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Critical metrology of minimally 
accessible anisotropic spin chains
Marco Adani 1,2, Simone Cavazzoni 2, Berihu Teklu 1,3, Paolo Bordone 2,4 & Matteo G. A. Paris 5*

We address quantum metrology in critical spin chains with anisotropy and Dzyaloshinskii–Moriya 
(DM) interaction, and show how local and quasi-local measurements may be exploited to characterize 
global properties of the systems. In particular, we evaluate the classical (magnetization) and quantum 
Fisher information of the relevant parameters for the density matrix of a single spin and that of a 
pair of spins ranging from nearest to sixth-nearest neighbors, to the limiting case of very distant 
spins. Our results allow us to elucidate the role of the different parameters and to individuate the 
optimal working regimes for the precise characterization of the system, also clarifying the effects of 
correlations on the estimation precision.
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Quantum phase transitions (QPTs) in many-body systems occur at zero temperature driven by variations of the 
couplings and/or of external parameters1. The relationship between both classical and quantum phase transi-
tions (PTs) and estimation theory is profound and indissoluble. Near (Q)PTs,(quantum) states may be discrimi-
nated with a high accuracy, because of the enhanced Quantum Fisher Information (QFI)2. Recently, researchers 
have addressed phase transitions for quantum sensing3–8 and experimentally implemented in trapped ions9 and 
Rydberg atoms10. These collective phenomena enable the development and model of extremely precise detectors 
and sensors11–13. Within this framework, the Heisenberg XY model with anisotropy and Dzyaloshinskii–Moriya 
(DM) interaction describes a wide range of physical systems, exhibiting multiple phase transitions, making it 
an excellent candidate for testing metrological protocols and schemes for detecting quantum phase transitions 
both with global or (quasi)-local measurements. The anisotropy and DM interaction terms describe a wide range 
of physical systems, from relatively simple Hamiltonians, such as the Ising model, to more complex systems 
incorporating inhomogeneous interactions and spin-orbit coupling14–23. This model has been computation-
ally investigated24–29, and found applications in studying materials of technological interest30–32, experimental 
implementations33, and in describing surface and interface phenomena34–37. Moreover, DM anisotropy recently 
found also application in quantum information and technology38–44. Our analysis extends the application of 
the model to quantum metrology, and paves the way to realize precise extended sensors requiring only (quasi-)
local readout schemes.

In this paper, we demonstrate that local or quasi-local measurements, performed on only one or two spins, 
may be exploited to detect quantum phase discrimination and to precisely characterize the system45–47. Unlike the 
previous literature, we introduce the single spin reduced density matrix, exploiting its metrological characteris-
tics. For the two-spin reduced density matrix, we are going beyond the nearest neighbors spins48 to characterize 
the effect of correlations on quantum phase transitions.

More specifically, we evaluate the classical (magnetization) and quantum Fisher information matrices of the 
relevant parameters of the density matrix of a single spin and that of a pair of spins. Additionally, we investigate 
how quantum correlations influence the optimal distance between the two spins, with the goal of maximizing 
the QFI and thereby optimizing the estimation of the Hamiltonian parameters.

The manuscript is structured as follows: In “Model and methods”, we introduce the physical model and 
the theoretical methodologies adopted to investigate the phases for local and quasi-local measurements. In 
“Quantum and classical Fisher information theory”, we introduce the basics of information theory and the 
quantities monitored to theoretically and practically discriminate the phases of the physical model. Sections 
“Local measurements” and “Quasi local measurements and the role of correlations” present the results of the 
analysis, distinguishing between measurements of local properties of the system and measurements that involve 
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correlations among the elements of the system. Finally, in “Conclusions”, we summarize the main results and 
highlight differences between the methodologies adopted. In Appendix A and B we provide further mathematical 
details and case studies to support our results.

Model and methods
The Hamiltonian for an anisotropic XY spin-half chain in the presence of the Dzyaloshinskii–Moriya (DM) 
interaction can be expressed as:

where N is the total number of spins and σ x
l  , σ y

l  , σ z
l  are the Pauli matrices for the l-th spin. J is the coupling con-

stant, and is assumed to be in units of the external magnetic field B, with J = Js/B , where Js is the actual value of 
the coupling. The choice to normalize J by B is made because interesting phenomena in the system occur when 
it is immersed in an external magnetic field. The anisotropy term is represented by γ (with −1 ≤ γ ≤ 1 ), and D 
is the Dzyaloshinskii–Moriya (DM) interaction factor. This sets the stage for the rest of the paper, particularly 
for local and quasi-local approaches to metrology. In both cases, we need the reduced density matrices, which 
are essential for understanding the system’s behavior when only partial accessibility to the system is available. 
In particular, we are going to consider the thermodynamic limit N → ∞ and at zero temperature. For a local 
measurement, the single-spin reduced density matrix ρ1 is obtained by tracing out all spins except one from the 
total density matrix. The resulting density operator is actually independent of the specific spin and reads

where �σ z� = Tr[ρ1 σ
z] denotes the mean magnetization per spin of the system, i.e.

