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Abstract—Machine Unlearning is an emerging paradigm for selectively
removing the impact of training datapoints from a network. Unlike existing methods that
target a limited subset or a single class, our framework unlearns all classes in a single round.
We achieve this by modulating the network’s components using memory matrices, enabling
the network to demonstrate selective unlearning behavior for any class after training. By
discovering weights that are specific to each class, our approach also recovers a representation
of the classes which is explainable by design. We test the proposed framework on small-
and medium-scale image classification datasets, with both convolution- and Transformer-based
backbones, showcasing the potential for explainable solutions through unlearning.

DEEP LEARNING MODELS and web datasets
necessitate protecting user privacy and supporting
the “right to be forgotten” [1]. Among other
techniques which can alter the internal knowl-
edge representation of a model, like knowledge
distillation, model pruning, or incremental learn-
ing, Machine Unlearning [2] emerges as the sole
technique which can delete private training data.
Machine unlearning approaches [3]–[5], indeed,
remove traces left by specific datapoints from
trained models. Their goal is to ”untrain” the
model, eliminating the impact of unwanted dat-
apoints and reaching weights similar to those of

models trained without such data. For instance,
entire classes can be removed from classifica-
tion networks [6]–[8], which is useful in cases
like face recognition. While existing machine
unlearning approaches are limited to unlearning
one or few classes jointly, our work advances by
unlearning all classes orthogonally and in a single
fine-tuning round. In particular, our approach can
unlearn all classes in an orthogonal fashion, en-
suring the user a customizable, final model which
can behave as a model unlearned on a single class
of choice, imposed by the user at runtime. This is
obtained by exploiting the mapping between inner
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Figure 1. The proposed single-round multi-class unlearning setting, which can unlearn any class in a single
untraining round. WF-Net requires less computational resources and supports explainability by-design.

network components (e.g., convolutional filters in
a Convolutional Neural Network (CNN) or atten-
tive projection in a Vision Transformer (ViT))
and output classes [9], and builds a Weight-
Filtering layer which can selectively turn on and
off those inner components to accomplish the
desired unlearning behavior on a class of choice
(Figure 1). This is achieved by encapsulating
existing network operators, avoiding alterations to
the network structure. By training the proposed
Weight-Filtering layers, we essentially uncover
the connections between the inner network com-
ponents and output classes. This not only enables
effective unlearning but also provides an inher-
ently interpretable representation, finally gaining
explainability properties through unlearning. Ex-
perimentally, we validate the proposed approach,
named WF-Net, on small-scale and medium-scale
image classification datasets and demonstrate its
applicability to a variety of image classification
architectures, including both CNNs and ViTs and
to the more challenging case of unlearning with-
out having access to the training set.

Contributions. To sum up, the contributions of
this work are as follows:

• Our framework enables the simultaneous un-
learning of multiple classes in a single round
for an image classification network. This ap-
proach significantly reduces computational re-
quirements during untraining and testing, of-
fering greater flexibility compared to existing
methods.

• Our approach encapsulates inner network com-
ponents like convolutional filters or attentive

projections into Weight-Filtering layers, which
can selectively activate or deactivate these
components to achieve the desired unlearning
behavior.

• Additionally, our method implicitly discovers
the underlying relationships between convolu-
tional filters or attentive projections and output
classes and therefore allows to obtain a repre-
sentation that can be employed for explainabil-
ity purposes.

• We conduct experiments on small and
medium-scale image classification datasets,
employing both CNN-based and ViT-based ar-
chitectures. The results demonstrate the effec-
tiveness of our proposed approach.

RELATED WORK
Machine unlearning seeks to eliminate spe-

cific or sensitive data from pre-trained models,
ideally without necessitating a full retraining pro-
cess. In this realm, Cao et al. [3] were pioneers in
tackling the machine unlearning problem within
traditional machine learning algorithms. How-
ever, their approach exhibited limited advantages
compared to retraining from scratch.

More recent efforts have been concentrated
on incorporating unlearning into deep neural
networks. While Izzo et al. [4] introduced a
technique for removing datapoints from linear
models, other works involve a data grouping
during training, enabling seamless unlearning by
restricting the impact of datapoints on the model
learning process [10]. Another approach, instead,
is that of monitoring the impact of training data-
points on model parameters, thereby minimizing

2 IEEE Intelligent Systems



label

K𝑊

WF Layer

(CNN)

=

label

WF Layer 

(Transformer)

= .

