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A Minimum-Jerk Approach to Handle Singularities

in Virtual Fixtures
Giovanni Braglia1,Sylvain Calinon2, Luigi Biagiotti1

Abstract—Implementing virtual fixtures in guiding
tasks constrains the movement of the robot’s end ef-
fector to specific curves within its workspace. How-
ever, incorporating guiding frameworks may encounter
discontinuities when optimizing the reference target
position to the nearest point relative to the current
robot position. This article aims to give a geomet-
ric interpretation of such discontinuities, with specific
reference to the commonly adopted Gauss-Newton
algorithm. The effect of such discontinuities, defined
as Euclidean Distance Singularities, is experimentally
proved. We then propose a solution that is based on a
linear quadratic tracking problem with minimum jerk
command, then compare and validate the performances
of the proposed framework in two different human-
robot interaction scenarios.

Index Terms—Human-Robot Collaboration, Motion
and Path Planning, Optimization and Optimal Control,
Physical Human-Robot Interaction.

I. Introduction

A
S collaborative robotics research is making great
strides towards safe Human-Robot Interaction

(HRI), users are becoming more confident to utilize robots
in co-manipulation tasks. In such scenarios, it is common
to adopt Virtual Fixtures (VFs) to constraint the robot’s
motion to a specific manifold [1]. Especially in those sit-
uations where the human is required to manually execute
precise tasks, it has been proven that the use of VFs
facilitates adherence to the desired task while reducing the
mental workload required to maintain accuracy [2], [3].

In many guiding applications, allowing compliance with
respect to the VF curve µ ensures a more natural and
intuitive interaction with the user [4]–[6]. A common
approach in such cases, is to adjust the reference position
on µ to the point that minimizes the displacement with
the actual position of the robot. In this way, the robot
is able to follow the user movements, whilst imposing the
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Figure 1: 2D visualization of an Euclidean distance singularity.
Continuous gray lines represent the iso-lines with respect to the
constraint path µ(s) depicted in black. While a distance-based
method could correctly update the reference position µ(st) for
the green trajectory, it fails to find a stable solution for the red
trajectory, as y

2
has the same distance ∆ from 2 points in µ(s).

virtual constraint [2]. As far as we know, we noticed that
this procedure has not yet been extended to positions in
the workspace that share the same distance to multiple
points on the VF, here called Euclidean distance singu-
larities (EDSs). This problem is illustrated in Fig. 1 and
investigated throughout this article.

A. Related Works

The term virtual fixture (VF) is used when restricting
the robot movements to a specified manifold, and it owes
much of its popularity to guiding applications [1], [3]. Here,
the human interacts with the environment while being
enforced by the robot to adhere to a specific curve [4].
Usually, the definition of VFs restricts to the imposition of
geometrical constraints not associated with any time-law.
When focusing on path planning, it is common practice
to define geometrical and time constraints in separates
moment [6], [7]. Given a geometrical constraint µ, the
time-law can be managed through the definition of the
so-called phase variable st to further define the dynamics
µ(st). In this way, one can properly compute st to regulate
the manipulator dynamics depending on geometrical, kine-
matic and external constraints [8], [9]. To the best of our
knowledge, we believe that the methods for determining
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the time-law can be categorized into three main groups:
linear, user-defined and optimization-based.

In linear approaches, the time scaling is adjusted by
proportionally modify the duration of the task execu-
tion T , typically varying a scalar value to regulate the
velocity of the phase variable ṡt. A classic example of
this category is Dynamic Movement Primitives (DMPs),
where a nonlinear term controlling the system’s dynamics
is regulated by a tunable phase variable, provided by the
canonical system [10]. Another example is provided by [9],
where a scalar parameter adjusts online the velocity of the
manipulator to slow down when approaching the human.

Depending on the type of application, one may want to
influence the variation of st in a different way. We refer
to user-defined approaches whenever the definition of the
time-law is made explicit through an analytic formulation
that is not scalar on ṡt. Again, some variations of DMPs
transform the canonical system such that ṡt, for example,
depends on the position error [11] or external force mea-
surements [12], [13]. Another example can be found in [4],
where authors utilize a dynamical system representation
for the computation of ṡt along the virtual constraint.

