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Abstract
Over the past several decades, metal Additive Manufacturing (AM) has transitioned from a rapid prototyping method to
a viable manufacturing tool. AM technologies can produce parts on-demand, repair damaged components, and provide an
increased freedom of design not previously attainable by traditional manufacturing techniques. The increasing maturation of
metal AM is attracting high-value industries to directly produce components for use in aerospace, automotive, biomedical,
and energy fields. Two leading processes for metal part production are Powder Bed Fusion with laser beam (PBF-LB/M) and
Directed Energy Deposition with laser beam (DED-LB/M). Despite the many advances made with these technologies, the
highly dynamic nature of the process frequently results in the formation of defects. These technologies are also notoriously
difficult to control, and the existing machines do not offer closed loop control. In the present work, the application of various
Machine Learning (ML) approaches and in-situ monitoring technologies for the purpose of defect detection are reviewed. The
potential of these methods for enabling process control implementation is discussed. We provide a critical review of trends
in the usage of data structures and ML algorithms and compare the capabilities of different sensing technologies and their
application to monitoring tasks in laser metal AM. The future direction of this field is then discussed, and recommendations
for further research are provided.
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Introduction

The additive manufacturing (AM) industry has proliferated
over the past few decades, from a modest beginning in the
late 1980s with the advent of stereolithography (Wohlers
& Gornet, 2014) to a global industry predicted to exceed
US$34 billion by 2024 (Jayaram et al., 2020). In particular,
metal AM has begun to infiltrate many high-value indus-
tries with applications in aerospace, automotive, medical and
nuclear energy (Brandt, 2017; Wohlers & Gornet, 2014), to
name a few.Metal AM is capable of producing custom, com-
plex, near net-shaped parts directly, with minimal waste, and
has enabled many advancements within industry. Parts with
reduced mass have improved the fuel efficiency of aircraft
and automotive vehicles (Cooper et al., 2015), while readily
customisable designs have increased the quality of life for
patients with medical implants and prosthetic limbs (Shau-
nak et al., 2017). Recent AM-driven developments, such as
functionally graded materials (FGMs), parts with intention-
ally varied structure or composition, andmulti-material parts,
both difficult to produce by traditional methods, are very
promising in their potential for providing tailored mechani-
cal responses within a single component (Zhang et al., 2020;
Zhiyuan Xu et al., 2019). Of the various AM technologies
for manufacturing metal parts, Directed Energy Deposition
(DED) and Powder Bed Fusion (PBF) are the most pro-
lific. Several excellent books were published in 2021 and
provide an extensive explanation of these technologies; see
Toyserkani et al. (2021) and Yadroitsev et al. (2021). Here,
a short description of both processes is provided below.

In the present work standard ISO/ASTM 52900:2021 is
adhered to for naming of AM processes, following the form
‘process category – process feature/material class/specific
material(s)’, such that DED using a laser beam (LB) of
the metal (M) alloy, Ti6Al4V, is referred to as DED-
LB/M/Ti6Al4V.

MetalDEDprocesses bear a resemblance to somewelding
techniques in that an energy source, typically a laser (DED-
LB/M), electron beam (DED-EB/M) or electrical/plasma arc
(DED-Arc/M) (Oliveira et al., 2020), is used to melt a feed-
stock onto a surface depositing a weld bead. This weld bead
can be deposited over a surface to provide a metallurgically
bonded cladding, layered upon damaged surfaces to repair
them, or deposited along contours and internal structures to
build up an entire component. Feedstock materials can be in
either wire or powder form, with powder being blown into
the melt pool by an inert carrier gas and wire mechanically
fed into the melt pool. Typically, wire feedstocks allow for
faster volumetric build rates, while powder-fed systems can
achieve tighter dimensional tolerances and allow for the cre-
ation of FGMs by powder mixing (Loh et al., 2018). The

three-fold application of cladding, repair, and construction
highlights the usefulness of DED to industry in its current
state. However, this technology does have some drawbacks,
such as limited overhang angles, poor dimensional toler-
ances, potentially high residual stresses, and limited ability
to produce complex shapes, which currently limit its broader
applications. Other common terminologies include Laser
Metal Deposition (LMD), Laser Engineered Net Shaping
(LENS™) or Directed Laser Deposition (DLD).

Similarly, metal PBF processes utilise an energy source, a
laser (PBF-LB/M) or electron beam (PBF-EB/M), to selec-
tively fuse metallic powders into a solid component. The
energetic beam is scanned across the surface of the pow-
der bed, consolidating the powder. Laser systems rely on
high-speed XY galvanometers to move the beam, while
electron beams are directed by magnetic coils, allowing
for inertia-free motion and higher scan speeds. Once the
entire cross-section of a layer has been scanned, the build
platform is lowered by the desired layer thickness, a fresh
layer of powder is spread across the surface, and the pro-
cess repeated (Brandt, 2017). After completion, the part can
be removed, and the loose powder recycled for future print
jobs. PBF-LB/M is typically preferred to DED-LB/M for
the manufacture of components requiring high dimensional
accuracies, as it generally utilises smaller layer thicknesses
and spot sizes (DebRoy et al., 2020). Additionally, the sur-
rounding powder bed provides some support for overhangs,
resulting in better control over the part geometry, produc-
ing finer features, and aiding in heat dissipation. Although
unsupported overhanging structures can develop substantial
surface roughness, this can be mitigated with optimised pro-
cess parameters (DePond et al., 2018).

Despite the opportunities that metal AM presents, there
are still several barriers to its widespread industrial adop-
tion. Both PBF-LB/MandDED-LB/M require highly trained
technical staff to initiate, monitor and remove components
once built, contrary to conventional manufacturing, where
automation has continually increased over the past few
decades. Additionally, components produced by AM are
often plagued by the occurrence of process-induced defects,
such as pores, cracks, and distortion due to residual stresses,
impairing both part quality and consistency. Process-induced
defects within a part can reduce the mechanical and fatigue
properties (du Plessis et al., 2020; Elambasseril et al., 2019;
Malefane et al., 2018), causing it to fail below designed oper-
ational limits. Industrial manufacturing frequently employs
rigorous quality standards to ensure conformance and perfor-
mance of components. As AM processes generally produce
parts individually or in small batches, it becomes expensive
and difficult to provide the same statistical quality assur-
ance that can be achieved with traditional manufacturing
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processes. Therefore, it has frequently been identified in the
literature (Bourell et al., 2009; Scime & Beuth, 2018a) that
quality control of AM processes remains the outstanding
issue hindering further adoption of AM by high-value indus-
tries.

Process-induced defects

The formation of process-induced defects presents a signifi-
cant challenge to industrial uptake of laser AM technologies.
The presence of defects can be highly inhomogeneous
(Carlton et al., 2016), leading to unpredictable variation in
physical properties between parts or within the same part.
Post-processing strategies can be an effective method for
reducing some critical defects in parts, contributing to a sig-
nificant improvement in the reliability of AM components.
Machining and surface polishing notably prolong fatigue
life (Brandão et al., 2017) but are only applicable to parts
with accessible surfaces; heat treatment can relieve internal
stresses and improve ductility (Gibson et al., 2014; Girelli
et al., 2019); and hot isostatic pressing (HIP) can close cracks
and pores inmany instances (du Plessis&Macdonald, 2020).
However, post-processing is not always sufficient to rectify
all critical defects and increasesmanufacturing time and cost.
Therefore, it is desirable tominimise the formation of defects
during the production of the part itself.