L
IN

E
A

R

E
M

B
E
D

D
E
D

 

P
A

T
C
H

E
S

L
A

Y
E
R
 N

O
R
M

A
T
T
E
N

T
IO

N

M
L
P

L
A

Y
E
R
 N

O
R
M

x L
                         

         
 
            

                         

         
 
            

                         

         
 

 
  

            

                         

         
 
            

                         

                  

                         

                                           

                  

                         

                  
                         

         
 
            

                         

         
 
            

                         

         
 

 
  

            

                         

         
 
            

Figure 2. Application of Weighted-Filter layers for single-shot multiple class unlearning on CNN-based and
ViT-based architectures.

the amount of retraining required when a deletion
request is received [5]. However, all the afore-
mentioned methods lead to high storage costs.
Another line of research proposed to employ ef-
ficient partitioning of training data. Among these
works, Ginart et al. [11] introduced a method for
removing points from clustering by dividing the
data into independent partitions, eventually using
a distinct trained model for each partition.

Recent unlearning paradigms involve the
removal of entire classes from a pre-trained
model [6]–[8]. For example, Golatkar et al. [12]
presented a technique for removing information
from intermediate layers of deep learning net-
works via stochastic gradient descent, that can
be also extended to the final activation of the
model [13]. Tarun et al. [14], instead, introduced
an effective class-wise unlearning framework in
which an error-maximizing noise matrix for the
forget class is learned and then used along with a
subset of data the model should retain to update
network parameters.

Differently from previous works, we propose
to unlearn all classes of a pre-trained model,
orthogonally and in a single untraining stage,
thus avoiding the need to save multiple unlearned
models.

PROPOSED METHOD
Preliminaries

We consider a set of input data D =
{(xi, yi)}ni=1 with n number of samples, where
xi is the i-th sample and yi is the corresponding
label belonging to a set of classes C. Traditional
training aims at identifying a set of weights

ŵ ∈ W via an iterative update rule wt+1 = wt−
g(w, x′), where g(·, x′) is a stochastic gradient of
a fixed loss function. Once the model has reached
convergence and given a set of datapoints Df

drawn from the same distribution of D, machine
unlearning aims at identifying an update to ŵ in
the form

ŵt+1 = ŵt + g(z′f ),with ŵ0 := ŵ and z′f ∼ Df

(1)
so that Df is to be unlearned. In other words,
the final set of weights of the unlearned model
should be close to a model trained from scratch
on D \ Df . Depending on the use case, Df can
be conceived as containing a single datapoint
(i.e., item removal), a group of data with similar
features or labels (i.e., feature removal), or an
entire class (class removal) [2].

Class removal. Forgetting data from single or
multiple classes in a trained model presents chal-
lenges. Unlearning a class typically involves mul-
tiple passes over its datapoints, which is compu-
tationally costly compared to item or feature re-
moval. Further, when unlearning different classes
is required, the training procedure described in
Eq. 1 must be repeated for each class as unlearn-
ing one class inevitably shifts ŵ towards a config-
uration in which recovering a previously unlearnt
class and then unlearning a new one becomes
both cumbersome and inefficient. In the case
where one wants a model to selectively unlearn
all the Nc classes on which it has been trained,
this requires repeating the procedure Nc times
starting from ŵ and store as many independent
checkpoints.
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Algorithm 1 General forward step of a WF model
Require: a WF Model M comprising a sequence

of layers L, an input tensor Xin, a label Yunl

Ensure: a predicted Label Yout ← M(Xin, Yunl)

Initialize X0 ← Xin

for i ∈ N|L| do
l← L[i]
ŵl ← αl[Yunl]⊙ ŵl

Xi+1 ← l(Xi, ŵl)
end for
return argmax(X|L|)

Single-shot multiple class unlearning
Leveraging the known association between

internal components and classes [9], our unlearn-
ing procedure spurs the model to recover these
connections and store them in a learnable memory
matrix. This is obtained by encapsulating internal
network components in a Weight-Filtering (WF)
layer, enabling orthogonal removal of each class
in a single untraining step and resulting in a single
final model checkpoint. At test time, one can
simply select one of the Nc classes and instruct
the model to behave as if it was unlearned on the
class of choice. An overview is shown in Figure 2.