The last category, which will be the focus of this arti-
cle, includes all the techniques where the time-law st is
obtained as the solution of an optimization problem [7],
[14]. In particular, we observed that many virtual fixture
applications rely on distance-based methods, selecting the
point on the curve µ(s) that minimizes the Euclidean
distance from the robot’s end effector (EE) position x [2],
[15]–[17]. Finding an analytical solution to calculate the
minimum distance point µ(s∗) is generally non-trivial.
Nevertheless, the presence of techniques such as the Gauss-
Newton (GN) algorithm, simplifies the problem to the
computation of the phase s∗

t that minimizes the residual
||xt − µ(s∗

t )|| [18]. The GN algorithm is known to be com-
putationally efficient and was applied in various robotic
applications [19], [20]. However, its use to update st may
not lead to a convex formulation for the minimum distance
problem [21]. In this article, we refer to this condition
as Euclidean-distance singularity (EDS). We demonstrate
analytically and experimentally that approaching an EDS
might produce abrupt changes in the phase velocity ṡt.

Controlling the phase velocity is common in planning
algorithms, and the outcome solution usually produce
a time-optimal trajectory that exploits the maximum
accelerations/torques given the constraints of the robot
actuators [7]. This could potentially result in acceleration
profiles with a high rate of change, which can stress the
actuators leading to long term damage [22]. In these cases,
enhancing smoothness is a good compromise between
minimum time task execution, and acceleration noise re-
duction. To achieve so, it is a common practice to minimize
the jerk of the planned trajectories [8], [23]. Minimum
jerk trajectories have been widely investigated also in
the reproduction of human arm movements [24], [25].
As demonstrated in [26], minimum jerk trajectories can
faithfully reproduce the speed profile of arm movements
in reaching tasks or curve tracking, making them suitable

for human-robot interaction scenarios [5]. This motivates
our research to propose a novel methodology for the online
phase update in guiding VFs, exploiting a jerk-controlled
framework based on minimum distance, while ensuring
robustness against EDSs.

B. Contribution

The main contributions of this paper are: (1) present
a theoretical representation of the so-called Euclidean
distance singularities (EDSs) with an experimental proof
of their limitation; (2) provide a formulation for updating
the phase variable using minimum jerk control with a
linear quadratic tracking (LQT) algorithm and (3), a real-
time application of the proposed framework in a human-
robot interaction setup. The outline of this paper is as
follows. Section II offers a theoretical background on the
addressed EDSs problem. Section III presents a jerk-based
LQT formulation for optimal phase update. Section IV val-
idates and discusses the implementation of our proposed
methodology in two experimental scenarios, and Section V
concludes this work.

II. Background

In this article, we aim to constrain the robot to follow
a predefined reference path µ in the task space. Once
established, the operator can use the robot’s guidance to
navigate along this path. Details of this mechanism are
provided in the following paragraphs.

A. Definition of the virtual constrain

To define the constraint µ, we first kinesthetically move
the robot end effector to demonstrate the target curve.
The recordings are then filtered using the spatial sam-
pling (SS) algorithm from [13], to extract the geometri-
cal path information regardless of the timing introduced
during the demonstration. This associates the recordings
r(t) = [rx(t), , ry(t), , rz(t)]⊤ with their filtered coun-
terparts r∆,k = [rx,∆,k, , ry,∆,k, , rz,∆,k]⊤ and curvilinear
coordinates sk ∈ [0, L], with k = 1, ..., M and L = ∆M
representing the curve length r∆. The free parameter
∆ defines the geometric distance between consecutive
samples in r∆,k and is such that, given an analytical
approximation µ(s) ≈ r∆,k, the following property holds:

∥
∥
∥
∥

dµ(s)

ds

∥
∥
∥
∥

s=sk

≈
‖r∆,k+1 − r∆,k‖

‖sk+1 − sk‖
=

∆

∆
= 1. (1)

We expressed µ(s) using basis functions approximation,
representing the signal r∆,k as a weighted sum of nonlinear
terms, namely [27]

µ(st)=

N∑

i=1

ωiφi(st)=ω⊤φ(st). (2)

In (2), the constraint curve is formed by summing N basis
functions φi, each weighted by ωi, typically found via a
Least-Squares solution [10], i.e.

