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To solve the problem of sensing coverage of sparse wireless sensor networks, the movement of sensor nodes is considered and a
sensing coverage algorithm of sparse mobile sensor node with trade-off between packet loss rate and transmission delay (SCA SM)
is proposed. Firstly, SCA SM divides the monitoring area into several grids of same size and establishes a path planning model
of multisensor nodes’ movement. Secondly, the social foraging behavior of Escherichia coli in bacterial foraging is used. A fitness
function formula of sensor nodes’ moving paths is proposed.The optimal moving paths of all mobile sensor nodes which can cover
the entire monitoring area are obtained through the operations of chemotaxis, replication, and migration. The simulation results
show that SCA SM can fully cover the monitoring area and reduce the packet loss rate and data transmission delay in the process
of data transmission. Under certain conditions, SCA SM is better than RAND D, HILBERT, and TCM.

1. Introduction

Wireless sensor networks (WSNs) are composed of a large
number of sensor nodes and are deployed manually or ran-
domly in a givenmonitoring area.The sensor node recognizes
and collects the state of the monitoring environment (such
as temperature, humidity, and brightness) and sends this
information to devices (sink nodes or base stations) that
are suitable for data processing, visualization, analysis, and
decision-making [1, 2]. Because sensing range and energy of
sensor nodes are limited, the analysis of large amounts of local
data is impossible when the monitoring area is huge and the
environment is complex. Moreover, large-scale deployment
requires a huge cost investment. Therefore, a sparse mobile
sensor network with a small number of sensor nodes is
considered; in particular, a device such as a drone or robot
can be used in the sensor node to move to each monitoring
position. The mobile monitoring node can sense the entire

monitoring area. It reduces the system application cost
[3].

However, sparse mobile sensor network may generate a
large packet loss rate and a long data transmission delay.
Therefore, mobile path selection and sensing coverage of
mobile sensor nodes need be studied. At present, some
scholars focus on the path selection of mobile sensor nodes
installed on UAVs (unmanned aerial vehicle) and achieve
certain results. For example, a rasterized motion model is
established based on the environmental information within
the scope of theUAV in the literature [4], andA∗ algorithm is
used to obtain the UAV’s moving path.The literature [5] con-
structs the model of UAV flight path, quantitatively describes
the threat area on the path, and uses improved artificial
potential field method to obtain a sufficiently smooth flight
path. A three-layer framework consisting of sensor layer,
cluster head layer, and moving collector layer is proposed in
the literature [6]. The mobile collector calculates its moving
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trajectory planning, uses the divide and conquer method to
determine the turning point on the path, and obtains its
efficient mobile data collection scheme. In the literature [7],
each mobile sensor node is assigned a unique ID to find
its potential moving position. The greedy algorithm is used
to select the optimal stayed position from these potential
moving positions. Finally, its optimal path is constructed.
The literatures [4–7] mainly implement the path of mobile
sensor node from starting position to target position, but
how to efficiently cover the entire monitoring area is not
taken into consideration. The literature [8] uses HILBERT
curve as moving path of mobile aggregation node to cover
the entire network. The literature [9] proposes a temporal
coverage mechanism (TCM) for mobile sensor nodes in a
sparse network environment. TCM divides the monitoring
area into several grids so that mobile sensor nodes can
cover the entire monitoring area as quickly as possible.
Meanwhile, to achieve efficient coverage of the monitoring
area under the sparse WSNs, some scholars focus on using
artificial intelligence algorithms to obtain themoving paths of
mobile sensor nodes. For example, the literature [10] proposes
an improved artificial bee colony algorithm to solve the
traveling salesman problem of neighborhood search in sparse
WSNs and obtains the optimal data collection andmovement
paths of mobile sensor nodes. The literature [11] proposes
autonomous movement model of mobile sensor node, which
can be solved by bacterial foraging optimization algorithm
(BFOA). The autonomous mobile solution of each mobile
sensor node can be obtained. However, the literatures [8–
11] do not consider that the storage space of mobile sensor
nodes is limited and have large packet loss rate and high data
transmission delay.