Intuition and single-class scenario. We intro-
duce WF-Net with the description of the case
in which we restrict to unlearning a single class
only. Given a model M : X → Y , a layer l and
its set of learned parameters ŵl, we encapsulate
l into our WF-layer. The WF then incorporates
the original layer and a learnable memory vector
αl having a shape of 1 × K, where K is the
cardinality of the original learnable weights. The
memory vector is meant to mask the learned
weights ŵl and filter the information reaching the
following deeper layers. The parameters of αl are
real numbers, which are squeezed into the interval
[0, 1] by applying a sigmoid function.

Concretely, αl modulates the contributions of
the inner weights of the layer, thus obtaining a
modified layer l̂(·) which behaves as

l̂(·) = l(·, αl ⊙ ŵl). (2)

The modified layer equals the original layer when
all the elements of αl are set to 1. Analogously,
αl can act as an unlearned layer, by dropping

some of the α scores to 0. During this procedure,
the model’s original parameters are kept frozen
(only αl is actually trained). Recalling the depen-
dency between inner components and classes, a
good unlearning procedure should then drop the
minimum, yet optimal, set of α scores to 0, to
completely forget the objective, unlearning class.
Multi-class scenario. While the above-
mentioned approach can provide an alternative
to classic unlearning for the single-class case, it
does not solve the time and storage issues arising
when dealing with more classes is required.
However, since our procedure exclusively
relies on learnable memory vectors, it can be
easily extended to the multi-class scenario. By
extending αl to Nc × K matrices, each row
vector can memorize class-specific information.
At forward time, given an unlearning class label,
it will be sufficient to index the corresponding
row in αl and apply the layer (see Algorithm 1).
Finally, coupled with a suitable untraining
protocol, this allows performing a single
procedure to unlearn all classes, orthogonally.
Finally, it is noteworthy to mention that our
approach could be extended to multi-label
datasets as well, by selecting a random ground-
truth label as row selectors for the αl matrices
when computing the unlearning loss.

Applications to image architectures
To prove its generalization capabilities, we

apply our Weight-Filtering to both CNN- and
Transformer-based architectures.

CNNs. In CNN-based architectures, we mask
both the convolution kernels and biases, using
the output channels as the masking granular-
ity. Given a convolutional layer l with kernels
ŵc

l ∈ RCout×Cin×kH×kW and biases ŵb
l ∈ RCout ,

we apply two weighting matrices over each out-
put channel, αc

l ∈ RNclasses×Cout over ŵc
l and

αb
l ∈ RNclasses×Cout over the biases. This results in

masking the Cout convolutive filters, with shape
Cin × kH × kW and having Cout activations,
weighted by a selected row of αc

l . As well, each
of the Cout biases is weighted by a selected row
of αb

l .

Vision Transformers. In the case of a
Transformer-based network, we instead mask the
weights ŵc

l ∈ RFin×Fout and the biases ŵb
l ∈ RFout
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of the linear projection generating queries, keys,
and values of each attentive layer l.

Training
Taking inspiration from previous works [15],

we employ two classification loss functions,
namely an unlearning loss Lf and a retaining loss
Lr. The first one encourages the model to forget a
specific class cf , while the second one measures
the capacity to retain the information about all the
other classes (cr ∈ C \ cf ). We implement both
of them as cross-entropy loss functions.

To avoid the shortcomings of the negative
gradient approach [12], obtained by inverting the
sign of the gradient, we suggest minimizing the
following objective, in which we employ the
reciprocal of the forget loss:

L = λ0

∑
(x,y)∈Dr

Lr (M(x), y)+

λ1

∑
(x,y)∈Df

1

Lf (M(x), y)
. (3)

Consequently, minimizing Eq 3 towards zero,
implies Lf (·) to be maximized, and Lr(·) to be
minimized.

Regularization. To ensure that only a few ele-
ments of αl are dropped to zero during untrain-
ing, we add a regularization term, enforcing the
elements of αl to be nearly all active, except for a
closed number of its parameters, which will serve
as gates. We, therefore, add a regularizer R (α̂)
to the final loss function.
Label expansion. To achieve simultaneous un-
training of all classes, we avoid physically split-
ting the dataset D into two retaining and un-
learning subsets Dr and Df , as each sample
of the dataset could be employed to unlearn its
designated class as well as to retain all the others.
Instead, given a randomly sampled mini-batch (of
length B), we split it into two halves, to obtain
B/2 images and labels which are employed for
unlearning and B/2 which are employed for re-
taining. Samples from the first half are employed,
together with their ground-truth label, as row
selectors for the αl matrices, and used to compute
the unlearning loss. The second half, instead, is
paired with randomly selected rows of αl, and
employed to compute the retaining loss with its
ground-truth label.