where

Indeed, the reduced density matrix of a single spin only depends on the local properties of the system: the 
diagonal elements depend only on the local magnetization, and the reduced density is the same independently 
on the exact location of the spin, as expected from the translational invariance of the Hamiltonian in Eq. (1).

If we move to two spins, the reduced density matrix includes not only local properties but also the correlations 
between them. Upon tracing over all the spins except those corresponding to the j and k sites we have

Due to the symmetries inherent in the physical model under analysis, the two-site reduced density matrix has 
the following X-structure49

where the matrix elements a± , b± and c are given by

The quantity 〈σ z〉 is given in Eq. (3) whereas

denote the correlations between the components of the two spins. Due to the translational invariance of the 
Hamiltonian in Eq. (1), these correlation functions do depend only on the distance r between the two spins. 
The spin-spin correlation functions Sxr  and Syr  can be computed from the determinant of Toeplitz matrices50,51 as
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in which r is the distance between the two spins. For the z-direction we have

where

The integrals in Eqs. (3) and (11) cannot be evaluated analytically and therefore we calculate them numerically. 
Moreover, given the structure of the Hamiltonian in Eq. (1), we study the phenomenology of the system for J  = 0.

Quantum and classical Fisher information theory
As the aim of this work is to focus on metrology under the assumption of partial system accessibility, it is crucial 
to introduce key quantities adopted to characterize the system. The study is based on the analysis of the quantum 
and classical Fisher information, which quantify the ultimate bounds to precision in the estimation of system 
parameters52–55. The QFI is intrinsically related to the geometry of the manifold of quantum states, i.e. the Bures 
distance56,57 as

where H(�) is referred to as the quantum Fisher information (QFI)58–60 associated to a parameter � of the Ham-
iltonian. Since quantum phase transitions are described as an abrupt change in the ground state of a many-body 
system due to the variation of a physical parameter, there is a deep relation among phase transitions and the 
divergences in the QFI2,61–65. In particular, we expect critical spin chains to provide enhanced precision for those 
values of the parameters corresponding to quantum phase transitions, where H(�) diverges. The QFI is itself also 
related to the fidelity58–60 and may be evaluated as

where L , the symmetric logarithmic derivative, is related to the variation with respect to a parameter � of the 
density matrix ρ as

where { , } indicates the anti-commutator. The QFI sets a bound on the variance of any (unbiased) estimator used 
to infer the value of the parameter of interest from data, as

where M is the number of measurements.
According to the partial accessibility hypothesis we focus on the one and two spin reduced density matrix 

presented in “Model and methods”. The single-spin density matrix in Eq. (2) is diagonal in the basis of σ z , i.e. 
ρ1 = p|0��0| + (1− p)|1��1| with p = 1

2 (1+ �σ z�) and thus the QFI may be easily evaluated as

For the two-spin reduced density matrix of Eq. (6) the QFI reads as follows66
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where

and η = Diag{1,−1,−1,−1}.
The QFI provides an upper bound to the Fisher information (FI) of any possible measurement that may be 

performed on the system in order to infer the value of the parameter. The FI itself is defined as

and since the density matrix ρ1 is diagonal in the z-basis, we have that for local magnetization measurement 
F(�) = H(�) . For a two spin magnetization measurement the FI is given by

and since ρ2 is non-diagonal in the z-based, the Fisher information is lower than its quantum counterpart, i.e.,

When the system is defined by more than one parameter � = {�1, �2, . . . , �n} , as in Eq. (1), the Bures distance 
generalizes to a metric as

where Hµν(�) are the elements of the so-called quantum Fisher information matrix (QFIM), defined as

where Lµ and Lν are the symmetric logarithmic derivatives associated to the components �µ and �ν of the 
vector � respectively. For the spin chain Hamiltonian (Eq. (1)) the parameters are the coupling constant J, the 
anisotropy parameter γ and the DM interaction factor D, so in this case � = {J , γ ,D}.