Therefore, a sensing coverage algorithm of sparse mobile
sensor node with trade-off between packet loss rate and
transmission delay (SCA SM) is proposed. The monitoring
area is divided into a finite number of square virtual grids by
SCA SM.Eachmobile sensor node takes neighbor grid center
as next stayed position, proposes a mathematical expression
of moving paths of mobile sensor nodes, and establishes
a moving path planning model for multiple sensor nodes.
To quickly solve the optimization model, the processes of
chemotaxis, replication, and migration in the BFOA are used
to solve the model. In accordance with the optimization
goal of the WSNs, fitness function is proposed to reduce
the packet loss rate and data transmission delay as much
as possible. Mobile sensor node simulates two basic actions
of Escherichia coli, such as advancement and flipping in
the search space. The mobile sensor node first moves a
step in any random direction. If the fitness value of current
moving path in this direction is improved compared with
that value of previous moving path, then it will continue
to advance in this direction. Instead, it will flip to find a
new random direction and a position that can improve the
fitness value. When all mobile sensor nodes cover the entire
monitoring area or reach the end condition, SCA SMoutputs
an optimal solution. Therefore, optimal moving paths of all
mobile sensor nodes which cover the entire monitoring area
are obtained, and the packet loss rate and data transmission
delay in data transmission process are reduced.

Grid center

Sink node

Figure 1: Principle of SCA SM.

2. Algorithm Assumptions
and Basic Principles

In SCA SM, WSNs are assumed to be evenly distributed
in the monitoring area of two dimensions. Multiple mobile
sensor nodes and one static sink node exist in the network.
Mobile sensor node has a fixed communication radius and
data storage capacity. The position coordinates of the nodes
are obtained by satellite positioning modules, such as GPS,
Beidou, or other positioning modules. Only one grid center
is allowed to pass once in one round of data collection.
Static sink node collects data at the center of the monitoring
area and can only listen to the data reported by mobile
sensor nodes in the single communication range of sink
node.

As shown in Figure 1, the monitoring area is divided
into square grids of uniform size, and some mobile sensor
nodes are randomly placed in the monitoring area. When
the network is running, all mobile sensor nodes move to the
neighbor grid center’s positions which are not stayed before
and sense the data of grid area. If a mobile sensor node is
within the communication range of sink node, then the data
are sent to sink node in single-hop manner; otherwise, the
data are stored in the mobile sensor node. If storage space of
mobile sensor node is full, the oldest data are deleted, and
the received data are stored. However, SCA SM still needs to
solve the following two problems.The first is how to establish
an optimization model of multisensor nodes’ mobile sensing
coverage through mathematical model. The second is how to
use the improved bacterial foraging algorithm to solve the
optimization model and obtain optimal moving path scheme
of multiple mobile sensor nodes that can fully cover the
monitoring area.The specific solutions to these two problems
are as follows.

3. Establishment of the Optimization Model

Theoptimizationmodel ofmultisensor nodes’mobile sensing
coverage can be converted into
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min (𝑥1𝐷𝑅 + 𝑥2𝑇𝑎V𝑒𝑟𝑎𝑔𝑒𝑇𝑦𝑢 ) (1)

s.t. 𝑃𝑘 = {𝑝𝑘1 , 𝑝𝑘2 , 𝑝𝑘3 , . . . , 𝑝𝑘𝑗} (1a)
𝑝𝑘𝑗 ̸= 𝑝𝑘𝑖 , ∀𝑗 and 𝑗 ̸= 𝑖, ∀𝑘 (1b)

𝐶𝑘𝑡+1 =
{{{{{{{{{

𝐶max (𝐶𝑘𝑡 + 𝑆𝐷𝑘𝑡+1) ≥ 𝐶max and 𝑑𝑘𝑠 > 𝑑max

𝐶𝑘𝑡 + 𝑆𝐷𝑘𝑡+1 (𝐶𝑘𝑡 + 𝑆𝐷𝑘𝑡+1) < 𝐶max and 𝑑𝑘𝑠 > 𝑑max

0 𝑑𝑘𝑠 ≤ 𝑑max

, ∀𝑘 (1c)

𝐷𝑘𝑡+1 = {{{
𝐷𝑘𝑡 + 𝐶𝑘𝑡 + 𝑆𝐷𝑘𝑡+1 − 𝐶max, (𝐶𝑘𝑡 + 𝑆𝐷𝑡+1) ≥ 𝐶max and 𝑑𝑘𝑠 > 𝑑max

𝐷𝑘𝑡 𝑑𝑘𝑠 ≤ 𝑑max
, ∀𝑘 (1d)

∪ 𝐶𝑜V𝑒𝑟𝑘 = 1, ∀𝑘 (1e)
𝐷𝑅 = ∑𝑘𝐷

𝑘
𝑡+1𝑁𝑡𝑜𝑡𝑎𝑙 (1f)