It shall be noted that during optimization,
every image of class c will unlearn over the
same row of αl (e.g., class 0 will unlearn over
the 0-th row). When retaining, every class will
randomly retain on one of the other rows, thanks
to the random selection in αl. This implies that
every class will have full impact over its row
while having considerably less impact for the
retaining rows. To compensate for this disparity,
we replicate the “retaining” component of the
mini-batch χ times, pairing it with differently
sampled labels, so that every retaining image has
a χ-times greater impact. As a result, the retaining
loss has a shape of (χ,B/2), while the untraining
loss has a shape of (B/2, ). The last step is to
average both losses.

EXPERIMENTAL EVALUATION
Datasets

We perform experiments on three well-known
image classification datasets: MNIST, CIFAR-10,
and ImageNet. MNIST consists of 60,000 training
and 10,000 test images, each corresponding to
one of the 10 classes representing handwritten
digits. CIFAR-10 contains 60,000 images across
10 classes, with 6,000 images per class, split into
training (50,000) and validation (10,000) sets.
ImageNet comprises 1.28 million training images
and 50,000 validation images, each associated
with one of the 1,000 classes of the dataset. Eval-
uation on ImageNet involves a randomly selected
subset of the validation set with 5,000 images,
featuring five images for each class.

Evaluation Metrics
We evaluate WF-Net in terms of evaluation

metrics that measure the unlearning capabilities
of the model as well as metrics that estimate its
level of explainability.
Accuracy on retain and forget sets. We employ
accuracy scores to measure the correctness of
predictions for both retain and forget sets. Ideally,
the accuracy on the retain set should be close to
the one of the original model before unlearning,
while the accuracy on the forget set should be
close to zero or equal to the accuracy of a model
re-trained without samples of the forget class.
Relearn Time (RT). It measures the number
of epochs taken by the model to regain full
accuracy on a class from the forget set. Following
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previous works [14], we train the model on 500
random samples from the training set in each
epoch, stopping training if the model does not
reach the original accuracy after 100 epochs.
In our experiments, we report the relearn time
averaged over all classes of the dataset, showing
in parentheses the number of classes the model
was unable to relearn after 100 epochs.
Zero Retrain Forgetting (ZRF) score. It esti-
mates the randomness of the unlearned model by
comparing it with a randomly initialized network.
In particular, this metric compares the output
probabilities of the two models using a Jensen-
Shannon divergence (JS). Following previous
literature [15], we compute the ZRF score as
follows:

ZRF = 1− 1

Nf

Nf∑
i=0

JS (M(xi),M
∗(xi)) , (4)

where M is the unlearned model, M∗ is its
randomly initialized version, xi is the i-th sample
from the forget set, and Nf is the number of
elements of the forget set. The final score lies be-
tween 0 and 1, where a score near 1 corresponds
to a completely random behavior of M .
Insertion score. The proposed metric measures
explainability map goodness [17]. In a few words,
it computes the rise in the confidence score as
the image pixels are iteratively reactivated, by
relevance, from a baseline (usually a 0 tensor). In
our case, αl matrices contain key information on
forgotten classes. Unlike the original implementa-
tion, at each iteration, we reactivate a percentage
of elements in each αl sorted by relevancy, evalu-
ate the network’s confidence score, and normalize
it by baseline model’s confidence score, i.e. the
corresponding model before untraining. Eventu-
ally, the average AUC score is taken. The closer
the score is to 1, the more significant the features
selected by the αl matrices are.
Deletion score. It represents the counterpart of
the insertion score, as it measures the drop in
score as the image pixels are zeroed, by relevance,
at each iteration until the initial picture becomes
a baseline tensor. In our case, we again maneuver
our α scores to show the correlation between
their values and the information about the un-
learned classes. To compute the score, we start
from a non-unlearned WF-Net and, iteratively,

drop a percentage of them to 0, from most rele-
vant to least relevant ones. Each iteration records
the normalized confidence score of the WF-Net
for unlearned classes, relative to the baseline
model’s confidence score. The average AUC of
the resulting curve represents the final score.