ω = argmin
ω

M∑

k=0

||r∆,k − ω⊤φ(sk)||2, (3)
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indicating with || · || the Euclidean norm of the residual
term. The basis functions φi(st) can be chosen in different
ways, in this case we used Bernstein polynomials [27], [28].
Again, the phase variable is denoted by st, but thanks to
the SS algorithm it carries an additional meaning of being
the curvilinear coordinate of the curve µ.

For instance, with the expression in (2) we can compute
the velocity and acceleration of µ(st) respectively as

µ̇(st) =
∂µ(s(t))

∂t

∣
∣
∣
∣
t=α∆t

= µ′(st)ṡt and

µ̈(st) =
∂2µ(s(t))

∂t2

∣
∣
∣
∣
t=α∆t

= µ′′(st)ṡ
2
t + µ′(st)s̈t,

(4)

with s̈t and ṡt obtained from their respective continuous
counter part at sampling time ∆t. In (4) and throughout
this article, the derivative with respect to st is denoted
with the prime symbol, while the discrete time derivative
uses the dot notation. Note that, because of (1), µ′(st) will
always be well-defined and different from zero [6], [28].

B. Tracking Problem Statement

Let µ(s) ∈ R
3 be the path constraint parametrized with

respect to the curvilinear coordinate s, and xt ∈ R
3 be the

Cartesian position of the robot’s end effector (EE). The
objective of limiting the EE movement along the curve
µ(s) can be formulated as a tracking problem, that is

s⋆
t = argmin

st∈[0,M∆]

‖xt − µ(st)‖
2. (5)

The optimal problem in (5) equals to update st at every
instant t in order to find the closest point µ(s⋆

t ) to xt.
From [21], the existence of a solution is guaranteed if:

(
xt − µ(s⋆

t )
)⊤

µ′(s⋆
t ) = 0, and (6a)

‖µ′(s⋆
t )‖2 −

(
xt − µ(s⋆

t )
)⊤

µ′′(s⋆
t ) > 0. (6b)

The conditions in (6) leads to the following geometrical
intuition. On one hand, the first order necessary condition
in (6a) states that the optimal s⋆

t lies on the point µ(s⋆
t )

whose tangential component µ′(s⋆
t ) is orthogonal to the

EE position xt. From (1), µ′(st) represents the tangential
unit vector to the curve. On the other hand, the second-
order sufficient condition in (6b) guarantees the convexity
of (5) if the Hessian of the cost function ‖xt − µ(st)‖

2 is
positive definite. In particular, given the constraint µ(s)
for s ∈ [0, ∆M ], at every instant t a feasible subset χt =
{

x̄t ∈ R
3 : (6b) holds

}
can be deduced [16]. Equation (6)

implies µ ∈ C2, which can be ensured by a proper choice
of the basis functions in (2) [27].

C. Gauss-Newton algorithm

One common technique for solution of the optimiza-
tion problem in (5) comes from the Gauss-Newton (GN)
algorithm [18], [20]. In this case, the evolution of the
curvilinear coordinate st is given by st+1 = st + ∆s,
with the term ∆s being the GN update. Defining the

residual f(st) = xt − µ(st), the GN algorithm provides
an analytical solution for the computation of ∆s, that is

∆st = −H(st)
−1g(st), with

g(st) = 2J⊤

f f(st), H(st) ≈ 2J⊤

f Jf .
(7)

In (7), Jf ∈ R
3×D defines the Jacobian matrix for

f(st) ∈ R
3, while g ∈ R

D and H ∈ R
D×D are the gradient

vector and the Hessian matrix of the cost function with
respect to the residual f(st), respectively. For our tracking
problem we can assume Jf (st) = −µ′(st). The advantage
of the GN algorithm is that, despite being a second order
technique, it converges in few steps. This is possible as the
Hessian can be easily estimated from the Jacobian in (7),
which guarantees its positive definiteness [18], [20].