𝑇𝑎V𝑒𝑟𝑎𝑔𝑒 = (∑𝑚 (𝑇𝑚 − 𝑡𝑚) + ∑𝑛 (𝑡 − 𝑡𝑛))𝑁𝑝𝑎𝑐𝑘 (1g)
𝑥1 + 𝑥2 = 1 (1h)

where 𝑃𝑘 represents the moving path of mobile sensor node
𝑘. 𝑝𝑘𝑗 represents the 𝑗th stayed grid center’s position of
mobile sensor node 𝑘. 𝐶𝑘𝑡 represents the amount of data
stored in the mobile sensor node 𝑘 at time 𝑡. 𝐶max represents
the maximum storage space of mobile sensor node. 𝑑𝑘𝑠
represents the distance from mobile sensor node 𝑘 to sink
node. 𝑑max represents the maximum communication radius
of sink node. 𝑆𝐷𝑘𝑡+1 represents the amount of data received
and sensed by mobile sensor node 𝑘 at the next moment. 𝐷𝑘𝑡
represents the total number of lost packets of mobile sensor
node 𝑘 from network start time to time 𝑡. 𝐶𝑜V𝑒𝑟𝑘 represents
the sensing coverage of mobile sensor node 𝑘, that is, the
ratio of the number of grid center positions in the moving
path of mobile sensor node 𝑘 and the total number of grids.𝐷𝑅 represents the packet loss rate. 𝑁𝑡𝑜𝑡𝑎𝑙 represents the total
number of packets generated by all mobile sensor nodes.𝑇𝑎V𝑒𝑟𝑎𝑔𝑒 represents the current data transmission delay. 𝑇𝑚
represents the time when the packet𝑚 is successfully sent to
sink node. 𝑡𝑚 represents the generation time of packet 𝑚. 𝑡𝑛
represents the generation time of packet 𝑛 stored in mobile
sensor node or discarded.𝑁𝑝𝑎𝑐𝑘 represents the total number
of packets generated by mobile sensor nodes after time 𝑡.𝑇𝑦𝑢 represents the threshold of data transmission delay. 𝑥1
represents the weight factor of packet loss rate. 𝑥2 represents
the weight factor of data transmission delay.

Equation (1) represents the objective function of opti-
mization model, namely, minimizing the packet loss rate
and data transmission delay. Formula (1a) represents that the

moving path of mobile sensor node k is composed positions
of grid centers. Formula (1b) represents that each mobile
sensor node does not repeat through the same grid center
during one round of movement. Formula (1c) represents that
when mobile sensor node 𝑘 is within the communication
range of sink node, the data are directly sent to sink node;
otherwise, the data are stored in the cache space. If the cache
space is full, then the oldest data will be discarded. Formula(1d) represents an updated calculation formula for the total
number of lost packets of mobile sensor node. Formula(1e) represents that the moving paths of all mobile sensor
nodes contain all grid centers; namely, the sensing coverage
equals 1. Formula (1f) is a formula for calculating the packet
loss rate. Formula (1g) is a formula for calculating the data
transmission delay.

4. Algorithm Solving

BFOA is a distributed parallel and random global opti-
mization algorithm that is widely used in image processing,
machine learning, pattern recognition, workshop schedul-
ing, and other fields [12]. BFOA simulates the foraging
behavior of Escherichia coli in human intestines and seeks
optimal population through four operations: chemotaxis,
aggregation, replication, and migration. The solving process
for the optimal moving paths of mobile sensor nodes is
the process of Escherichia coli searching for the area of
abundant food. However, the solution of bacterial fitness
value needs to be solved and BFOA needs to be improved
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in the solution process. Therefore, each bacterium is moving
paths of all mobile sensor nodes which sense and cover the
entire monitoring area. 𝑑𝑎𝑡𝑎(𝑆𝑥, 𝑆𝑦, 𝑘, 𝑡) represents the data
sensed by mobile sensor node 𝑘 on the grid (𝑆𝑥, 𝑆𝑦) at time 𝑡.𝐿𝑛𝑜𝑤 represents the length of current moving path of mobile
sensor node.𝐺𝑟𝑒𝑠𝑡 represents the number of grids that mobile
sensor node has not passed. 𝐶𝑜V𝑒𝑟𝑠𝑢𝑚 represents the sum
of coverage of all mobile sensor nodes. 𝑁𝑚 represents the
total number of mobile sensor nodes. 𝑆 represents the size of
bacterial population.𝑁𝑒𝑑,𝑁𝑟𝑒, and𝑁𝑐 represent the number
of migration, replication, and chemotaxis, respectively. 𝑃𝑒𝑑
represents the probability of migration. 𝑁𝑚 represents the
number of mobile sensor nodes. 𝐽(𝑖, 𝑔, ℎ, 𝑙) represents fitness
value of bacterium 𝑖 at the 𝑔th chemotaxis, ℎth replicas and
lthmigration.𝑁𝐺𝑘𝑖 represents the neighbor grid set of mobile
sensor node 𝑘 in the bacterium 𝑖. 𝑆𝑖 = {𝑆𝑖1, 𝑆𝑖2, 𝑆𝑖3, ..., 𝑆𝑖𝑘}
represents the movement scheme of current bacterium 𝑖 after
migration, and it is initially an empty set. 𝑆𝑖𝑘 represents the
moving path of mobile sensor node 𝑘 in the bacterium 𝑖. The
specific content of the model solution is as follows.