The inverse of the QFI matrix provides a lower bound on the covariance matrix V  of the set of estimators, 
i.e., Vµν = ��µ�ν� − ��µ���ν� , which reads

By introducing a positive, real matrix of dimension n× n , i.e. the weight matrix W, a scalar bound may be 
obtained. In the following we consider simple choice W = � , obtaining a relation in the form

i.e. a lower bound on the sum of the variances associated to the parameters contained in the vector �.
A fundamental tool in multi-parameter estimation is the so called Uhlmann matrix, whose elements are 

defined as

A vanishing Uhlmann matrix means that the parameters may be jointly estimated with the same precision achiev-
able from their separate estimations. On the other hand, if Uµν(�)  = 0 there is an intrinsic additional noise of 
quantum origin in the joint estimation of �µ and �ν , due to the non commutativity of the corresponding SLDs.

Finally, another relevant feature associated to the Fisher matrix is its determinant. It is a measure of the degree 
of sloppiness of the system that quantify how strong is the dependence of the system on a combination of the 
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components of � rather then on its components separately. When the Fisher matrix is singular (i.e. det[H(�)]
=0), the statistical model is referred to as sloppy, and this means that the true parameters that describe it are 
combinations of the original parameters {�1, �2, . . . , �n} . For this reason the closer is det[H(�)] to zero the higher 
is the degree of sloppiness of the system.

Local measurements
We start our analysis from the information that can be extracted by accessing a single spin. In this case, the 
best measurement is the magnetization along the direction of the external field since, as mentioned above, its 
FI equals the QFI.In Fig. 1 we show the QFIM element HJJ (J ,D) associated to the coupling constant of the spin 
chain as a heat-map, as a function of J and D for a fixed value of γ = 1 (Ising model). We notice a divergence 
for J = ±1 , as it happens for the QFI of a collective measurement61. The parameter D affects the behavior of HJJ 
mainly for J < 0 . As D increases, the range of J in which HJJ is large increases too, whereas the value at the peak 
in J = −1 decreases. Results for γ  = 1 are similar. These results show how that due to the Hamiltonian proper-
ties, even a local measurement detects the phase transitions of the spin chain and therefore may be exploited in 
a metrological protocol. This can be intuitively understood by looking at the structure of the single spin reduced 
density matrix. Since it depends only on the mean magnetization of a spin, the metrological results should 
reflect this characteristic, and bring the same properties as the ones related to a measurement that depends on 
the global magnetization of the whole system. The precision should be however compared to that achievable by 
quasi local measurements, where correlations usually enhance the information that may be extracted. This will 
be the subject of the next section.

Quasi local measurements and the role of correlations
Let us now consider estimation protocols based on measuring two spins of the chain. In this case, besides local 
magnetization, the results of the measurement are also influenced by the correlations between the spins. To 
begin, it is useful to start from the limit of infinitely distant spins. This because for non-interacting spins the (Q)
FI is just twice the single-spin (Q)FI, and this case may be used as a reference to understand whether correla-
tions are beneficial or detrimental for quantum metrology. Since the Hamiltonian involves interactions between 
nearest neighbors, we may expect the correlation to vanish by increasing the distance between the two measured 
spins. Indeed, we found numerically that |Gr | < 1 ∀r for the entire range values of J, γ and D used in this work. 
Furthermore, we found that the functions Gr goes to zero as 1/r.
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Figure 1.   (Quantum) Fisher information of J for a single spin reduced density matrix of an anisotropic 
Heisenberg XY spin chain, with Dzyaloshinskii–Moriya interaction. The anisotropy parameter value is fixed to 
γ = 1 (Ising model). Here we can see the dependence on the Hamiltonian parameters J and D, for J  = 0 . For 
J = ±1 , H(J) diverges ∀D . This allows to distinguish the two phases of the system from a local measurement.
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Correspondingly, the two-spin reduced density matrix (6) assumes the diagonal form

This structure implies that the classical FI of magnetization equals the QFI and is given by

i.e., in this case, measuring the magnetization allows us to extract the entire information present in the system, 
which is twice the value of the single spin case. This is true ∀� ∈ {J , γ ,D} . In turn, this results follows directly 
from the symmetry of the model since, due to the translation invariance of the Hamiltonian in Eq. (1) every spin 
of the model contributes equally to the (Q)FI in the absence of correlations.