Note that the GN algorithm neglects the second-order
derivative term of the Hessian in (6b). However, when this
term cannot be ignored, the GN algorithm may experience
slow convergence. From (1) one can write (6b) as

1 −
(
xt − µ(st)

)⊤
µ′′(st) > 0. (8)

Given the geometry of curves, we have that µ′′(st) =
n(st)κ(st), where n and κ define the normal versor and
the curvature, respectively, calculated at the curvilinear
coordinate st [6], [29]. In particular, observing that r(st) =
1/κ(st) expresses the radius of the osculating circle at the
point µ(st), the condition in (8) can be written as

(
xt − µ(st)

)⊤
n(st) < r(st). (9)

Equation (9) provides the following geometric intuition:
given the reference µ(st), the center of the osculating
sphere defines a boundary for the deviation of the EE
position xt, out of which the second order condition for
the optimality in (8) is violated. Therefore, the optimal
problem in (5) no longer admits a unique solution, as it
looses convexity due to the fact that the Hessian matrix
represented in (6b) ceases to be positive definite [20], [21].

Notably, in [16] authors demonstrate that the time
derivative of the optimal s⋆

t in (5) can be written as

ṡ⋆
t =

µ′(s⋆
t )⊤ẋt

1 −
(
xt − µ(s⋆

t )
)⊤

µ′′(s⋆
t )

. (10)

Given the condition in (8), it can be evinced from (10) that

the limit case
(
xt − µ(st)

)⊤
µ′′(st) → 1 implies ṡ⋆

t → ∞.
Hence, small values of ẋt results in large derivatives
of ṡ⋆

t when close to the center of the osculating circle
calculated at µ(s⋆

t ) . In our case, as we allow compliance in
the directions outside the path constraint µ(s), this can
compromise the contact with the robot and the human,
given the generation of the reference trajectories outlined
in (4). These considerations, that will be further analyzed
in Section IV-B, provide an analytical explanation of the
constraint imposed in [17] and lead to the definition of
Euclidean distance singularity.
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Figure 2: Trend of the cost in (5) for different path deviations.

Remark 1: Given the optimal problem in (5), with s̄
being curvilinear coordinate of the curve µ(s) ∈ Rn, we
denote with Euclidean distance singularity (EDS) the set:

EDS =

{

x ∈ Rn :
(
x − µ(s̄)

)⊤
µ′(s̄) = 0,

(
x − µ(s̄)

)⊤
n(s̄) ≥ r(s̄)

}

. (11)

The geometric intuition is that if we move along the
normal direction n(s̄) by a distance greater than the
radius of the osculating circle at µ(s̄), the optimization
problem in (5) degenerates into multiple local solutions.
Though these conditions may seem restrictive, Sec. IV-B
demonstrates that even near an EDS issues can arise.

Figure 2 provides a 2D example. The left subplot shows
the osculating circle γ at µ(st̄) in dashed gray. The right
subplot depicts the cost functions cp1

, cp2
, and cp3

in (5)
concerning the EE position xt̄ relative to points p1, p2,
and p3. Note that the cost function loses local convexity
once the deviation reaches the center of the osculating
circle p3. Note that, for curves with sharp corners, using a
basis function approximation as in (2) ensures the conti-
nuity of the geometrical path and the Jacobian in (7) [28].

III. Methodology

With reference to equation (10), the proximity of the
EE position xt to EDSs could lead to high velocities
ṡt. One way to mitigate such undesired behaviour, is to
formulate the optimal problem in (5) such that we can
control the damping on the velocity term. This is possible
by considering minimum-jerk trajectories. Moreover, many
results in literature indicate that this model is well-suited
for human-robot co-manipulation tasks [5], [26], [30].