4.1. Calculation of Bacterial Fitness Value. Because the setting
of bacterial fitness value affects the solution of optimization
model (1), the chemotaxis operation leads the bacteria to
preferentially move to a nutrient-rich environment. But if
the fitness value of the bacterium i is directly calculated by
model (1), mobile sensor node can easily preferentially move
to the grid within the communication range of sink node. It
results in a large packet loss rate and data transmission delay.
Therefore, different fitness value formulas are adopted in the
actual path finding process and after the path is searched.
The specific implementation steps of bacterial fitness value
calculation are as follows.

Step 1. Initialize the parameters and the storage space of all
mobile sensor nodes. Initialize the storage space of sink node.𝑡=1, 𝑘=1.
Step 2. At the current time 𝑡, the data of mobile sensor
node 𝑘 at the position (𝑆𝑥, 𝑆𝑦) are sensed, stored, and
recorded as 𝑑𝑎𝑡𝑎(𝑆𝑥, 𝑆𝑦, 𝑡). The data storage amount 𝐶𝑘𝑡+1
at next moment according to formula (1c) is updated. If
the data storage amount 𝐶𝑘𝑡+1 at next moment is greater
than maximum storage space 𝑆𝐶max, then the oldest data
are deleted. According to formula (1d), the deleted data are
recorded in the number of lost packets, and the number of
lost packets is updated.

Step 3 (𝑡=𝑡+1). Mobile sensor node 𝑘 moves to next stayed
position. If mobile sensor node 𝑘 is within the single-hop
range of sink node, all data in the storage space are directly
sent to sink node. The data received by sink node are
recorded, and the data storage capacity is updated. Then
whether a neighbor mobile sensor node exists is determined.
If it exists, then it communicates with the neighbor mobile
sensor node, obtains coverage rate of the neighbor sensor
node, and calculates the sum 𝐶𝑜V𝑒𝑟𝑠𝑢𝑚 of sensing coverage
of the known mobile sensor nodes.

Step 4. If 𝑡 ≤ 𝐿𝑛𝑜𝑤, then skip to Step 2; otherwise, 𝑘=𝑘+1, 𝑡=1.
If 𝑘 ≤ 𝑁𝑚, then skip to Step 2; otherwise, skip to Step 5.

Step 5. If𝐶𝑜V𝑒𝑟𝑠𝑢𝑚=1, then packet loss rate𝐷𝑅 is calculated by
formula (1f). Skip to Step 7; otherwise, themobile sensor node
is still looking for the path. The number 𝑆𝑛𝑢𝑚 of grids in the
single-hop communication range of sink node is calculated.
The number 𝑁𝑙𝑜𝑠𝑠 of discarded packets is calculated by
formula (2).

𝑁𝑙𝑜𝑠𝑠 = G𝑟𝑒𝑠𝑡 + 𝐶𝑡 − 𝑆𝑛𝑢𝑚 (𝐶max + 1) (2)

where 𝐺𝑟𝑒𝑠𝑡 represents the number of grids which is not
passed before. 𝐶𝑡 represents the sum of data stored by all
mobile sensor nodes.

Step 6. When 𝑁𝑙𝑜𝑠𝑠 ≤ 0, the grids in the single-hop
communication range of sink node is allocated reasonably,
and the other grids do not generate the number of lost
packets,𝑁𝑙𝑜𝑠𝑠 = 0. Otherwise,𝑁𝑙𝑜𝑠𝑠 is recorded in the number
of lost packets, and the packet loss rate 𝐷󸀠𝑅 is calculated by
formula (3) on the basis of received data packets of sink node
and the number of lost packets stored inmobile sensor nodes.

𝐷󸀠𝑅 = (𝑁𝑡 + 𝑁𝑙𝑜𝑠𝑠)𝑁𝑡𝑜𝑡𝑎𝑙 (3)

where𝑁𝑡 represents number of lost packets of mobile sensor
node at previous moment and𝑁𝑡𝑜𝑡𝑎𝑙 represents total number
of packets generated by all mobile sensor nodes.

Step 7. The estimate value 𝑇𝑎V𝑒𝑟𝑎𝑔𝑒 of data transmission delay
is calculated by formula (1g), and the fitness values of all
bacteria are calculated by formula (4).