We now move to the study of the FI and QFI as a function on the distance between the measured spins, going 
beyond the first nearest neighbors metrology, looking for optimal configurations in the different realizations 
of the model. Let us start from the Ising model without DM interaction (i.e. the anisotropy parameter is set to 
γ = 1 and the DM interaction factor to D = 0).In Fig. 2, we show the QFI H(J) as a function of J for a distance 
between the spins measured r ∈ {1, 2, 3, 4, 5, 6,∞} . We show H(J) only for positive J, because when D = 0 the 
QFI is even in J, H(J) = H(−J) . This directly arise from the structure of the Hamiltonian in Eq. (1), because 
when D = 0 the difference between H(J) and H(−J) is just a global phase. The behavior of H(J) is qualitatively 
the same regardless the distance. In particular all curves show a divergence for J = ±1 . This implies that H(J) is 
strongly affected by the phase transition from the ferromagnetic to the paramagnetic phase of the spin chain and 
the system is an excellent sensor in this region. To understand if the phase transition is detectable in practice, 
we also studied the FI F(J) of magnetization measurement. The general behavior of F(J) and H(J) is very close, 
with the same symmetry, F(J) = F(−J) and the same divergences at J = ±1 , though they differ quantitatively. 
For this reason, we show the ratio between these two quantities, termed saturation and defined as

(30)ρ2(∞) = Diag[a+, c, c, a−].

(31)H(�) = F(�) = 2
∂��σ

z�2

1− �σ z�2
,

Figure 2.   (a) QFI of coupling constant J for different values of r. (b) Saturation associated to J. S(J) is always 
above 0.9. In the limit of infinitely distant spins H(J) = F(J) . (c,d) Ratios between the (Q)FI for different 
distances and the limiting QFI of infinitely distant neighbors R(H)F(J) . For H(J) and F(J) the optimal distance 
depends differently on J. The anisotropy parameter is γ = 1 and the DM factor is D = 0 . Different curves and 
colors are associated to different values of the distance between the two spins measured r.
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In the top right panel of Fig. 2, we show S(J) for different r. As mentioned above, S(J) = 1 for r → ∞ , and it 
remains very high ( S(J) � 0.9 ) for the entire range of distances we explored ( 1 ≤ r ≤ 6 ). We conclude that is 
feasible to extract a large part of information from the Ising spin chain through a magnetization measurement. 
To understand if there is an optimal distance that maximizes the QFI and the FI we look at the ratios between 
the (Q)FI of the different neighbors and (Q)FI in the limit of infinitely distant spins, i.e. the quantities

which is shown in the lower panels of Fig. 2. From the lower left panel (i.e. QFI ratios), we see that the optimal 
distance between the measured spins depends on the value of J itself, and in turn on the value of the external 
magnetic field. In the ferromagnetic phase (i.e. J < 1 ) and for 0 < J � 0.9 , the optimal choice is to measure very 
distant spins ( r → ∞ ), whereas in the region from J ≈ 0.9 to J = 1 we have the opposite, i.e. the optimal choice 
is to measure two nearest neighboring spins ( r = 1 ). In the paramagnetic phase, from J = 1 to a value close to 
J ≈ 1.25 the optimal distance is r = 5 , while for higher values of J the optimal distance is r = 4 . Concerning 
the FI, we see from the lower right panel of Fig. 2 that also in this case the optimal distance depends on J. In the 
paramagnetic phase, in the region close to J = 1 , upon the distances analyzed, the optimal distance is r = 6 , then 
up to a value close to J = 1.4 it becomes r = 5 and after this value it goes again to r → ∞ . In this phase, close 
to J = 1 , we can notice an even/odd effect such that the curves for r = 3 and r = 4 and the curves for r = 5 and 
r = 6 are almost paired. A similar effect is present also in the ratios for the QFI, but less marked. Comparing 
the lower panels of Fig. 2, another emerging feature is that the optimal distances to optimize FI and QFI are in 
general different for a given value of J.