Implementation and Training Details
We conduct our investigation with various

backbones with a model size compatible with
both middle and medium-scale datasets, namely
VGG-16, ResNet-18, and ViT in its Tiny (ViT-T)
and Small (ViT-S) versions.

During untraining, we initialize all αl to 3,
so that σ(α) ≃ 1 and have a non-zero gradient
during the initial stages of learning. We employ
a fixed (un)learning rate of 100, which allows us
to escape from the minimum reached during the
pre-training, and a fixed mini-batch size of 128.
In the CNNs case, we employ λ0 = 1, λ1 =
10, λ2 = 1. In the case of ViT we raise λ1 to
100. The label expansion factor χ = 3 in all the
cases, and eventually, we early stop the untraining
procedure with a patience of 10, evaluating the
validation loss 5 times per epoch.

Experimental Results
Unlearning performance. We start by assessing
the unlearning performance of our approach. Ta-
ble 1 shows results on MNIST, CIFAR-10, and
ImageNet training sets. We compare with the per-
formances of a model trained on the full training
set from scratch (termed as “original model”), and
with a collection of models trained without each
of the classes. We train these models only for
MNIST and CIFAR-10, due to the higher number
of classes in the ImageNet dataset. The average
performance of these models is termed “retrained
model”. Additionally, we implement two single-
class unlearning methods, namely random la-
bels [16] and negative gradients [12]. In the
former, we fine-tune the model using randomly
assigned labels for samples from the forget set,
while in the latter, the model is fine-tuned on the
forget set using negative gradients (i.e., fine-tuned
in the direction of gradient ascent). It is worth
noting that the unlearning phase of these two
methods is performed separately for each class.
For this reason, we do not report the results of
these methods on the ImageNet dataset.
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Table 1. Machine Unlearning results on MNIST, CIFAR-10 and ImageNet-1k, in comparison with original and retrained
models. The † marker indicates single-class unlearning methods.

MNIST CIFAR-10 ImageNet-1k

Accr ↑ Accf ↓ ZRF ↑ RT ↑ Accr ↑ Accf ↓ ZRF ↑ RT ↑ Accr ↑ Accf ↓ ZRF ↑

Original Model 99.6 99.6 48.0 - 93.0 93.0 48.3 - 71.2 71.3 0.35
Retrained Model 99.4 0.0 48.7 74.5 (5) 89.9 0.0 50.1 65.3 (5) - - -

Random Labels† 99.6 0.0 53.3 40.3 (0) 88.7 0.0 52.5 56.5 (5) - - -
Negative Gradients† 99.4 0.0 48.3 24.6 (0) 89.4 0.0 51.6 76.7 (7) - - -VGG-16

WF-Net 73.2 0.0 79.2 27.6 (1) 80.2 18.3 57.4 54.2 (5) 64.1 1.89 0.53

Original Model 99.6 99.6 47.0 - 93.9 94.0 48.0 - 70.5 70.3 0.35
Retrained Model 99.4 0.0 48.7 43.6 (0) 90.5 0.0 51.4 > 100 (10) - - -

Random Labels† 99.4 0.0 57.1 15.7 (0) 90.6 0.0 59.4 21.6 (0) - - -
Negative Gradients† 99.2 0.0 52.1 20.1 (0) 92.4 0.0 55.2 31.3 (3) - - -ResNet-18

WF-Net 94.0 9.68 63.1 22.7 (0) 79.7 9.25 63.9 94.3 (9) 64.4 1.47 0.40

Original Model 98.9 98.9 47.2 - 78.0 78.0 49.8 - 75.6 75.5 0.34
Retrained Model 99.0 0.0 50.2 71.4 (7) 71.2 0.0 67.6 52.2 (4) - - -

Random Labels† 98.3 0.0 48.7 81.9 (8) 73.2 0.0 57.7 83.5 (8) - - -
Negative Gradients† 98.4 0.0 54.6 71.6 (7) 74.4 0.0 50.1 81.7 (8) - - -ViT-T

WF-Net 93.5 0.0 47.4 > 100 (10) 73.5 0.0 59.8 > 100 (10) 68.0 2.51 0.44

Original Model 99.0 98.9 47.1 - 85.2 85.2 53.6 - 82.3 82.2 0.34
Retrained Model 99.0 0.0 49.5 91.5 (8) 75.5 0.0 61.3 51.1 (4) - - -