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑥1𝐷𝑅 + 𝑥2𝑇𝑎V𝑒𝑟𝑎𝑔𝑒𝑇𝑦𝑢 (4)

where packet loss rate𝐷𝑅 is
𝐷𝑅 = {{{

𝐷󸀠𝑅, 𝐶𝑜V𝑒𝑟𝑠𝑢𝑚 < 1
𝐷𝑅, 𝐶𝑜V𝑒𝑟𝑠𝑢𝑚 = 1. (5)

4.2. Chemotaxis of Bacteria. Mobile sensor node simulates
two basic actions of Escherichia coli, such as advancement
and flipping in the path planning process. First, each mobile
sensor node in a bacterium moves a step in any random
direction. If the fitness value of current moving path in this
direction is improved compared with the fitness value of
previous moving path, then it will continue to advance in
this direction. Otherwise, it will flip to find a new random
direction and a position that can improve the fitness value.
If neighbor grid has been accessed, the mobile sensor node is
easy to fall into dead end. At this time, the nearest grid should
be selected to meet the constraint condition (1b), thereby
achieving the chemotaxis operation. As shown in Figure 2,
the specific implementation steps are as follows.

Step 1. Obtain all current bacterial information and replica-
tion parameter ℎ, and let g=1, l=1, i=1, k=1.
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obtain all current bacterial information and
replication parameter h, let g = 1, i = 1, k = 1

calculate the fitness value J(i, g, h, l) of bacterium i

Update the sensing coverage. Mobile sensor node k
communicates with neighbor mobile sensor nodes
within a single hop range, and calculate the sum of

sensing coverage of known mobile sensor nodes.

k = k + 1

i = i + 1,k = 1

g = g + 1, k = 1, i = 1

N

N

Complete the chemotaxis operation and output all
current bacteria

Add current closest
grid to the grid set

Select the position of
stayed grid in set and

add it to current
moving path.

N

Y

Y

Y

Y

Y

Y

N

N

N

N

Is Si and empty set?

Is Coersum 1?

Update the neighbor grid set NGk
i

Is NGk
i an empty set?

Is NGk
i an empty set?

direction, select the grid as next stayed position and
add it to the moving path, and calculate the fitness

value of the new moving path.

Randomly select a grid in the set NGk
i as the flip

J(i, g + 1, ℎ, l) ≤ J(i, g, ℎ, l)?

k ≤ Nm ?

i ≤ S ?

g ≤ Nc ?

Figure 2: Flow chart of chemotaxis.
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Step 2. Calculate the fitness value 𝐽(𝑖, 𝑔, ℎ, 𝑙) of the bacterium𝑖. It is judgedwhether the set 𝑆𝑖 is an empty set. If it is an empty
set, then skip to Step 3. Otherwise, let 𝑆𝑖𝑔 = 𝑔 + 1 +𝑁𝑐(ℎ − 1).
Select the 𝑆𝑖𝑔th stayed grid in the set 𝑆𝑖𝑘. Let it be the next grid
of mobile sensor node 𝑘. Add it to current moving path, and
obtain the new moving path. Skip to Step 6.

Step 3. Update the sensing coverage 𝐶𝑜V𝑒𝑟𝑘, and mobile sen-
sor node 𝑘 communicates with neighbormobile sensor nodes
in the single-hop range to calculate the sum 𝐶𝑜V𝑒𝑟𝑠𝑢𝑚 of
sensing coverage of known mobile sensor nodes. If 𝐶𝑜V𝑒𝑟𝑠𝑢𝑚
is 1, then skip to Step 6; otherwise, skip to Step 4.

Step 4. Update the neighbor grid set 𝑁𝐺𝑘𝑖 , and determine
whether the set 𝑁𝐺𝑘𝑖 is an empty set. If it is, add current
closest gird to the grid set𝑁𝐺𝑘𝑖 ; otherwise, neighbor grid set
𝑁𝐺𝑘𝑖 is not updated. Randomly select a grid in the set𝑁𝐺𝑘𝑖 as
the flip direction, delete the grid in the set𝑁𝐺𝑘𝑖 , add the next
stayed grid to moving path, and calculate the fitness value𝐽(𝑖, 𝑔 + 1, ℎ, 𝑙) of the new moving path.

Step 5. If 𝐽(𝑖, 𝑔 + 1, ℎ, 𝑙) ≤ 𝐽(𝑖, 𝑔, ℎ, 𝑙), it indicates that
the bacteria are closer to optimal solution, so skip to Step
6. Otherwise, if fitness value is not improved, then judge
whether the set 𝑁𝐺𝑘𝑖 is an empty set. If it is, skip to Step 6;
otherwise, skip to Step 4 and reselect the random direction
for chemotaxis.