After the analysis of the Ising model, we now study the impact of the DM interaction. For the sake of concrete-
ness, we focus on the specific case of γ = 1 and D = 0.3 . Notice also that due to the structure of the Hamiltonian, 
what matters is the relative sign between J and D and the phenomenology observed for positive (negative) J and 
D > 0 is the same observed for negative (positive) J and D < 0 . Hence, for D  = 0 we have to analyze the behavior 
of the QFI for positive and negative J, because we could expect it to be different. In the top panels of Fig. 3, we 

(32)S(J) =
F(J)

H(J)

(33)RH (J) =
H(J; r)

H(J;∞)
; RF(J) =

F(J; r)

F(J;∞)
,

Figure 3.   (a,b) QFI of the coupling constant J. (c,d) Saturation S(J) associated to the coupling constant J. In the 
limit of infinitely distant spins H(J) = F(J) . All the plots in figure are as J varies. The anisotropy parameter is 
γ = 1 and the DM factor is D = 0.3 . The different curves are associated to the different values of the distance 
between the two spins measured r.
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show the H(J) as a function of J for different spin distances r ∈ {1, 2, 3, 4, 5, 6,∞} . The first thing to notice is that 
the QFI is no longer even in J, whereas the general behavior of the curves is nearly independent on r, as it happens 
for D = 0 . The two divergences at J = ±1 are still present, but in this case a bump appears on the right of the 
divergence at J = −1 . These features appear also for the FI and in turn, independently on D, the FI and the QFI 
are very close. These properties are reflected in the plot of the saturation S(J), in the lower panels of Fig. 3, which 
is always above S(J) ≈ 0.84 . In order to find for the optimal spin distance in the presence of DM interaction, we 
look at the ratios between the QFI (FI) for different spin distances and the that associated to infinite distance 
(i.e. RH(F)(J) ), see the top panels of Fig. 4. Also in presence of DM interaction the optimal distance depends on 
J. In the region around the value J ≈ −2 , the optimal distance is r = 1 , then for a very short interval r = 4 and 
after up to J = −1 it is r = 5 . In the ferromagnetic phase, from J = −1 to a value close to J ≈ −0.85 the optimal 
distance is r = 1 and then it is r = ∞ up to another value of J close to J = 0.75 . After that the optimal distance 
is r = 6 until J = 1 . For J > 1 the optimal distance is r = 1 up to a value of J close to J = 1.05 then it is r = 5 . 
Comparing these ratios to those for Ising model (Fig. 2), we can see two interesting features arising from the 
presence of the DM interaction. The first one is that the peaks associated to r = 3 , r = 4 , r = 5 and r = 6 in the 
paramagnetic phase, close to J = 1 , are higher respect to the case without DM interaction for J < 0 and lower 
than the case without DM interaction for J > 0 . This is a general trend observed for all the values of γ and D 
studied (see also Appendix A). In particular, the higher is the value of D, the higher is the increase respect to 
the case D = 0 . The other interesting feature is that for J < 0 the curves associated to r = 4 , r = 5 and r = 6 are 
higher than the curve for r = ∞ . Concerning the ratios of FI, the lower panels of Fig. 4 show that starting from 
J ≈ −2 the optimal distance is r = ∞ up to a value of J close to J ≈ −1.2 then until J = −1 it is r = 5 . In the 
ferromagnetic phase, the optimal distance is r = ∞ up to a value of J close to J = 0.85 after that it is r = 6 until 
the phase transition. In the paramagnetic phase, very close to J = 1 the optimal distance is r = 1 , then it almost 
immediately changes to r = 6 , whereas approaching J = 1.1 it becomes r = 5 . Comparing these ratios with those 
of the the Ising model, we see the same feature for the peaks in the paramagnetic phase that is observed for the 
QFI. Also for the ratios of the FI with D = 0.3 in paramagnetic phase there is a loss in the peaks close to J = 1 
for the curves associated to r = 3 , r = 4 , r = 5 and r = 6 , respect the analogue curves for D = 0 . Instead there 
is a gain for the peaks close to J = −1 . Another interesting feature is that, as for the QFI, in the FI associated to 

Figure 4.   (a,b) Ratios between the QFI for two spins at distance r and QFI in the limit of infinitely distant 
neighbors, RH (J) as a function of J and for different r. As it was without DM interaction, also in this case the 
optimal distance depends on J. (c,d) Ratios between the FI of the different neighbors and FI in the limit of 
infinitely distant neighbors, RF(J) as a function of J and for different r. The anisotropy parameter is γ = 1 and 
the DM factor is D = 0.3.
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the ferromagnetic phase when J > 0 the optimal distance close to the phase transition is r = 6 , not r = ∞ as it 
is for the Ising model without DM interaction.

From the comparison between the results with and without DM interaction, few general conclusions may 
be drawn. The first is that the optimal distance for the FI and the QFI are, in general, different. This could be 
expected from the fact that, except for the limit of infinitely distant spins, the QFI depends on all the correlation 
functions �σ x

i σ
x
i+r� , �σ

y
i σ

y
i+r� and �σ z

i σ
z
i+r� , whereas the FI depends only on �σ z

i σ
z
i+r� . In addition, we have that the 

optimal distance for both the FI and the QFI depends on all the Hamiltonian parameters, J, γ and D, therefore 
we can not define a universal optimal distance for metrological applications.