Laser metal AM processes consist of highly dynamic
interactions between energy source, feedstock, substrate,
and environment to produce a final part, allowing for var-
ious defects to form. Some of the common process-induced
defects in laser metal AM are summarised in Table 1.
For detailed explanations of the formation mechanisms, the
reader is referred to the following works: Bayat et al. (2019),
Chen and Yan (2020), du Plessis et al. (2020), Elambasseril
et al. (2019), Khairallah et al. (2016), Oliveira et al. (2020),
Sammons et al. (2019), Stockman et al. (2019), Sun et al.
(2017), Thompson et al. (2015), and Zhao et al. (2017).

Porosity is a common defect in all AM processes, par-
ticularly those requiring powders for feedstock. Keyhole-
induced pores, most common in PBF processes, form when
excessive energy is deposited into the surface, causing the
melt pool to penetrate deep into the previous layers. Recoil
pressure and Marangoni flow generate a depression and cav-
ity down into the centre of the melt pool (Bayat et al., 2019)
to form the keyhole. Fluid instabilities then cause the top of
the cavity to close over, producing a void at the bottomwhich
moves back and upwards through the melt pool, becom-
ing spheroidal in shape to minimise surface energy. These
voids may escape the melt pool while it is still liquid; oth-
erwise, they become entrapped by the solidification front as
pores (Bayat et al., 2019). Lack of fusion pores are gener-
ally formed by insufficient energy density being delivered to

Table 1 Summary of common process-induced defects, their causes,
and potential effects on part quality in laser metal AM

Common defect
types

Common causes Potential effects

Keyhole pores Excessive input energy
density

Reduction in
mechanical
properties
Reduction in
fatigue properties

Lack of fusion
(LOF) pores

Insufficient input energy
density

Reduction in
mechanical
properties
Reduction in
fatigue properties

Gas pores Gas entrapped in
feedstock
Gas entrained into the
melt pool

Reduction in
fatigue properties

Cracking and
delamination

Residual stresses
exceeding the local
ultimate tensile
strength
Insufficient bonding
between layers

Part failure

Deformation Residual stresses
exceeding the local
yield stress

Conformance
failure

Alloy
compositional
variance

Improper powder
deposition
Differing chemical
mobility
Preferential
evaporation
Gas incorpora-
tion/adsorption

Inhomogeneous
mechanical
properties

Balling Low/High input energy
density
Surface oxidation

Part/Conformance
failure
Formation of
other defects

Rippling Instabilities of
layer-to-layer
deposition

Part
failure/Production
failure

Spatter/Particle
ejection

Overheated melt pool
Recoil pressure and
melt plume

Formation of other
defects

the surface, which may result in incomplete melting of pow-
ders or tracks not properly bonding to each other and can
occur in both PBF-LB/M and DED-LB/M processes. These
pores are irregular in shape and can act as stress concentrators
(du Plessis et al., 2020), impacting mechanical and fatigue
performance. Other gas-filled pores can form when powders
entrain gasses with them into the melt pool or contain pores
from the powder manufacturing process. These may be con-
sumed by other pores, escape, dissolve or become trapped in
the solidified material (Chen et al., 2020).
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The extremely high thermal gradients and cooling rates
generated by the additive process can lead to uneven con-
traction of the component, giving rise to residual stresses
within the part. These residual stresses distort the part from
its intended geometry and can be significant enough to ren-
der the component unusable. Alternatively, these stresses can
cause the printed part to fracture, either between successive
layers as delamination or through multiple layers as crack-
ing (de Oliveira et al., 2006; Oliveira et al., 2020). These
stresses are computationally expensive to model or predict
(Wang et al., 2021) and contribute significantly to process
inconsistency.

Current approaches for the detection
of process-induced defects

Current practices for the detection of process-induced defects
rely on post-production inspection. This is known as ex-situ
or post-mortemmonitoring and can be carried out by destruc-
tive and non-destructive testing methods. While destructive
testing canprovide helpful information for studying the effect
of processing parameters on the formation of microstructure
and mechanical properties, non-destructive testing methods,
such as X-ray Computed Tomography (XCT), can allow for
internal defects to be mapped without compromising the
component (du Plessis et al., 2020). Despite the clear bene-
fits of non-destructive testing, these methods are expensive
and time-consuming (Montazeri et al., 2019). For example,
to obtain high spatial resolution in XCT creates very large
datasets, and the scanned volume is typically kept small.
Stitching of smaller volumes can be achieved, but this also
increases the volume of data and acquisition time. Large sam-
ple volumes can also be scanned, however, this comes at the
cost of spatial resolution (Withers et al., 2021). Both meth-
ods provide value for part certification and defect research,
but only provide information on the final product and thus
are limited in their ability to monitor the actual formation of
defects.

Recently, there has been a rapid increase in research aimed
at understanding and reducing the formation of process-
induced defects in metal AM. Machine Learning (ML)
algorithms are beginning to be employed for defect detec-
tion and quality prediction in metal AM. These algorithms
can effectively interrogate the large amounts of data gener-
ated by in-situ monitoring of the additive process and help
to elucidate the relationships between process specific input
parameters and final part quality.

Several reviews have begun to address different aspects of
this body of literature including the development of sensor
technologies for various DED systems (Tang et al. (2020)),
and image-based (Wu et al., 2021) and generic (Grasso et al.,
2021) monitoring methods for PBF. Other examples include
reviews of monitoring and process control in PBF-LB/M by

McCann et al. (2021) and Mahmoud et al. (2021), as well as
the work by Fu et al. (2022), which provides an analysis of
ML algorithms that have been used for defect detection in
both DED-LB/M and PBF-LB/M.

This present work provides a holistic review on the com-
bination of dominant laser AM processes (DED-LB/M and
PBF-LB/M), relevantmonitoring technologies and the defect
types they can detect, with the application of ML approaches
for various purposes. Specifically, the differences in sensor
capabilities, implementation, and data generationwill be crit-
ically discussed for both DED-LB/M and PBF-LB/M. This
work will highlight how various studies are using these data
streams to foster automatic defect detection, identify trends
in process monitoring research, and how these are advanc-
ing progress towards effective closed-loop process control
where process parameters are modulated to maintain ideal
build conditions based on interpreted signals.

The scope of this work will be confined to investigations
of metal AM where the applied energy is in the form of a
laser beam. This ensures more direct comparison between
research works as the underlying physical interactions are
closely related within this classification. Additionally, laser
AM provides for various monitoring opportunities, such as
utilisation of the optical train, and observing laser reflections,
as well as challenges, such as plume interference, high tem-
peratures and high process speeds. Therefore, only in-situ
sensor technologies, automated defect detection methods,
and process control methods applicable to these technolo-
gies will be discussed in detail.

This work will be organised as follows. “Machine learn-
ing” section of this workwill provide an overview of themost
common ML algorithms relevant to this field and the data
structures that are most relevant to them. “In-situ monitoring
of additive manufacturing” section will review the technolo-
gies currently applied to in-situ monitoring of AMprocesses,
grouped by the type of signal to be monitored. This will pro-
vide a discussion of sensor implementation, signal resolution
and the generated data structures. “Analysis of in-situ data”
section will assess the techniques available for analysing the
data for automatic detection and prediction of defects, con-
trasting ML approaches with other analysis techniques. The
potential future of monitoring and detection for closed-loop
process control in laser AMwill be discussed in “Discussion
and future directions” section. A list of all abbreviations used
in the text can be found in “Appendix 1.”