Step 6 (𝑘=𝑘+1). If 𝑘 ≤ 𝑁𝑚, then skip to Step 2; otherwise, 𝑖 =𝑖 + 1, 𝑘=1. If 𝑖 ≤ 𝑆, then skip to Step 2; otherwise, 𝑔=𝑔+1, 𝑘=1,𝑖=1. If 𝑔 ≤ 𝑁𝑐, then skip to Step 2; otherwise, the chemotaxis
operation is completed.

4.3. Improved BFOA. As shown in Figure 3, SCA SM cal-
culates bacterial fitness value through formula (4) and uses
chemotaxis, replication, and migration of improved bacterial
foraging algorithm to solve the model (1). The specific
implementation steps are as follows.

Step 1. Initialize the bacterial population and algorithm
parameters: the initial positions of all mobile sensor nodes
in bacteria are randomly generated, and neighbor grid set is
updated. Let 𝐹𝑏𝑒𝑠𝑡 be infinite, 𝑔=1, ℎ=1, 𝑙=1, 𝑖=1, 𝑘=1.
Step 2. Use chemotaxis to obtain moving paths of mobile
sensor nodes in all bacteria.

Step 3. Calculate the fitness values of 𝑆 bacteria in the
population and arrange them in ascending order. Remove
half of the bacteria with high fitness value and copy half of
the bacteria with small fitness value. ℎ=ℎ+1. If ℎ ≤ 𝑁𝑟𝑒, 𝑖=1,𝑔=1, then skip to Step 2; otherwise, skip to next step.

Step 4. Select the moving paths and fitness value of the
bacterium with smallest fitness value 𝐹𝑙𝑜𝑐𝑎𝑙. If 𝐹𝑙𝑜𝑐𝑎𝑙 < 𝐹𝑏𝑒𝑠𝑡,𝐹𝑏𝑒𝑠𝑡 = 𝐹𝑙𝑜𝑐𝑎𝑙, then the moving paths of mobile sensor nodes
in the bacterium are the optimal moving paths. Otherwise,

the bacterium is eliminated and the optimal moving paths of
mobile sensor nodes are replicated to the bacterium.

Step 5. Calculate the adaptive probabilities 𝑃𝑖𝑠𝑒𝑙𝑓 of all 𝑆
bacteria via formula (6).

𝑃𝑖𝑠𝑒𝑙𝑓 = 𝐽
𝑖
𝑛𝑢𝑚 − 𝐽min

𝑛𝑢𝑚𝐽max
𝑛𝑢𝑚 − 𝐽min

𝑛𝑢𝑚

𝑃𝑒𝑑 (6)

where 𝐽𝑛𝑢𝑚 represents the fitness function and 𝑃𝑒𝑑 represents
the migration probability.

Step 6. Generate a random number between 0 and 1. If the
adaptive probability 𝑃𝑖𝑠𝑒𝑙𝑓 is greater than the random number,
initial positions of 𝑁𝑚 mobile sensor nodes are randomly
generated as current grid positions and current moving paths
in the bacterium 𝑖. Let the set 𝑆𝑖 be an empty set; otherwise,
the moving paths of bacterium 𝑖 are saved in set 𝑆𝑖.
Step 7 (𝑙=𝑙+1). If 𝑙 ≤ 𝑁𝑒𝑑, then skip to Step 2; otherwise,
output the optimal moving paths of all mobile sensor nodes
and end the algorithm.

5. Algorithm Simulation

5.1. Simulation Parameter Selection. To verify the algorithm
performance, the simulation experiment is performed and
SCA SM is compared with RAND D, HILBERT [8], and
TCM [9]. Assume that the 200 m∗200 m monitoring area
is divided into several virtual square grids. The sink node is
in the center of the monitoring area. The positions of mobile
sensor nodes are random, and the communication radius of
each nodes is 50 m. In the simulation, the main parameters
are set to the following values. The maximum storage space𝐶max is 6 kbit. The amount of data received and sensed by
the node in each uncovered grid is 2 kbit. The threshold 𝑇𝑦𝑢
of data transmission delay is 102. The weight factor 𝑥1 of
packet loss rate and weight factor 𝑥2 of data transmission
delay are 0.5.The chemotaxis number𝑁𝑐 is 10; the replication
number 𝑁𝑟𝑒 is 20. The migration number 𝑁𝑒𝑑 is 50. The
migration probability 𝑃𝑒𝑑 is 0.6. The number of bacteria 𝑆 is
50 when square grid number is less than or equal to 150, and
the number of bacteria 𝑆 is 100 when square grid number is
greater than 150.