Multi‑parameter estimation for quasi local measurements
After having analyzed the bounds to precision for the coupling constant J, we now move to study the impact of 
the distance r between the measured spins on the precision of all Hamiltonian parameters. First of all, we notice 
that being the density matrix of the system a real X-state the Uhlmann matrix vanishes (see Appendix B). Actu-
ally, the symmetric logarithmic derivatives for the different parameters do not commute, but they do weakly, 
i.e. the commutators have vanishing expectation value, such that the system is asymptotically classical67. As a 
consequence, it is possible to perform the joint estimation of the Hamiltonian parameters J, γ and D without any 
additional intrinsic noise of quantum origin.

Let us now analyze the degree of sloppiness of the model, i.e. whether the state of the system depends on J,γ 
and D separately or only on a combination of them. This may investigated by looking at the determinant of the 
QFI matrix, see Fig. 5.

It is immediately clear that, except close to the phase transitions (J = ±1) , for both D = 0 and D = 0.1 the 
determinant is negligible when 1 ≤ r ≤ 6 . This means that, away from the phase transitions, the system exhibits a 
high degree of sloppiness, so that we can consider it sloppy for any practical purposes. Even close to J = ±1 such 
degree is still very high for finite values of r, while for r = ∞ , there are wide intervals of J for which the deter-
minant is significantly different from zero. In these regions the degree of sloppiness is much lower than for the 
other neighbors, therefore r = ∞ is the most suitable choice for the practical joint estimation of the Hamiltonian 
parameters. This behavior holds regardless of the value of D, which has a weak effect on the specific position and 
width of the intervals but not on their presence. This suggests that the correlations among the measured spins 
influence the degree of sloppiness of the system, and this influence can be so strong to decrease the number of 
effective parameters of the system. For infinitely distant spins the reduced density matrix is diagonal and the 

Figure 5.   Determinant of the quantum Fisher matrix detH as a function of J. (a,b) Ising model without DM 
interaction. (c,d) Ising model with DM interaction and D = 0.1 . Different curves and colors are associated to 
different values of the distance r between the two measured spins; r = ∞ correspond to the limit of infinitely 
distant spins.
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QFIM is not affected by correlations (see Eq. (2)), and the intervals of J for which the system is not sloppy are 
significantly wider. Nevertheless there are still regions in which the determinant is nearly zero also for r = ∞ , 
and we conclude that the degree of sloppiness does not depend only on the correlations among the spins, but it 
is a characteristic of the model itself.

Since the sloppiness of the system is large, one may wonder which is the relevant parameter governing the 
behavior of the system. To this aim it is helpful to analyze the ratio between the QFI of, say, the coupling constant 
J and the trace of the entire QFI. In Fig. 6, we show the ratio HJJ/Tr[H] as a function of J for the different values of 
r, either with or without DM interaction. These plots show that HJJ represents the main contribution to the trace 
in the most part of the J domain. Where it is not, the trace value is very low. This implies that J carries the most 
relevant part of the information about the system behavior, and justify our choice to focus our single parameter 
study on the QFI and the FI associated to J.

The last step of our work is to study the lower bound to precision for the joint estimation of the Hamiltonian 
parameters. As explained in “Quantum and classical Fisher information theory”, this bound is provided by the 
trace of the inverse of the of Tr[H−1] as a function of J and different r, either with and without DM interaction.

For the Ising model without DM interaction the bound associated to r = 1 is not present and the bound 
associated to r = ∞ disappear for |J| � 1.65 . These facts depends on the behavior of the determinant, which is 
too low in these cases to invert numerically the Fisher matrix. From Fig. 7 we can see how there is no monoto-
nicity respect r either for D = 0 or D = 0.1 . The most relevant feature in these plots is the order of magnitude 
for the different neighbors. In the ferromagnetic phase ( |J| < 1 ) of the Ising model without DM interaction, the 
difference between the bound for r = ∞ and the bounds associated to the other distances oscillates between one 
or two order of magnitude. In the paramagnetic phase the difference is lower and moving away from the phase 
transition it decreases up to |J| ≈ 1.6 , when the bound for r = ∞ start to cross the the others. For the Ising model 
with D = 0.1 , the general behavior of the bounds is the same in ferromagnetic phase and for J < −1 , but in this 
region the crossing value is J ≈ −1.2 . In the paramagnetic phase, for J > 1 , the difference between the bound 
associated to r = ∞ and the bounds associated to the other distances varies from one to two orders of magni-
tude. To generalized what we just stated, we also analyzed the effects of DM interaction up to D = 0.3 and in this 
range the bounds for J > 0 are not significantly affected by D. On the other hand for J < 0 , the increase D the 
makes crossing value to shift to higher values of J, whereas the value of the bound for r = ∞ at J = −1 decreases.