Machine learning

ML is a branch of artificial intelligence (AI) which uses
algorithms that progressively adjust a program’s response
to input data, achieving remarkable success in many dif-
ferent fields as computing power and program design have
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advanced. In particular, Deep Learning (DL) has seen enor-
mous progress in the last two decades for many classification
and recognition tasks, outperforming all other computer-
based methods (Lecun et al., 2015). DL approaches have
already been applied to active industrial systems to help con-
trol the processing conditions (Wu et al., 2020), and recent
research has been conducted to extend their use to inspection
(Baumgartl et al., 2020; Li et al., 2020; Shevchik et al., 2018;
Zhang et al., 2019a) and control (Kwon et al., 2020) formetal
AM.

ML approaches can be grouped into four general cate-
gories: supervised, unsupervised, semi-supervised, and rein-
forcement learning (RL), based on the input–output structure
of the training data. A brief description of each learning for-
mat can be found in “Appendix 2.”

ML approaches can accommodate various data types,
from visible images to acoustic signals and extracted feature
vectors. As such, the multiple in-situ monitoring methods
described in “In-situ monitoring of additive manufacturing”
section lend themselves to different ML approaches. For
example, visual (Yuan et al., 2018) and thermal (Baum-
gartl et al., 2020) imaging produces spatially resolved images
that can be used directly in Convolutional Neural Networks
(CNNs) or processed to extract metrics used by other algo-
rithms (Liu et al., 2019), such as the Support Vector Machine
(SVM). In “Machine learning to predict anomalies” section,
the prevalence of various ML approaches for defect detec-
tion is discussed in greater detail. However, some of themore
commonly used algorithms will be briefly addressed here.

Artificial neural networks

Artificial Neural Networks (ANNs), sometimes referred to as
simply Neural Networks (NNs), are a class of ML algorithm
that are constructed from a series of interconnected nodes, or
neurons, inmultiple layerswith the basic structure of an input
layer, one or more hidden layers and an output layer. Each
neuron accepts input signals from one or more preceding
neurons, performs a mathematical operation on them, and
outputs a numerical signal to the neurons in the following
layer (Meng et al., 2020). The definition of the mathematical
operation will depend on the network architecture and pur-
pose, but the simplest versions multiply the output of each
neuron in the preceding layer by a weight value, and then the
resultant weighted inputs are summed together. If the sum-
mation is greater than some threshold value, the neuron is
‘activated’ and will then pass on a signal to the next layer of
neurons (Soni et al., 2021). The simplest implementation of
this is as a binary signal, ‘1’ if the neuron is activated, and
‘0’ if not. More commonly, non-linear so-called ‘activation
functions’ are used instead, such as the hyperbolic tangent
function, tanh, which provides a bounded output between -1
and 1 (Gardner & Dorling, 1998; Soni et al., 2021).

The weights are updated during the training of an ANN,
usually via a process known as back propagation, tominimise
the difference between a prediction and target (Gardner &
Dorling, 1998). ANNs span a large family of different algo-
rithms, including CNNs (Soni et al., 2021). However, the
present work considers the most commonly used variants
independently due to their prevalence and specialised archi-
tectures. As the structure of ANNs are highly flexible and
customised based on the desired function, they can accept
input from a wide variety of sensor type, as long as the input
data can be vectorized. For example, features from thermal
images (), spectral intensity ratios (Montazeri et al., 2020)
or a concatenated input from various sensors (Petrich et al.,
2021) can be used for training ANNs.

Convolutional neural networks

CNNs are well renowned for its ability to learn key features
from image-based data, forming the basis for autonomous
cars and robotic vision (Lecun et al., 2015). This can be
extended frompurely image data from thermal or visible light
cameras, to any array-based data structure with spatial rela-
tionships between points, such as the spectral graphs utilised
by Shevchik et al. (2018) for classifying porosity levels in
PBF-LB/M/CL 20ES. The CNN structure includes smaller
filters that convolve over the data array and learn various
features (lines, curves, etc.), which are then output as feature
maps indicating where these features occur. Convolutions
are then carried out on these feature maps, identifying more
complex features. Pooling operations are then also applied
between convolutions to concentrate similar features into a
smaller space, whilst preserving their arrangement and mak-
ing the network invariant to small shifts in relative feature
positions. Through a combination of convolution and pool-
ing operations, a CNN learns to recognise images and array
data in a similar fashion to how a human does (Lecun et al.,
2015).

Support vector machines

SVMs have frequently been used to classify data from in-
situ monitoring. An SVM generally accepts features or data
points that can be extracted from the sensor and learns how to
separate the data of different classes with an optimal hyper-
plane. If two-dimensional data is non-separable, then the
SVM will cast the data into three or higher dimensions, con-
structing a hyperplane that will separate the data, resulting in
an (n−1)-dimensional plane to separate data in n-dimensions
(Campbell & Ying, 2011). This approach can be used wher-
ever it is possible to extract features from data, such as melt
pool geometry from image analysis (Liu et al., 2019), pro-
cessing parameters or spectrometer ratios (Montazeri et al.,
2019). These features may be predetermined or calculated
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through Principal Component Analysis (PCA), although it
was shown by Montazeri et al. (2019) that features extracted
by PCA may prove more efficient at capturing relevant data
than pre-determined features.

K-Nearest Neighbours

K-Nearest Neighbour (KNN) algorithms operate on the
assumption that data points sharing characteristics with other
points are close to them in a parameter space. The distance
between points in this space is a function of their similar-
ity, with similar points grouping together (Khanzadeh et al.,
2018). For example, if laser power and scan speed were the
two parameters being used formapping, and the track density
was the characteristic being measured, it could be assumed
that two data points with similar speed and power would have
similar track density. Hence, when a new data point is being
classified, the algorithm will look at the labels of the closest
data points to determine the most likely label for this new
data point. The value of ‘k’ is the number of nearest neigh-
bours considered, and typically a majority voting approach
is used, such that the most common label in that set is the
label assigned to the new datum (Chen et al., 2021a). The
distance itself can be calculated in various ways, depending
on the specific problem being solved. This process extends
into higher-dimensional spaces too, such that, given a coor-
dinate vector, z, in a vector space with N observations, ‘k’
nearest neighbours are consulted to determine themost likely
label for the query (Khanzadeh et al., 2018). This allows for
a similar variety of sensors to be applicable to this algorithm,
as for ANNs, with spectral data again being used byMontaz-
eri et al. (2020) and features extracted from thermal imaging
used by Khanzadeh et al. (2018).

Tree algorithms

Decision Trees (DTs) form the basis for the group of tree-
based ML algorithms. A DT is a classifier network that
utilises a series of nodes and branches to sort input data.
Typically, each node of the tree will sort an input vector
based on one or more characteristics, most simply by apply-
ing a threshold to one attribute of the vector, such as the
features extracted from thermal imaging by Khanzadeh et al.
(2018). These thresholds are updated during the training pro-
cess to obtain the best classification of the training data. It
is important to note that the input data can be categorical
or numerical, unlike NNs, which require numeric data only,
preserving more information from the data source (Gün-
lük et al., 2021). Random Forest (RF) algorithms build an
ensemble of DTs using subsets of training data and then
aggregate the results to form a classifier that is more robust
than a single DT. This approach was used to detect porosity
in DED-LB/M/Ti6Al4V builds via image classification by

Behnke et al. (2021). The k-D tree is an extension of a DT
into ‘k’ dimensions, where each node separates the data in
k-dimensions (Bentley, 1975) and has been used for classify-
ing pyrometry data to detect porosity in PBF-LB/M/SS316L
by Mitchell et al. (2020).