5.2. Analysis of Simulation Results. Because multiple mobile
sensor nodes are considered and randomly placed within
the monitoring area, initial positions of mobile sensor nodes
are randomly generated. To illustrate the effectiveness of the
algorithms, random initial positions with (25, 25), (25, 175),
and (175, 175) are selected, and the number of mobile sensor
nodes is 2, 3, and 4. Then the parameters in Section 4.1 are
selected and Figures 4–7 are obtained. As shown in Figure 4,
all mobile sensor nodes in RAND D randomly select the
closest grid which is not stayed before as next stayed position.
As shown in Figure 5, the number of stayed positions of
HILBERT is a power of 4, and eachmobile sensor nodemoves
following HILBERT path until the entire monitoring area is
covered. As shown in Figure 6, each mobile sensor node in
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Use chemotaxis to obtain moving paths of
mobile sensor nodes in all bacteria.

Calculate the fitness values of S bacteria in the
population and arrange them in ascending order. 
Remove half of the bacteria with high fitness value

and copy half of the bacteria with small fitness
value, h = h + 1.

Output the optimal moving path of all mobile
sensing nodes and end the algorithm.

The bacterium is
eliminated and
optimal moving
path is replicated
to the bacterium.

N

N

Y

Y

Y

Initialize the bacterial population and let Fbest be
infinite, Si is an empty set, ℎ = 1

Select the moving path and fitness value of the
bacterium with smallest fitness value Flocal

Flocal < Fbest ?

Then the moving paths of mobile sensor nodes in
the bacterium are the optimal moving paths.

Fbest = Flocal

bacteria via Formula (6).
Calculate the adaptive probabilitiesPi

self of S

Generate a random number between 0 and 1. If the
adaptive probability is greater than the random

number, then initial positions of all mobile sensing
nodes are randomly generated as current grid

positions and current moving paths in the bacteria

moving paths of bacterium i are saved in set, l = l + 1
i. Let the set Si be an empty set; otherwise, the

l ≤ Ned ?

ℎ ≤ Nre ?

Figure 3: Flow chart of SCA SM algorithm.

TCM follows the shortest moving path in the literature [10]
which fully covers themonitoring area. As shown in Figure 7,
no matter the number of mobile sensor nodes, SCA SM
can establish a path planning model of multisensor nodes’
movement, calculate bacterial fitness value of each bacterium,
solve the optimization model (1) by improving the bacterial
foraging algorithm, and obtain optimal moving paths. Every
mobile sensor node passes through several grids andmoves to
the vicinity of sink node to send data. Then SCA SM reduces
the packet loss rate and data transmission delay.

The bacterial population completes chemotaxis operation
and replication operation of all mobile sensor nodes, then it

implements and completes a migration operation. After each
migration operation, mobile sensor nodes have their current
optimal moving paths with different steps. The fitness value
of optimal moving paths is current optimal fitness value.
As shown in Figure 8, the abscissa represents the number
of migrations, and the ordinate represents the optimal fit-
ness value. The fitness value of SCA SM decreases almost
vertically after previous migration. After five migrations, the
fitness value of optimal moving path drops to a lower value.
As migration operation can help the algorithm jump out of
local optimum and improve the convergence accuracy, the
fitness value converges to 0.13424 after about 16 migrations.
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Figure 4: Moving paths of RAND D.
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Figure 5: Moving path of HILBERT.

This fitness value is the optimal solution of optimization
model (1). Therefore, SCA SM is convergent.

Simulation Results for Different Maximum Storage Spaces. In
the section, the parameters in Section 5.1 are selected. Side
length of the monitoring area is 400 m. Number of mobile
sensor nodes is 3. Maximum storage space is 20, 22, 24, 26,
28, and 30 kbit. 10 different initial position distributions of
the nodes are randomly generated. The packet loss rates and
data transmission delays of RAND D, HILBERT, TCM, and
SCA SM under each initial position distribution of nodes
are calculated separately, and the average values are taken as
simulation results.