Minimum-jerk approaches highlight that the velocity
profile of hand movements is established by minimizing
its squared jerk [24]. Authors in [31] extend the minimum
jerk formulation to the so-called jerk-accuracy (JA) model,
where the tracking precision and the control action is
modulated with the help of a Lagrange multiplier. We
here formulate the JA model as a linear quadratic tracking
(LQT) problem for discrete-time systems. In doing so,
the control command is fed to a chain of three discrete-
time integrators, i.e. ut =

...
s t, such that the reference

µ(st) stays aligned with the EE position xt. The problem
becomes

min
ut

f(xt, st)
⊤Qf(xt, st) + u⊤

t Rut, (12)

0 0.1 0.2 0.3 0.4 0.5 0.6

0

10

20 ṡ1

ṡ2

ṡ3
c2

t[s]

ṡ

Figure 3: Behaviour of the curvilinear parameter velocity ṡ with
varying velocity weight c2.

with f(xt, st) =
[
e⊤

t , ė⊤
t , s̈t

]⊤
, et = xt − µ(st), subject to





st+1

ṡt+1

s̈t+1





︸ ︷︷ ︸
st+1

=





1 ∆t ∆t2/2
0 1 ∆t
0 0 1





︸ ︷︷ ︸

A





st

ṡt

s̈t





︸ ︷︷ ︸
st

+





0
0

∆t





︸ ︷︷ ︸

B

ut. (13)

In (12), st = [st, ṡt, s̈t]
⊤, st ∈ [0, ∆M ], ∆t is the sampling

time, Q = diag(c1, c2, c3) is called precision matrix with
constant parameters c1, c2 ∈ R

3, c3 ∈ R, and the constant
R is the weight control coefficient. The addition of s̈t to
the non-linear term f guarantees that the computation
of the Jacobian J t = ∂f t/∂st is not rank deficient. Let
the robot EE position be at x̄t. We apply the Newton’s
method to minimize the cost c(st, ut) = f(st)

⊤Qf(st) +
u⊤

t Rut. This can be done by carrying out a second order
Taylor expansion around the point (st, ut), that is [20]:

∆c(∆st, ∆ut) ≈ 2∆s⊤
t J(st)

⊤Qf(st) + 2∆u⊤
t Rut+

+∆s⊤
tJ(st)

⊤QJ(st)∆st + ∆u⊤
tR∆ut.

(14)
Therefore, the optimization problem in (12) is linearized
using the cost function in (14), i.e.

min
∆u

∆c(∆s, ∆u) s.t. ∆s = Su∆u, (15)

with ∆s = [∆s1, ..., ∆sT ]⊤, ∆u = [∆u1, ..., ∆uT −1]⊤,
and Su characterizing the control transfer matrix of the
system’s dynamics in (13) expressed at trajectory level
for t = 1, 2, ..., T , namely s = Sss1 + Suu [20]. By
differentiating (15) with respect to ∆u and equating to
zero, one can compute at each iteration the optimal control
command:

∆u⋆ =
(
S⊤

u J(s)⊤QJ(s)Su+R
)−1(

−S⊤

u J(s)⊤Qf(s)−Ru
)
.

(16)
With the proposed LQT formulation, the quadratic cost
function in (12) offers intuitive and interpretable settings
for parameters Q and R. Additionally, a second-order
approximation reliably guides the optimization steps to-
wards the minimum of the local estimation of the cost
function (14) [20], [21]. While higher-order methods may
provide a more accurate approximation, they require addi-
tional algorithms to find their minimum, thereby increas-
ing computational effort.

The LQT algorithm described earlier was initially sim-
ulated in a reaching task. The velocity profiles ṡ are
displayed in Fig. 3. The figure demonstrates that the pro-
posed framework achieves the characteristic bell-shaped
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Algorithm 1 Iterative LQT algorithm

Input: xt̄, µ(st̄), A, B, Q, R, in (12)- (13), IMAX .
Output: s⋆

t̄+1
.

Initialization : for t = t̄, t̄+1, ..., t̄+TW −1 compute
the transfer matrices Ss, Su and initialize s1,0 = st̄,
u = [0t̄, ..., 0t̄+TW−1].