Deep Belief Networks

The Deep Belief Network (DBN) is a DL algorithm con-
structed from two or more smaller units, known as Restricted
Boltzmann Machines (RBMs). An RBM is similar in struc-
ture to an ANN in that it has one input (or visible) layer and
one hidden layer; however, there is no output layer for each of
them in the same way as there is for an ANN. When stacked
into aDBN, the hidden layer fromoneRBMforms the visible
layer for the subsequent RBM (Le Roux & Bengio, 2008).
An output layer is applied to the end of the stack only, such as
the ‘softmax’ layer used in Ye et al. (2018a) where extracted
plume and spatter data from thermal images were used to
classify PBF-LB/M/SS304L melt state. Training is carried
out in two steps, where the input into the first RBM is used
for unsupervised training of theRBM to learn to represent the
features of the input. This is then carried forward to the next
RBM,which allows the network to learn higher-level features
(Ye et al., 2018a). The network weights are then fine-tuned
through a supervised learning process as described for the
cases of acoustic monitoring (Ye et al., 2018a) and melt pool
imaging with extracted features (Li et al., 2022).

In-situmonitoring of additivemanufacturing

This sectionwill provide an overviewof some of the common
technologies currently applied for in-situ monitoring within
laser metal AM and explore some representative examples
of their implementation. This is motivated by the neces-
sity of understanding how data can be captured in-situ for
ML approaches to defect detection. The underlying thermal
interactions between the laser and the feedstock in both PBF-
LB/M and DED-LB/M are relatively similar in that they
both rely on the laser to provide heat to the powder (or
wire), generally melting it completely to form a melt pool.
The melt pool then solidifies on top of previous layers or
substrate to form the desired shape. There are, obviously,
significant differences in the setup of these processes, which
necessitate different approaches to monitoring, but the tar-
gets may often be similar, and most sensors can be adapted
to either process. For example, imaging of the melt pool
can be achieved coaxially for both PBF-LB/M and DED-
LB/M if there are mounting ports coupled to the optical
train. If not available, then off-axismonitoring is typically the
only recourse. The considerations for coaxial and off-axial
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monitoring are discussed further in “Coaxial mounting” and
“Off-axis mounting” sections.

One key difference between the image-based monitoring
and defect detection of DED-LB/M and PBF-LB/M pro-
cesses is the accessibility of the surfaces. During PBF-LB/M,
only the top layer is visible at any one time, which limits
the information accessible by the camera. Thermal imaging
and digital image correlation (DIC) can be used to identify
some defects (Baumgartl et al., 2020), such as pores and dis-
tortion, but few defects below the powder bed surface will
be identifiable if they form after new layer additions. By
contrast, DED-LB/M parts are built free-standing, provid-
ing line-of-sight access to lower areas of the build. This can
allow for effects of heat accumulation and thermal cycling to
be observed on lower layers that would not be detectible if the
part was submerged in a powder bed, as modelled in Biegler
et al. (2020). Other than this, most other differences in defect
detectability rely on the application of sensors and the mon-
itoring target of individual studies. However, the typically
higher scan rate and smaller spot size of PBF-LB/M make
an increased temporal and spatial resolution more important
thanwhen trying tomeasure the samemetrics inDED-LB/M.

The remainder of this section is separated by the five pri-
mary signal categories (plus other, less common categories)
relevant to AM monitoring, with Fig. 1 below providing
an overview of these categories. Each section will sum-
marise how these monitoring technologies are implemented
and provide examples where data from these were used for
automated defect detection by ML. The range of reported
capabilities of these sensors is summarised in Table 2 for
ease of comparison.

Visible light

Visible light monitoring draws on extensive pre-existing
imaging technology to enable high-resolution images to be
taken of the build process and can be readily applied to both
PBF-LB/M and DED-LB/M processes. Visual light images
capture electromagnetic (EM) radiation in the range percep-
tible to the human eye and thus offer an advantage in being
easy to interpret. Metallographic inspection has long relied
on the information available in the visible light reflected from
the sample to determine the physical properties of metallic
surfaces, and as such, visible light images ofAMsurfaces can
similarly provide useful information. Pores, cracks, and geo-
metric deviations are some of the defects that can be detected
by visual imaging if they can be resolved by the imaging
device. Visual imaging can be carried out at a wide range of
resolutions and framerates, as shown in Table 2, generating
significant amounts of data, exceeding 5 GB/s in some cases.
The high rate of data generation poses significant challenges
for any attempt at real-time defect detection using image-fed

ML algorithms such as CNNs, which can be computation-
ally expensive, but has been reported in Yuan et al. (2019)
by using cropped images to reduce data size.

The distinction between still imaging and video moni-
toring is somewhat arbitrary, with the primary differences
between them relating to their usage. Video feed may be
reserved for a human controller to observe the dynamics of
the AM process, while images are generally more suited to
the analysis and detection methods that will be discussed in
“Analysis of in-situ data” section. However, there are some
approaches that do receive video data as input to detection
algorithms (Yuan et al., 2019) which can make use of the
temporal relationships between successive frames.

Like many of the other sensors, visible light cameras can
be installed either coaxially to the process beam or in an
off-axis configuration.

Coaxial mounting

A coaxial installation takes advantage of the light reflected
from the surface back along the process beam, redirecting it
via semi-transparent mirrors or filter-mirror combinations to
a sensor, shown schematically by Fig. 2a.

Coaxial mounting introduces several constraints on the
sensors implemented. Firstly, for a coaxial camera to be
mounted, the AM machine must have mounting ports that
allow sensors to utilise this light source and is more fre-
quently found in DED-LB/M machines than PBF-LB/M.
Secondly, the method of light re-direction inherent to an
AM machine will exclude some wavelengths from the sen-
sor (Berumen et al., 2010). As intense laser radiation can
be damaging to optical sensors, the exclusion of such wave-
lengths is generally beneficial, and additional filters may be
applied to further ensure exclusion of these wavelengths.
However, the impact of excluding wavelengths on sensor
response should be carefully considered when designing a
monitoring approach.

Further, coaxial monitoring strongly constrains the avail-
able field of view to a small region surrounding the process
zone as shown in Fig. 2b. The exact area monitored will
vary betweenmachines, theworking distance, and any nozzle
aperture, but is generally a small region of the build surface
relative to the entire build area. This may be disadvantageous
when the quality of the entire build layer is the desired out-
put, such aswhenpowder spreading inconsistencies are being
monitored (Scime & Beuth, 2018a). Alternatively, knowing
that the images are localised to the beam spot on the sur-
face makes it simple for the coordinates of the images to be
recorded during production, allowing any defects detected to
be localised.
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Fig. 1 Radial Map of In-Situ
Monitoring Technologies used in
Laser-Based Metal AM. The
inner circle represents the signal
type to be monitored, and the
outer circle shows the techniques
implemented to monitor the
process

In-Situ 
Monitoring

Fig. 2 Coaxial monitoring of the melt pool utilising visible light.
a Schematic of coaxial monitoring system utilising laser optics and
semi-transparent mirrors to direct signal to a camera or diode sensor
while removing reflected laser-beamwavelengths from the detected sig-
nal (adapted from Berumen et al. (2010)). b Coaxial visible light image

of melt pool in grayscale; white pixels represent high-intensity light and
indicate the area of the melt pool (size scale unavailable) (adapted from
Kwon et al. (2020))
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Off-axis mounting

Off-axial installation of sensors is achieved by any sensor
not coupled to the optical train of the process beam and can
either be stationary, as used by Scime and Beuth (2018b), or
co-moving with the process zone, as used by Lu et al. (2019).
Off-axis installation does not require any specialised design
for sensor implementation and allows for more customised
installations and thus is equally applicable to PBF-LB/M and
DED-LB/M.