As shown in Figure 9, in RAND, although maximum
storage space of the node is increased, mobile sensor node
randomly selects moving path. It leads that some moving
paths are away from sink node and improves the packet loss
rate. Therefore, packet loss rate of RAND fluctuates with the
increase in the maximum storage space. Packet loss rates of
HILBERT, TCM, and SCA SM decrease with the increase in
the maximum storage space. Especially, packet loss rate of
SCA SM decreases faster. Because HILBERT and TCM do
not consider the data loss problem when storage space is full,
packet loss rates of HILBERT and TCM are larger than that
of SCA SM. The SCA SM uses bacterial foraging algorithm
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Figure 6: Moving paths of TCM.

to solve the optimization model (1) and finds moving paths
that weigh packet loss rate and data transmission delay
through multiple migrations. In the moving path selection,
when the storage space is almost full, the node moves to the
communication range of sink node asmuch as possible, sends
the stored data to sink node, and continues to performmobile
coverage. It can reduce the packet loss rate. In summary,
when maximum storage space increases, packet loss rate of
SCA SM is always lower than that of RAND D, HILBERT,
and TCM.Whenmaximum storage space reaches 34 kbit, the
packet loss rate is close to 0%.

As shown in Figure 10, RAND D has randomness, and
data transmission delays of HILBERT and TCM decrease
with the increase in the maximum storage space. However,
they do not consider the data transmission delay in the
moving path selection. SCA SM establishes an optimiza-
tion model, which is solved by improved bacterial foraging
algorithm, and obtains the optimal moving path of each
mobile sensor node which is through the grid centers in
the communication range of sink node. When mobile sensor
node moves along its optimal path, it can send its own data
to sink node in time. Therefore, the data transmission delay
of SCA SM is always lower than the data transmission delays
of RAND D, HILBERT, and TCM.

Simulation Results in DifferentMonitoring Areas. Considering
the size of the monitoring area, the number of square grids
divided in the monitoring area is different. To analyze the
impact of different sizes of monitoring area on performance
parameters, number of mobile sensor nodes is 3, and max-
imum storage space is 1/4 of the number of grids. Square
monitor area 1 has a side length of 800 m. Monitor area 2 has
a side length of 700 m. Monitor area 3 has a side length of
500 m. Monitor area 4 has a side length of 400 m. Monitor
area 5 has a side length of 200 m. The parameters in 4.1
are selected, and 10 different initial position distributions of
nodes are randomly generated. The packet loss rate and data
transmission delay of each algorithm are calculated under
each initial position distribution of sensor nodes, and the
average values are used as simulation results.

As shown in Figures 11 and 12, in the different monitoring
areas, RAND D has a large number of loss packets and
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(a) Moving paths of two sensor nodes
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(b) Moving paths of three sensor nodes
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(c) Moving paths of four sensor nodes

Figure 7: Moving paths of SCA SM.
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Figure 8: Convergence graph of SCA SM.
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Figure 9: Comparison of packet loss rates for different maximum
storage spaces.
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Figure 10: Comparison of data transmission delays for different
maximum storage spaces.
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Figure 11: Comparison of packet loss rates in different monitoring
areas.
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Figure 12: Comparison of data transmission delays in different
monitoring areas.

a long moving path; therefore, its packet loss rate and
data transmission delay are relatively large. The number of
stayed grid of HILBERT must be a power of 4, so only
the monitoring areas 1, 4, and 5 are valid and the moving
path of each mobile sensor node is fixed. Its perceptual
coverage problem of mobile sensor node is not considered.
TCM only covers the entire monitoring area as short as
possible and does not consider the packet loss rate and
data transmission delay as HILBERT. SCA SM establishes
a reasonable optimization model and fitness function due
to comprehensive consideration of packet loss rate and data
transmission delay. Moreover, it uses improved bacterial
foraging algorithm to obtain the optimal moving paths of all
mobile sensor nodes.Themoving optimal paths canmaintain
low packet loss rate and data transmission delay, and it is
significantly better than RAND D, HILBERT, and TCM.

6. Conclusion

A sensing coverage algorithm of sparse mobile sensor node
with trade-off between packet loss rate and transmission
delay (SCA SM) is proposed in this paper. First, the algorithm
assumptions and basic principles are proposed. Second, path
selection constraint, data capacity update, packet loss rate,
data transmission delay, and other related parameters and
conditions are considered. An optimization model for fully
covering the monitoring area and balancing the packet loss
rate and data transmission delay is established. Bacterial
fitness value calculation, bacterial chemotaxis operation, and
improved bacterial foraging algorithm are proposed to solve
the optimization model. Optimal moving paths of multiple
mobile sensor nodes are obtained. Finally, simulation param-
eters of the algorithm are given. The simulation results show
that the SCA SMalgorithm can find the optimalmoving path
of multiple mobile sensor nodes, has low data packet loss
rate and data transmission delay, and is superior to RAND D,

HILBERT, and TCM. However, the algorithmic complexity
of SCA SM is relatively high. Therefore, the next goal is to
study the optimization model and heuristic method of each
mobile sensor node to solve the optimizationmodel based on
local information.Then optimization solution of eachmobile
sensor node is obtained, and it reduces the complexity of the
algorithm.
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