Figure 6.   HJJ/Tr[H] as J varies. (a,b) Ising model without DM interaction. (c,d) Ising model with D = 0.1 .– 
Different curves are associated to different distances between the two spins measured r. r = ∞ correspond to 
the limit of infinitely distant spins.
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Conclusions
In this paper, we have addressed quantum metrology in critical spin chains with anisotropy and Dzyaloshin-
skii–Moriya (DM) interactions, and we have shown how local and quasi-local measurements may be exploited 
to characterize global properties of the systems. In particular, we have shown that using local measurements 
collective phenomena such as different phases of the physical model can be discriminated from the analysis of 
a single element of the system. This implies that for systems described by the Hamiltonian ((1)), quantum cor-
relations do not prevent the precise characterization of the system itself by measuring only one of its sub-parts.

We have also shown that upon measuring just two spins at a given distance r, one may exploit correlations 
to precisely characterize the system, i.e. to estimate the Hamiltonian parameters J, γ and D, and that this gain 
persists even for infinitely distant spins, where correlations vanish. In particular, we have analytically shown that 
for two infinitely distant spins, the QFI and the FI for magnetization measurements coincide and are twice the 
corresponding single spin quantities.

For a general measurement involving two spins, the optimal distance between them depends on all the Ham-
iltonian parameters J, γ and D and on the external magnetic field applied to the system. Moreover, this distance 
is in general different for the QFI and the FI of a magnetization measurements. In other words, the correlations 
among the spins may have a beneficial or a detrimental role depending on the Hamiltonian parameters and on 
the distance between the measured spins r.

We have also addressed the joint estimation of all the Hamiltonian parameters, and have shown that it is 
possible without intrinsic noise, regardless the distance between the measured spins (i.e. the Uhlmann matrix is 
vanishing ∀r ). We have then studied the determinant of the QFI matrix in order to quantify the sloppiness of the 
system, and have shown that it is strongly influenced by the distance between the measured spins. Our results 
show that for 1 ≤ r ≤ 6 the degree of sloppiness of the system is large, except close to the phase transitions of 
the system. On the other hand, in the limit of infinitely distant spins, there are wide intervals in J for which the 
sloppiness is low. To conclude the work, we have analyzed the lower bounds to precision in the multi-parameter 
case, finding out that the optimal distance is r = ∞ , since the associated bound reaches the lowest values inde-
pendently on the strength of the DM interaction.

Data availibility
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.

Figure 7.   Logplot of Tr[H−1] as a function of J. (a,b) Ising model without DM interaction. (c,d) Ising model 
with D = 0.1. Different curves are associated to different distances between the two spins measured r. r = ∞ 
correspond to the limit of infinitely distant spins.
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Appenidx A: Anisotropic XY model with γ = 0.25

To support what we state in “Quasi local measurements and the role of 
correlations”, we provide further examples of the behavior of the (Q)FI associated 
to different values of γ and D. We followingly report the results for the quasi-local 
estimation J, for γ = 0.25 without DM interaction, D = 0 , and with DM factor D = 0.1 . 
The main characteristics of the (Q)FI remain the same independently on the values 
of γ and D, promoting what we observed in “Quasi local measurements and the 
role of correlations” to more general considerations about our anisotropic model. 
A magnetization measurement is then capable to extract a consistent part of the 
information present in the system, for all the neighbors studied. Nevertheless, 
there are still differences with respect to the Ising model, since the (Q)FI assumes 
higher values with γ = 0.25 , with respect to γ = 1 (see Figs. 8, 9, and 10).Appenidx B: 
Uhlmann matrix for real X‑states
In this appendix, we prove that the Uhlmann matrix associated with a real X-state is always a null matrix. To do 
so, we start from the notions about the X-states contained in66. A general X-state ρ(�) has a matrix representa-
tion in the form

It can be decomposed as ρ(�) = ρ1(�)+ ρ2(�) . Where

In these expressions ηα and η̃α are defined by

(34)ρ(�) =







ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ32 ρ33 0
ρ41 0 0 ρ44






.