Stationary monitoring is the preferred implementation
when layer-wise information is the target of a study. Layer-
wise imaging, as shown in Fig. 3a, generally occurs only
between layer fabrication steps so that the process head
does not interfere with the imaging. As indicated earlier, this
can be useful in detecting large-scale problems during pro-
duction, such as the powder spreading faults in Fig. 3b, or
thermally-induced part deflection (Scime & Beuth, 2018a).
However, the off-axis positioning of the camera imposes a
perspective-based distortion which must be accounted for.
The difference in distance between points on the build layer
and the camera lens can also prevent accurate focus on dif-
ferent areas of the build, further limiting the applicability for
detecting smaller defects. Depending on available room in
the build chamber, stationary monitoring may rely on small,
robust sensors, such as the Fibre Bragg Grating in Shevchik
et al. (2018), or observation windows transparent to the mon-
itored signal as in McCann et al. (2021).

Co-moving approaches can allow for constant focus on, or
adjacent to, the process zone, similarly to coaxialmonitoring,
as demonstrated by two different spectral monitoring studies
by Chen et al. (2018) and Lednev et al. (2019) respectively.
In Lu et al. (2019), a co-moving setup comprising two off-
axis cameras was used to measure the melt pool height and
solidified cladding height to determine the evolution of inter-
nal stresses during solidification. A line-laser was directed at
the cladding surface to aid in the detection of the profile and
height of the final layer, as shown in Fig. 4. This approach
takes advantage of the angled perspective to calculate the
height of the cladding layer.

Thermal emission

Thermal emission monitoring refers to the use of the infrared
(IR) portion of the EMspectrum,which provides information
on surface temperatures of the build during part production.
Thermal processes are key tometalAM, and the complexheat
transfer throughout the part and into the surrounding media
influences the microstructure, residual stress, and thermal
deformation states of the part. Monitoring the temperature
characteristics of the part provides some information on these
states, andpotential defects, such as delamination, spatter and
porosity (Yang et al., 2020).

Thermal monitoring for AM can be achieved using ther-
mal cameras and pyrometers, with both off-axis, Fig. 5a,
and coaxial, Fig. 5c, arrangements. This has allowed thermal
monitoring to be successfully applied to both PBF-LB/M
and DED-LB/M processes. Thermocouples can also be used
but have far less versatility for process monitoring purposes.
Thermal cameras are similar to visual light cameras in imple-
mentation, but images display temperature distributions in
false colour, as shown in Fig. 5b. These images can con-
tain information relating to thermal gradients and structural
features that can be interpreted by image-based ML algo-
rithms, such as CNNs, similarly to visible light images.
Changes to heat flow due to delamination or cracks can be
resolved in these images, and have been successfully identi-
fied throughML algorithms, as shown in Fig. 5e. Information
such as thermal gradients, temperature extremes, and geo-
metric information can also be extracted from thermal images
and then fed to vector-based ML algorithms, such as SVMs,
as shown by Ye et al. (2022). However, the pixel resolution
of thermal cameras is generally lower than visible light cam-
eras, see Table 2, limiting the detection capabilities for small
features.

Thermal cameras come in two primary classes: photon,
or thermal detectors. Photon detectors convert IR photons
directly to electrical signals and are sensitive to the order
of 20 mK and can achieve a higher framerate than thermal
detectors. However, they are expensive and require cooling to
cryogenic temperatures to avoid thermal noise. Conversely,
thermal detectors absorb heat directly, triggering a propor-
tional electrical signal, and achieve a temperature sensitivity
on the order of 40 mK (Gade & Moeslund, 2014). In Laser
AM, temperatures can vary by up to 1000 K/mm (Thomp-
son et al., 2015), as in Fig. 5b, making sensitivities in the mK
range unnecessary for accurate monitoring. As such, thermal
detectors may be sufficient for most in-situ thermal monitor-
ing cases.

One major limitation of thermal cameras is their inabil-
ity to directly measure the absolute temperature of a surface.
Objects emit EM radiation in relation to their temperatures,
and while the determination of absolute temperature is sim-
ple for perfect emitters (blackbodies), few physical objects
act as blackbodies. Instead, most have an emissivity value
less than one that varies with temperature and physical state
in relationships that are rarely established. The assumption
of a graybody is that the emissivity is some constant between
0 and 1 and is often made so that the absolute temperature
can be estimated (Gade & Moeslund, 2014). However, this
assumption cannot account for the variation in emissivity
with the large temperature ranges experienced in metal AM,
which can result in large errors when reporting the absolute
temperature of a surface (Farshidianfar et al., 2016; Felice,
2008). Methods for determining the absolute temperature
have been developed but require an independent temperature
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Fig. 3 Stationary, off-axis monitoring of powder bed (adapted from Scime and Beuth (2018b)). a Visible light image of powder bed interpreted by
a Multi-scale CNN (MsCNN) to identify the powder-spreading defects detected in b

Fig. 4 Off-axis monitoring of DED-LB/M/316L process with two co-
moving visual cameras (adapted from Lu et al. (2019)). a Experimental
set-up of DED-LB/M with horizontal camera for measuring melt pool

height and angled camera for measuring cladding height with line laser.
bMelt pool image from horizontal camera. c Track illuminated by line
laser and imaged from angled camera

measurement for the same material (Griffith et al., 1998).
Calibrations can be performed for a point, such as identify-
ing the melt pool boundary and assuming the temperature at
that point to be the solidus temperature (Gould et al., 2020);
however, this still imposes a graybody assumption on the
material.

Pyrometry is another technique used for monitoring the
temperature of a surface and can be used independently or
in conjunction with thermal cameras. Pyrometers are gener-
ally considered point sensors, Table 2, and are often targeted
at monitoring the melt pool temperature (Thompson et al.,

2015), Fig. 5c, but some can provide a degree of spatial res-
olution (Khanzadeh et al., 2018). Pyrometers monitor the
intensity of light emitted from a surface in one or more
IR wavelengths to determine temperature (Felice, 2008),
producing a time-varying signal like that in Fig. 5d. The cap-
tured data can then be used to train ML algorithms, such as
the unsupervised Self-Organising Map (SOM) used for ML
porosity prediction by Khanzadeh et al. (2019). If only one
band is monitored, then an assumption as to the emissiv-
ity of the surface must also be made. Two- or multi-colour
pyrometers use the ratio between intensities to estimate the
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Fig. 5 Thermographic monitoring methods. a Specialised experimental
setup for thermal and x-ray monitoring of PBF-LB/M process. IR field
of view is reflected to the camera by the mirror as indicated. Ther-
mographic image of PBF-LB/M single-track scan shown in b with
white arrow indicating scan direction, and red dotted circle marking
the melt pool boundary. The temperature scale in Kelvin is provided
(a, b adapted from Gould et al. (2020)). c Schematic of laser welding

process with coaxial pyrometer to monitor melt pool temperature. Tem-
perature response of pyrometer shown in d with both dual-colour ratio
(blue) and single-colour (red) modes over four seconds (c, d adapted
from Xiao et al. (2020)). e An example workflow for a CNN used to
predict whether thermal images of PBF-LB/M/H13 builds indicated the
presence of delamination, spatter, or were “ok” (adapted from Baum-
gartl et al. (2020)) (Color figure online)

absolute temperature of the surface and are generally con-
sidered emissivity independent (Xiao et al., 2020). However,
even these pyrometers are most effective if the emissivity
slope (ratio of emissivity at different wavelengths) is cal-
ibrated for the material being measured, as described in
Rezaeifar and Elbestawi (2021).