1: for i = 1 to IMAX do

2: Compute the dynamics s = Sss1,i−1 + Suu

3: Calculate the residual f(xt̄, s) and the Jacobian
J(s) in (12)- (15)

4: Compute ∆u⋆ as in (16)
5: if (||∆u⋆|| < ∆min) then

6: Local minimum reached, exit for loop
7: end if

8: Update control u = u + ∆u⋆

9: Update initial state s1,i = As1,i−1 + Bu1

10: Re-define the control as u = [u2, u3, ..., uTW
, uTW

]⊤

11: end for

12: Save the state s⋆
t̄+1

= s1,i = [s1,i, ṡ1,i, s̈1,i]
⊤

13: return s⋆
t̄+1

profile which characterizes human reaching tasks [26].
Moreover, by reducing c2 in the precision matrix Q, the
velocity error ė = ẋt − µ̇(st) becomes less damped, thus
the controller more reactive. As a consequence, the velocity
profile changes its sign before reaching zero, as for s3

depicted in green. This behaviour is common in rapid arm
movements, where a corrective movement is actuated to
refine the reaching precision [31].

The implementation of the LQT algorithm is resumed
in Algorithm 1. In its real-time implementation, the LQT
algorithm is computed at each iteration with reduced time
steps t = 1, 2, ..., TW , using a Model Predictive Control
approach. This allows for faster computation of the op-
timal control ût + 1 by minimizing the time window TW .
Additionally, the control ∆u⋆ is iteratively computed until
its norm reaches a lower bound ∆min, with a maximum
number of epochs IM !A!X set to prevent unwanted latency.
The initial conditions for each iteration are set to the last
commanded pair (st−1, ut−1), providing a warm start for
faster convergence.

IV. Experiments and Results

We compare the proposed linear quadratic tracking
(LQT) algorithm, together with the Gauss-Newton (GN),
a virtual mechanism (VM) approach [4] and a simple
control in gravity compensation (GC). The validation
consists in two different experimental scenarios which are
detailed in the following sections1.

A. Experimental Setup

Experiments involved a Franka Emika Panda robot
together with a Schunk FT-AXIA force/torque sensor.

1An illustrative video of the experiments can be found at:
https://youtu.be/FLrSDptwb8Q

Admittance
Controlled Robot

User

LQTVF
µ(st)

F t

xt

st

et
+

−

Figure 4: Controller framework. Here VF denotes the virtual
fixture constraint.

The robot controller has been implemented in C++, while
the codes for the optimization of st were developed in
MATLAB; finally, each node was connected using Robot
Operative System (ROS). The tested algorithms imposes
that the generated reference point µ(st) follows the end
effector (EE) displacement caused by the user [6]. To min-
imize the kinesthetic effort while preventing the user from
sensing the natural manipulator’s inertia, the robot has
been endowed with and admittance control. Specifically,
the translation dynamics in the Cartesian space have been
chosen as:

M ¨̂µt + B ˙̂µt + K
(
µ̂t − µ(st)

)
= F t, (17)

where M = diag(m, m, m), B = diag(b, b, b), K =
diag(k, k, k) are the simulated inertia, damping and stiff-
ness coefficient, respectively, while F t represents the mea-
sured force at the EE. To achieve good tracking and low
manipulator inertia, we empirically choose m = 1.5[kg],
b = 15[N ·s/m] and k = 200[N ·m]. The position µ̂t com-
puted from the admittance model (17) is sent to the robot
and used as a reference signal for inverse dynamics position
control in Cartesian space [6]. During the experiments,
the orientation of the EE was kept fixed. The adopted
framework is schematized in Fig. 4.

Finally we consider the values in (12) for control weight
R and the precision matrix Q = diag(c1, c2, c3), given
c1, c2 ∈ R

3 and c3 ∈ R. The initial values were selected
based on the specific path µ needed for the task. Specifi-
cally, we employed an inverse LQR approach as in [32] for
computing first attempt values.

B. Center-reaching task

In Section III we made some theoretical considerations
about the behaviour of the GN algorithm close to EDS.
To validate so, an experiment consisting in moving the EE
towards the center of the osculating circle γ(ŝ) has been
proposed. The performed task refers to Fig. 5a.

During the experiments three users were involved, two
of them with no prior expertise in robotics. Each execution
was recorded for approximately one minute. The numerical
values chosen for the precision matrix Q were c1 = 47.8·13,
c2 = 0.02 ·13, c3 = 0.01 and the control weight was set
to R = 1e−5 . The constraint curve µ was obtained by
kinesthetic demonstration over the curve of Fig. 5a.