(35)ρ1(�) =
1

2

3
∑

α=0

ωαηα ρ2(�) =
1

2

3
∑

α=0

ω̃αη̃α .

Figure 8.   (a) QFI of coupling constant J, H(J). (b) Saturation associated to J, S(J). (c,d) Ratios between the (Q)
FI of the different neighbors and QFI in the limit of infinitely distant neighbors R(H)F(J) . All the quantities are 
plotted as J varies, γ = 0.25 and D = 0 . Different curves represent different distances between the two spins 
measured r. r = ∞ correspond to the limit of infinitely distant spins.
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And the ωα and ω̃α by

If ρ(�) is real (as in our case), we have ρij = ρ∗
ji = ρji , so

Also the Symmetric Logarithmic Derivative associated to ρ(�) can be decomposed as L� = L
(1)
�

+L
(2)
�

 , 
where L (1)

�
 is the SLD associated to ρ1(�) and L (2)

�
 the SLD associated to ρ2(�) . L (1)

�
 and L (2)

�
 can be written as

(36)

η0 = |00��00| + |11��11|,

η1 = |00��11| + |11��00|,

η2 = i|11��00| − i|00��11|,

η3 = |00��00| − |11��11|,

η̃0 = |01��01| + |10��10|,

η̃1 = |01��10| + |10��01|,

η̃2 = i|10��01| − i|01��10|,

η̃3 = |01��01| − |10��10|

(37)

ω0 = (ρ11 + ρ44), ω1 = (ρ14 + ρ41),

ω2 = i(ρ14 − ρ41), ω3 = (ρ11 − ρ44),

ω̃0 = (ρ22 + ρ33), ω̃1 = (ρ23 + ρ32),

ω̃2 = i(ρ23 − ρ32), ω̃3 = (ρ22 − ρ33).

(38)
ω1 = 2ρ14 = 2b−, ω2 = 0,

ω̃1 = 2ρ23 = 2b+, ω̃2 = 0.

Figure 9.   (a,b) QFI of the coupling constant J. (c,d) Saturation S(J) associated to the coupling constant J. In 
the limit of infinitely distant spins H(J) = F(J) . All the plots in figure are as J varies, γ = 0.25 and D = 0.1 . The 
different curves are associated to the different values of the distance between the two spins measured r.
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where

When ρ(�) is real we have f2 = f̃2 = 0 , since ω2 = ω̃2 = 0 , and therefore the SLD L (�) = L
(1)
�

+L
(2)
�

 is sym-
metric and has a X structure. This is the main point for the following. Up to now we used the formalism of the 
single parameter estimation for simplicity ( � is scalar). From now on we use the formalism of the multi-parameter 
estimation, so now � is the vector of the parameters to be estimated. Now let’s look for the Uhlmann matrix (Eq.
(26)). When ρ(�) is real and has an X structure, we can write the SLD associate to a generic parameter µ ∈ � and 
the SLD associate to a generic parameter ν ∈ � as

(39)

L
(1)
�

=

3
∑

α=0

fαηα

L
(2)
�

=

3
∑

α=0

f̃αη̃α .

(40)

f0 =
ω0(∂�ω0)−

∑

i ωi(∂�ωi)

ω2
0 −

∑

i ω
2
i

,

fi =
∂�ωi − f0ωi

ω0
,

f̃0 =
ω̃0(∂�ω̃0)−

∑

i ω̃i(∂�ω̃i)

ω̃2
0 −

∑

i ω̃
2
i

,

f̃i =
∂�ω̃i − b̃0ω̃i

ω̃0
, i = 1, 2, 3.

Figure 10.   Ratios between the (Q)FI of different neighbors and (Q)FI in the limit of infinitely distant 
neighbors, R(H)F(J) . All the quantities are plotted as J varies, γ = 0.25 and D = 0.1 . Different curves represent 
different distances between the two spins measured r. r = ∞ correspond to the limit of infinitely distant spins.
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Now to find the elements of the Uhlmann matrix we can just apply

Performing the algebra we find the diagonal elements Mii of the matrix inside the trace in the equation above 
(Eq.(42)). These are

so M11 = −M44 and M22 = −M33 . For this reason taking trace of M we obtain

This means that for the systems described by a real X-state the Uhlmann matrix is always null and the Symmetric 
Logarithmic Derivatives commutes weakly among each other. For this reason all the systems of this kind are 
classified as asymptotically classical systems67.
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