Light intensity

Photodiodes monitor the intensity of light emitted within a
narrow wavelength band, as shown in Fig. 6a, and are simi-
lar to pyrometers in application and construction, the primary
difference being that a photodiode is not sensitive only to IR
light. In practice, pyrometers are often photodiodes equipped

with an optical filter to isolate the IR wavelengths to deter-
mine temperature (Grasso & Colosimo, 2017; Zavalov et al.,
2019). Photodiodes function by converting incident light to
an electrical current, producing a time-varying intensity sig-
nal, Fig. 6b, and therefore do not provide spatial resolution.
These intensity signals contain multiple features in the data
that can be extracted and correlated to make predictions on
the final part quality, as demonstrated by the Gaussian Mix-
ture Model in Fig. 6c and d (Okaro et al., 2019).

Atomic emission spectra

The high temperatures in laser AM can cause a small por-
tion of the alloy to evaporate and form a plasma. Within
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Fig. 6 Acquisition of in-situ photodiode data. a Schematic of off-axis
collection of melt pool light intensity at 520 nm and 530 nm with two
photodiodes (photodetectors) using a beamsplitter (adapted fromMon-
tazeri et al. (2020)). b Coaxial photodiode time-intensity signal from
PBF-LB/M/Inconel 718 in raw (black) and compressed (red) formats.

c Features extracted from the photodiode data were correlated, and a
semi-supervised learning technique was applied to result in the predic-
tion shown in d (b, c and d adapted from Okaro et al. (2019)) (Color
figure online)

this plasma excited atoms emit photons resulting in an emis-
sion spectrum, also called an optical emission spectrum
(OES), characteristic of the atomic species and excitation
states present (Bartkowiak, 2010; Chen et al., 2018; Val-
diande et al., 2021). The characteristic nature of these spectral
signals enables the identification of species present in the
plasma, which is not possible using the visible or thermal
monitoring methods previously discussed.

Spectral monitoring has been adapted to AM processes in
both active and passive forms. Active monitoring is achieved
by using a probe laser to evaporate a small sample of the
surface, forming a plasma which is then analysed by a spec-
trometer in a process known as Laser-Induced Breakdown
Spectroscopy (LIBS) (Hussain & Gondal, 2013). The LIBS
system designed by Lednev et al. (2019) was mounted off-
axially and used to measure the elemental composition of the
melt pool as itwas formed in powderDED-LB/M/Ni,Fe,B,Si,

Fig. 7a. The LIBS required off-line calibration but could
detect both low- and high-atomic weight elements without
impacting the deposition properties. This system would not
easily be adaptable to PBF-LB/M processes as it requires an
extra module to be installed in a position close to the build
surface,which is generally incompatiblewith the optical train
of an PBF-LB/M system.

Passive spectralmonitoring utilises a spectrometer to anal-
yse the plasma formed by the primary laser beam. This
approach is simpler and requires less additional equipment,
as in Fig. 7b, whilst also increasing the flexibility of mon-
itoring. This form of monitoring has been reported in both
PBF-LB/M and DED-LB/M systems and installed in both
coaxial and off-axial arrangements (Bartkowiak, 2010; Chen
et al., 2018; Lough et al., 2020; Montazeri et al., 2020; Shin
& Mazumder, 2018). However, this method depends on the
plasma produced by the primary laser, which is optimised to
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Fig. 7 In-situ spectroscopic monitoring of laser-metal AM. a Laser-
Induced Breakdown Spectroscopy (LIBS) probe mounted to the side of
an existing DED-LB/M head. The probe monitors the deposited mate-
rial as it is laid down by the deposition head (adapted from Lednev
et al. (2019)). b Off-axis spectrometer monitoring the melt pool plume
generated by the DED-LB/M/316L process (adapted from Chen et al.

(2018)). c Example spectrogram recorded using a melt pool-focused
spectrometer to monitor the deposit formed by an DED-LB/M/Metco
42C process (adapted from Ya et al. (2015)). d Changes in the spectral
intensity recording for a weld line correlate well with the occurrence of
defects in the weld bead (adapted from Mazumder (2015))

produce the highest quality component rather than the best
plasma for analysis, and can also distort the laser focus and
affect build quality (Xiao et al., 2020).

The spectroscopic signals, such as that shown in Fig. 7c,
enable the accurate detection of elements in the plasma, down
to the parts per million level in the case of LIBS (Hussain &
Gondal, 2013). The concentration of elements in the plasma
will be closely related to that of the surface but will not
necessarily be identical (Shin & Mazumder, 2018), as some
elements will evaporate at lower temperatures than others.
These signals can then be utilised byML algorithms, such as

the Support Vector Regression (SVR) method used by Song
et al. (2017) to predict on the composition of the deposited
alloy.

Elemental concentrations are generally determined from
the ratios of spectral line intensities of different elements
(Shin & Mazumder, 2018), but the spectroscopic signal can
also be acquired for other purposes. InMontazeri et al. (2020)
line to continuum intensity ratios were recorded for train-
ing several ML algorithms to predict the severity of pores
within the consolidated track. Other studies (Chen et al.,
2018; Mazumder, 2015) have shown that variations in line
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intensities and ratios can be analysed to identify changes in
process conditions that result in defect formation, such as in
Fig. 7d, and possibly leveraged in process control systems.

Acoustic waves

Instead of EM radiation, acoustic monitoring relies on the
propagation of sound waves to provide information on the
build quality. Recording and analysis of acoustic emission is
a well-established monitoring technique for the detection of
cracks, corrosion onset and condition verification in conven-
tional industry (Canumalla et al., 1994; Manthei & Plenkers,
2018; Zhang et al., 2019b) and has recently been adapted to
laser AM. Acoustic monitoring systems can be either pas-
sive in nature, detecting only the sound waves created during
the manufacturing process itself, or they can be active in
nature, generating an acoustic wave to travel through the tar-
get and return to the receiver. Defects such as pores, cracks
or unmelted powders within a part can alter the transmission
of these waves, resulting in variations that can be detected in
the signals recorded (Shevchik et al., 2018).