In Fig. 5 the red and blue colors refer to the GN and
LQT algorithms, respectively. Figure 5b plots the recorded
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EE position xGN and xLQT extrapolated from an interval
of 6s; Fig. 5c plots the variations of the force modulus |F|
and its argument ∠F ; finally, Fig. 5d- 5e summarise the
statistics of all the task executions in terms of the rate of
change of the force modulus and argument, denoted with
d|F|/dt and d∠F /dt.

The experiments underlined that the proximity to the
center of the osculating circle γ(ŝ) induces abrupt direc-
tional changes when using the GN algorithm. Precisely,
Fig. 5b demonstrates that reaching the center of γ(ŝ)
is not problematic in the LQT case, while it becomes
complicated for the GN case. A major explanation of this
phenomena is given in Fig. 5c. Despite the modulus of the
force |F | being in the same range for both GN and LQT,
the former displays sharp variations for the argument ∠F ,
induced by the proximity with an EDS. This behaviour
was observed throughout all the center-reaching task as
revealed in the boxplots of Fig. 5d- 5e. On the left, one
can observe that the rate of change of |F | is similar for
both algorithms while, on the right, the GN case exhibits
larger variations of the rate of change of ∠F .

C. Target following task

In this experiment, the objective is to ensure that the
EE’s tip remains close to the moving point displayed on
a second PC, as shown in Fig. 6a. The aim is to prove
that the LQT algorithm proposed in 1 is applicable to a
real-time human-robot interaction scenario, and compare
it with the GN, VM and GC performances. The VM
methodology for phase calculation was introduced in [4].
The authors consider a virtual mechanism (VM) connected
to the end effector of the robot and characterized by a
spring-damper system, namely:

F t = K(xt − µ(st)) + B(ẋt − µ̇(st)), (18)

where K and B are chosen to be the same as in (17).
The force exterted in the VM is always orthogonal to its
velocity, that is µ′(st)

⊤F t = 0. By plugging (18) into this
condition, one obtains:

µ′(st)
⊤

(
K(xt − µ(st)) + B(ẋt − µ′(st)ṡt)

)
= 0, (19)

from which the following update law holds

ṡt =
(
µ′(st)

⊤Bµ′(st)
)−1

µ′(st)
⊤
(
K(xt − µ(st)) + Bẋt

)
. (20)

During the experiments ten users were involved, four of
them with no prior expertise in robotics. Every user had to
execute the target following task eight times, alternating
the right and left hand for each of the three tested
algorithms. Each task execution lasted 50 seconds. The
numerical values chosen for the precision matrix Q were
c1 = 400.0·13, c2 = 0.14·13, with 13 = [1, 1, 1]⊤, c3 = 0.01
and the control weight was set to R = 1e−5. The constraint
curve µ was obtained by kinesthetic demonstration over
the second PC monitor.

The results are summarized in Fig. 6. Figure 6b plots
the recorded EE positions x = [xt, yt, zt]

⊤ for the GN
(red), LQT (blue), VM (green) and GC (violet) cases,
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Figure 5: Experimental results of the center-reaching task.

while the constraint curve µ = µ(s) is depicted in black.
Given the target position µt = [µp,t, µy,t, µz,t]

⊤, it is
straightforward to see that in the four cases the robot
succeeded to follow µt with a limited error e. Numerical
values for the term ||e|| = ||x − µ(s)|| are resumed in
Table I with their mean and standard deviation.

Interesting results come when analyzing the measure-
ments of the forces applied to the end effector F =
[Fx, Fy, Fz]⊤. It is reasonable to assume that the virtual
constraint µ simplifies the target following task, as it
guides the robot EE along with point movements. For
the GC case, the user is not constrained to the curve
µ, making it more difficult to perform the task. The
outcome, on average, is a significant larger effort required
for the GC case, described in Fig. 6c with the norm of the
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Figure 6: Experimental results of the target following task.

acquired force measurements. If we define Fτ,t = µ′
t · F t

as the force component F t projected to the tangential
direction of the curve µ′

t = ∂µ(st)/∂st, the difference
||F t|| − |F τ,t| reported in Fig. 6d quantifies the amount of
force which is spent in holding the EE close to the curve
µ. Again, as the GN, LQT and VM algorithms impose
a virtual constrain, they exhibit substantial lower effort
requirements if compared to the GC case, which makes
the GC less suitable for this kind of application.