Random Labels† 99.5 0.0 50.4 74.1 (7) 74.8 0.0 50.8 75.0 (6) - - -
Negative Gradients† 99.6 0.0 52.3 44.1 (4) 75.5 0.0 51.7 61.7 (5) - - -ViT-S

WF-Net 94.0 0.0 48.0 91.0 (9) 74.7 0.0 59.7 81.1 (8) 69.2 9.46 0.45

As it can be observed, WF-Net exhibits a
proper unlearning behavior across all classes and
models. In particular, we notice that on MNIST
and CIFAR-10 it showcases a 0.0 accuracy on the
forget sets when trained with VGG-16, ViT-S and
ViT-T, underlying that the proposed strategy is
effective in removing the knowledge of a class of
choice, even without directly updating the model
weights and while managing the unlearning of
more classes concurrently. In terms of accuracy
on the retain set, instead, we observe a restrained
loss with respect to the performances of both
the full model and of the retrained model. For
example, on the ImageNet-1k dataset the CNN-
based versions of WF-Net only lose a few ac-
curacy points on the retain set compared to the
accuracy of the original model (e.g., from 70.5 to
64.4 with ResNet-18)1. With Transformer-based
architectures, instead, the loss in terms of retain
accuracy is slightly more evident (e.g., from 82.3
to 69.2 with ViT-S). When considering the ZRF
score, computed on the unlearned classes, we
can notice that the performance reached by our
approach is always higher than that of the original

1We noticed similar results also for larger backbones like
ResNet-50 and ResNet-101, with a retaining accuracy respec-
tively of 72.6 and 74.4 and a forget accuracy equal to 0.

model and generally in-line or higher than that
of the retrained model, underlying again that our
approach can properly unlearn.

Furthermore, our solution performs well also
against single-class unlearning methods, although
they require separate training for each class to
be unlearned. In particular, while in terms of
accuracy scores WF-Net performs slightly worse
than random labels and negative gradients, it
obtains significantly superior results in terms of
ZRF score in most cases further confirming the
unlearning capabilities of our solution. Consider-
ing instead the relearn time, our approach takes a
comparable or higher number of epochs to relearn
unlearned classes than all other models especially
when a ViT-based model is used as backbone.
Insertion and deletion scores. In Table 2 we
report the insertion and deletion scores, according
to the four model architectures. Modifying the
α values has an impact on the scores given to
images belonging to unlearned classes, and not on
images belonging to other classes. This highlights
that the proposed approach can identify filters and
attention weights which are responsible of the
identification of each class.
Filter visualizations. Finally, in Figure 3 we
qualitatively visualize the association between fil-
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Table 2. Insertion (Ins) and Deletion (Del) scores of the
WF-Net model.

MNIST CIFAR-10 ImageNet

Ins ↑ Del ↓ Ins ↑ Del ↓ Ins ↑ Del ↓

VGG-16 0.78 0.09 0.79 0.10 0.73 0.05
ResNet-18 0.79 0.05 0.69 0.06 0.75 0.04

ViT-T 0.90 0.07 0.88 0.05 0.60 0.04
ViT-S 0.90 0.08 0.88 0.14 0.75 0.04

ters (or attentive projections) and output classes,
as discovered by the α values after unlearning, for
randomly selected layers. We proceed to select
the top-10 filters for each class and remove those
which do not appear in at least two classes, in
order to spot relationships between classes. As
can be noticed, the proposed approach discovers
proper relationships between filters and classes.
For example, we can notice how the filter #332
contributes to two different classes (i.e., dogs
and horses), while the filter #3 contributes to the
classes cats, deer, and dogs. These patterns can
help to better understand the model behavior and
can highlight the underlying relationships within
the network. Additional visualizations are shown
in Figure 4.

CONCLUSION
We presented a novel approach for single-

round multi-class unlearning. Given an image
classification network, our approach can unlearn
all classes simultaneously, in a single unlearning
round. After training, the resulting network can be
instructed to behave as if it has been untrained on
any of the classes. Experimentally, we validated
its effectiveness on classical image datasets and
across different architectures, also showing that
our approach can discover relationships between
convolutional filters or attentive projections and
output classes.
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