In metal AM, passive acoustic sensors measure the
vibrations that may travel through the air or through the
manufactured part itself, depending on sensor placement. In
Shevchik et al. (2018), a Fibre Bragg Grating detector mea-
sured the acoustic waves transmitted through the air during
PBF-LB/M/CL 20ES, as shown in Fig. 8a and b. This type of
sensor is advantageous because the sensor unit is relatively
cheap in comparison to other sensors, such as piezoelec-
tric sensors. They are available in a range of configurations,
are extremely sensitive to acoustic vibrations and can be
installed in an unobtrusive location in the build chamber as
shown in Shevchik et al. (2018). In this work, the data was
extracted in the form of a spectrograph and used to train a
variation of CNN algorithm to detect the severity of pore
density in the part. In Koester et al. (2018) and Koester et al.
(2019), amethod for implementing an array of acoustic trans-
ducers below the build plate for DED-LB/M/Ti6Al4V was
presented, Fig. 8c and d. Similarly, in Rieder et al. (2016),
and more recently in Eschner et al. (2020), ultrasonic trans-
ducers were attached to the underside of an PBF-LB/M build
platform and the signal was monitored during the production
of parts with designed defects or differing densities.

Ultrasonic sensors are an example of an active sensor that
has been used extensively in failure analysis, fatiguemonitor-
ing and traditional manufacturing for many years. Through
the implementation of laser-generated acousticwaves (Dixon
et al., 2011), this sensor technology has become applicable to
laser AM as well (Hirsch et al., 2017; Pieris et al., 2019). In
Smith et al. (2016), a secondary laser generates short pulses
of heat on the surface causing thermal expansion and acoustic
waves to be transmitted across the sample surface. A detec-
tion laser (Hirsch et al., 2017; Smith et al., 2016), or acoustic

transducer (Dixon et al., 2011) trained on the surface is able
to read the acousticwaves generated on the surface and detect
variations that would indicate the presence of a defect. This
apparatus and resultant surface map are shown in Fig. 8e and
f. This map can be used as input for a CNN-based algorithm,
as was shown by Williams et al. (2018) for the identification
of porosity in PBF-LB/M.

However, this type of sensor cannot investigate the melt
pool region of the build during production. Further, most
PBF-LB/M build chambers have little available space for
integrating additional equipment within the chamber. To
overcome this limitation, Smith et al. (2016) suggested that it
may be possible to integrate this sensor to the existing optical
train of PBF-LB/M machines, implying that measurements
may be conducted between layers using the existing laser
guidance equipment.

Emerging approaches

Several other approaches have been developed for in-situ
monitoring of Laser AM. However, these methods are either
best suited for research purposes or are not yet practical for
production-scale monitoring.

Synchrotron X-ray monitoring and Schlieren imaging are
helpful research tools for laser AM and can provide valuable
insights into the phenomena occurring during laser process-
ing. Synchrotron X-ray monitoring allows the melt pool
region to be imaged in high resolution, revealing the dynam-
ics of the processing (Chen et al., 2020; Gould et al., 2020;
Guo et al., 2018; Martin et al., 2019; Richter et al., 2019;
Zhao et al., 2017). Schlieren Imaging investigates the fluid
dynamics of the laser plume and build chamber, revealing
how the AM process is affected by its environment (Bidare
et al., 2018a, 2018b). Both techniques require specialised
experimental setup, which cannot be readily adapted to pro-
duction scale processes.

Optical Coherence Tomography (OCT) and Inline Coher-
ent Imaging (ICI) monitoring allow the surface of a part to be
inspected and indicate the effects of processing parameters
(Kanko et al., 2016) and scanning strategy (DePond et al.,
2018) on surface roughness. Eddy current testing (ECT) is
used to detect cracks and sub-surface defects within met-
als (Ghoni et al., 2014) and has been proposed as a method
for in-situ monitoring of AM processes (Du et al., 2018;
Kobayashi et al., 2019). Currently, OCT and ICI have been
minimally explored for in-situ monitoring, and ECT has
only recently been deployed for in-situ monitoring of PBF-
LB/M/AlSi10Mg by Spurek et al. (2022). As these detection
systems undergo further exploration for laser metal AM, it is
likely that ML will be applied to assist in classification and
prediction of samples, but there is little literature exploring
this at this point.
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Fig. 8 Examples of acoustic monitoring methods. a Schematic of Fibre
Bragg Grating sensor in which vibrations alter the diffraction pattern of
the tuneable laser in the fibre optic cable (adapted from Shevchik et al.
(2018)). This signal is carried to a photodiode, and the signal shown in
b is recorded (adapted from Wasmer et al. (2019)). c Contact acoustic
transducers (numbered 1–3) attached below the build plate for a DED-
LB/M/Ti6Al4V process and d an example recorded waveform showing
unprocessed (grey) and bandpass filtered (black) signal (c, d adapted

fromKoester et al. (2018)). e Schematic of Spatially Resolved Acoustic
Spectroscopy (SRAS) monitoring instrument scanning across the sur-
face of a workpiece. The generation laser creates surface acoustic waves
(SAW), which a detection laser can then probe to determine the speed
of the SAW. f An acoustic velocity map (scale bar is 250 µm) recorded
by the detector portion of the SRAS instrument. Defects are shown in
white, where the SAW does not travel (e, f adapted from Smith et al.
(2016))

Sensor summary

Table 2 has been constructed to provide a guide to the ranges
reportedwithin studies on in-situmonitoring of laser AM.As
such, the values indicated are not to be taken as a compre-
hensive range of possible operating values for themonitoring
instruments themselves. Where possible, ranges have been
listed using comparable units, but some exceptions were nec-
essary due to differences in reporting. It should also be noted
that many sensors listed in this table have notable gaps for the
rate of data generation and for the resolution of data sources.
These gaps indicate that there is room for improvement when
reporting on experimental parameters and data acquisition of
monitoring sensors. While the rate at which data from the in-
situ monitoring technique is generated may be unimportant
for monitoring-focused studies, it is relevant to the imple-
mentation of real-time data analysis. Hence, where possible

the data rate has been included or calculated using Eq. 1 from
Berumen et al. (2010),

Bytes/s � xpixels×ypixels×bd× f rame rate
8

(1)

where bd is the bit-depth (assumed as 8-bit for unspecified
grayscale images) and the standard 1024 bytes per kB is used.

As shown, data capture rates can be substantial, on the
order of several GB/s, causing difficulties for real-time pro-
cessing. As will be discussed further in “Machine learning
to predict anomalies” section, real-time detection of defects
requires the recorded data to be processed at high speeds, not
yet achievable with full-sized image data. Hence, large data
is frequently “down-sampled” in other ML applications to
lower the frame size, resolution, or frequency of transferred
data (e.g., every tenth datum may be transferred, or images
cropped). Alternatively, certain features can be extracted
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from images (such as melt pool diameter) and used in vector-
fed ML algorithms to mitigate the data size concerns.

Analysis of in-situ data

The purpose of in-situ monitoring is to collect process-
relevant data simultaneous to fabrication, which can then
be used to determine the state of the component through-
out production. In general, this is useful for understanding
the condition of the final product. Numerical modelling is
also often employed in the AM industry to predict the final
state of AM components, investigate physical processes, and
correlate and reveal underlying physics. For instance, multi-
physicsmodels have advanced the theoretical comprehension
of gas flow (Chen & Yan, 2020), melt pool motion (He &
Mazumder, 2007), pore formation (Bayat et al., 2019), heat
flow (Bayat et al., 2019; He & Mazumder, 2007; Nickel
et al., 2001) and more within the AM field. However, one
of the most significant limitations to its application in AM
is the difficulty in accurately capturing multi-physics phe-
nomena across different scales. By contrast, detecting defects
or anomalous states during production allows for individual
assessments of components as they are built, negating many
of the difficulties associated with accurately capturing statis-
tical variation and unexpected deviations.