While GN, LQT and VM performances appear compa-

Table I
Errors between EE and target position and DSJ.

||e||[cm] DSJ(s) DSJ(
...
x )

GN 2.5±1.16 (1.02±3.446)e+14 (5.44±5.570)e+16
LQT 2.3±1.31 (3.61±5.771)e+9 (7.40±0.071)e+15
VM 2.3±1.26 (1.22±3.446)e+11 (1.53±1.129)e+16
GC 2.2±1.14 × (1.18±1.347)e+17

rable, differences emerged when comparing the generated
trajectories. Indeed, the GN algorithm computes a velocity
command with no smoothness cost on ṡ and s̈, which affect
the reference trajectories µ(st), µ̇(st) and µ̈(st) (see (4)).
Conversely, the VM algorithm in (20) showed slight vi-
bration, especially in regions with high curvature. This
may be attributed to the choice of B and K parameters
in (17), which is critical for human-in-the-loop applica-
tions [13], [33]. This is exemplified by the experimental
measurements reported in Fig. 6e. Here we can appreciate
that the LQT algorithm, by minimizing a jerk command,
computes smoother derivatives ṡ and s̈, demonstrating
robustness against the difficulties encountered in the GN
and VM cases. The smoothness has been quantitatively
evaluated with the dimensionless squared jerk (DSJ) [30]:

DSJ(s) = τ
T∑

t=t0

...
s 2

t , DSJ(
...
x ) = τ

T∑

t=t0

||
...
x t||

2, (21)

with τ = (T − t0)5/L2. Parameters T = 50s and L = 3.5m
represent the task duration and the path length, respec-
tively. The metric in 21 was applied both to the phase
variable s computed by the algorithms (absent for the GC
case), and the actual end effector position x. To reduce
noise from computing derivatives, data for DSJ(

...
x ) were

pre-processed using a moving average filter with a window
size of w = 20. The results in Table I show an improvement
in smoothness with the proposed LQT algorithm.

D. Discussion

Results from the target following task confirm the
previous statement, with higher force demand when no
virtual constraint is implemented. Indeed, this increases
cognitive stress for the user, who must track the target
point while ensuring the EE follows the specified curve.
Results also highlights that incorporating the proposed
LQT framework has the advantage, over a GN and VM
implementations, of generating smoother trajectories as
evinced by the results in Fig. 6e and Table I. By specifying
the precision matrix Q and the control weight R, one
can robustly contain unwanted vibrations by minimizing a
jerk command and guaranteed a smooth execution of the
proposed guiding tasks [25], [26].

Nevertheless, a high cost on the jerk command can
reduce the algorithm tracking precision, as it penalizes
high acceleration profiles [31]. In the target following
task, this effect could alter the perceived inertia of the
robot when moving along the task curve. Although lower
accelerations may impact the robot’s responsiveness [22],
we demonstrate in the center-reaching task the importance
of imposing a smoothness cost. Precisely, when reaching
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EDSs, the solution of the optimization cost in (5) degener-
ates [21]. Using the GN algorithm, experiments underlined
the presence of sharp changes in the force direction exerted
to the EE. This is caused by the generation of abrupt
velocity commands in (7), as opposed to the proposed algo-
rithm which, instead, successfully prevents this condition.

V. Conclusion

We proposed an approach based on a linear quadratic
tracking (LQT) algorithm to regulate the position of the
end effector (EE) of the robot along a virtual constraint.
Our approach allows to generate smooth trajectories,
avoiding abrupt changes in the derivatives of the EE’s
reference position. Results demonstrate that our approach
is robust against the proximity to Euclidean Distance Sin-
gularities (EDS), which is not the case for a solution based
on a Gauss-Newton (GN) framework. In the experimental
evaluation, the proposed LQT algorithm was compared
with GN, a virtual mechanism (VM), and a gravity com-
pensation (GC) guidance, displaying higher reliability in
the LQT case. In future works, we plan to extend our
methodology to a user study, incorporating subject-related
metrics to better evaluate the user perspective.
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