , N − 2

umax, if j > N − 2

.

The vector Q̂ is composed of a (slightly) modified version of
the recorded input trajectory, i.e.,

Q̂ = [q̂1, . . . , q̂n−1]
T

where

q̂j = qj −Bp
0(u

�
j )q0 −Bp

n(u
�
j )qn

withqj , j = 0, . . . n, being the samples of the original trajectory,
and finally

P̂ = [c0,2q0, 0, . . . , 0,︸ ︷︷ ︸
N−4

cN−2,3qn]
T

where 0 are column vectors of proper length, whose elements
are all zero.

The procedure that leads to the definition of these matrices,
even if only in the particular case N = n, can be found in [26].

Remark 1: Matrix W is symmetric and positive definite by
construction. A simple inspection reveals that tridiagonal matrix
A is symmetric. Its positive definiteness can be easily inferred
by applying the Gershgorin circle theorem (see [57, Th. 1.2]).
Both matrices can, therefore, be rewritten as ΓTΓ = W and
ΩTΩ = A, respectively. Finally, it can be shown that, because
of the choice of uj and u�

j , matrices B (see [58, Th. 5.18]) and
C are full rank.

Remark 2: The trace function that appears in (21) is necessary
to deal with the vectorial form of each control point pj that leads
to a matrix form of the unknown P. The cost function (21) can
be rewritten as

J = ‖Γ(Q̂−BP)‖2F + λ‖Ω(CP+ P̂)‖2F (22)

where ‖x‖F =
√

tr(xTx) denotes the Frobenius norm of ma-
trix X [59], while the meaning of the other symbols is the
same as in (21). By rearranging the components of control
points pj in P to obtain a column vector of length (N − 1)d,
and modifying the matrices that appear in (21) accordingly, the
objective function becomes a combination of the square of two
standard Euclidean norms at the price of a less compact notation
and an increase of the problem dimension by a factor of d.

Since matrices B and C are full rank, the two functions
J1(P) and J2(P) are both strictly convex. Thus, the whole
objective function (21), which is a positive combination of these
functions, is strictly convex too. For this reason, the optimal
set of the problem minP J(P) contains at most one point. By
differentiating (21) with respect to P and equating the result to
zero, the analytical solution of this minimization problem can
be derived in an analytical form

P� = (BTWB+ λCTATC)−1(BTWQ− λCTAT P̂).
(23)

Since matrix BTWB+ λCTATC is strictly positive, its in-
verse is well defined, and the unique solution P� of the mini-
mization problem can be found.
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