Machine learning to predict anomalies

MLmodels are trained on data acquired during manufacture
and can be applied to predict the state of a build based on part-
specific data, learning relationships between input data and
output states independently. However, the potential of real-
time detection of defects by use of ML is still being investi-
gated, and most studies are currently focused on determining
the maximal detection accuracies possible. Once trained,
these ML approaches can process input data at high speeds,
less than 0.1 s per image in the case of the three-class weld
quality classifier using a CNN model demonstrated by Li
et al. (2020). Algorithms that work on smaller “feature” style
data instead of full images or datasets, such as the SVM, have
been reported to allow for real-time composition monitoring
(Song et al., 2017) and defect detection (Liu et al., 2019)
using spectroscopic and video monitoring, respectively, in
DED-LB/M processes. However, the inference time, which
is the time required to classify a new input datum, is rarely
reported on, especially in comparison to the data acquisition
rate, which can be easily in the kHz range, as seen in Table 2.

Further optimisation of ML algorithms and data handling
may reduce inference times to the pointwhen real-time defect
classification becomes possible for algorithms with more
complex data. To this end, down-sampling of data may prove
necessary by significantly reducing the size of data to be

processed. Reducing the dimensions of image data by crop-
ping to regions of interest (Yuan et al., 2019) or reducing
resolution can both drastically reduce the amount of data to
be processed. There is precedent for achieving high accuracy
with low-resolution images. TheMNIST (Modified National
Institute of Standards and Technology) database, created by
Lecun et al. (1998), contains images of handwritten digits
at resolutions of 28 × 28 pixels, and ML algorithms have
achieved classification accuracies exceeding 99% (Ahlawat
et al., 2020). While a simplified example, this suggests that
high-resolution imaging at high speeds may not be necessary
for accurate defect detection for some defect types in laser
AM processes.

Most research currently employs classification-based
detection algorithms, labelling data as one of just a few cat-
egories as simply as “normal” and “abnormal”, or listing up
to several defect states and a normal state, as seen in Scime
and Beuth (2019). These approaches have reported true pos-
itive accuracy rates in the range of roughly 75–95%, with a
few claiming to achieve greater than 95%. These results are
best conveyed in context, such as using a confusion matrix
(see “Appendix 3”), which allows researchers to evaluate the
overall performance.

Some investigations use only idealised data for training,
such as high-resolution micrographs (Li et al., 2020) or
observations of artificial defects (Liu et al., 2019) instead of
real-world data. While some authors recognise these limita-
tions and suggest futureworks to address these shortcomings,
not all works demonstrate this. To accurately gauge how the
AM process monitoring field is progressing towards timely
and accurate defect detection, there must be an increase in
the number of studies comparing their results to real-world
benchmarks, as is done in other ML fields.

Table 3 provides an analysis of 50 separate studies explor-
ing ML and in-situ monitoring for laser AM processes, all of
which have been published from 2017 onwards.

From an inspection of this table, several statistics regard-
ing the spread of topics in the body of literature can be
obtained and are shown in Fig. 9.

Of the works reviewed, over 75% apply supervised learn-
ing methodologies, with only one study by Wasmer et al.
(2019) investigating the use of RL, despite the advance-
ments it has enabled in other fields (discussed in “Discussion
and future directions” section). While supervised strategies
can be more accurate and easier to interpret than other
approaches, real-world data sets for these will be time-
consuming and expensive to create. Ground-truth labelsmust
be determined, oftenmanually, then assigned to each training
datum.Due to this cost, datasetsmaybe small, biased towards
a specific condition and may only allow for simple charac-
terisations. Conversely, unsupervised, and semi-supervised
algorithms are designed to work with unlabelled, or partially
labelled, datasets. By grouping similar data together, these
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Table 3 ML approaches to in-situ monitoring of metal AM processes in fifty separate studies from the body of available literature (‘+’ indicates a
combination of factors, whereas ‘&’ indicates a comparison)

ML category Model architecture AM
process(es)

Signal type Data types
utilised

Purpose of
model

Reference
work(s)

Supervised CNN PBF-LB/M Thermal
emission

Thermal images Predict
conformity of
tensile bars to
strength
thresholds

Kunkel et al.
(2019)

Delamination
and spatter
detection

Baumgartl et al.
(2020)

Contour shape
detection

Elwarfalli et al.
(2019)

Visible light Optical images Laser power
prediction

Kwon et al.
(2020)

Detect powder
spreading
anomalies

Scime and Beuth
(2018b)

Porosity level
classification

Li et al. (2021)

Detect powder
spreading
anomalies

Westphal and
Seitz (2021)

Weld quality of
surfacea

Zhang et al.
(2019a)

High-speed
video segments

Predict average
track width
and track
continuity

Yuan et al.
(2018)

Thermal
emission and
visible light

Thermal and
optical
tomographic
imagesb

Predict the
quality of the
melted
segment

Ren et al. (2020)

Acoustic waves Acoustic signals Porosity level
prediction

Wasmer et al.
(2018a, 2018b)

Light spectra Hyperspectral
images

Surface
roughness
prediction

Gerdes et al.
(2021)

DED-LB/M,
Laser
welding

Thermal
emission

Thermal images Dilution
estimation
(Defect
detection

Gonzalez-Val
et al. (2020)

DED-LB/M Acoustic waves Wavelet
transformed
image plots

Detection of
different
machine
operating
states

Hossain and
Taheri (2021)

SVM PBF-LB/M Thermal
emission

Feature
‘Fingerprints’

Predict probable
defect state
from melt
pool features

Scime and Beuth
(2019)c

Visible light Optical images Defect detection Gobert et al.
(2018)

Light intensity Photodetector
signal +
simulated
temperature

Prediction of
part overhang
or bulk

Gaikwad et al.
(2020)d
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Table 3 (continued)

ML category Model architecture AM
process(es)

Signal type Data types
utilised

Purpose of
model

Reference
work(s)

DED-LB/M Thermal
emission

Pyrometer data +
simulated
temperature

Defect detection Gaikwad et al.
(2020)d

Visible light Optical images Track quality
prediction

Liu et al. (2019)

Visible light +
Atomic
emission
spectra

Optical images +
Optical
emission
signatures

Predict severity
class for lack
of fusion
defects

Montazeri et al.
(2019)

CNN & SVM PBF-LB/M Visible light Optical images Track quality
prediction

Zhang et al.
(2018)

CNN & NN PBF-LB/M Visible light Optical images Defect detection Snow et al.
(2021)

CNN + Multi-layer
perceptron NN

PBF-LB/M Visible light Optical images
(with wavelet
transform and
texture
analysis)

Classification of
processing
condition
based on
energy density

Mojahed Yazdi
et al. (2020)

NN & SVM PBF-LB/M Visible light Optical images Defect detection Petrich et al.
(2020)

Hot-spot related
defect
detection

Bugatti and
Colosimo
(2021)

Back propagation
NN & SVM &
DBN

PBF-LB/M Visible light Optical images Porosity level
classification

Li et al. (2022)

Support vector
regression (SVR)

DED-LB/M Atomic
emission
spectra

Optical emission
signatures

Prediction of
aluminium
concentration

Song et al.
(2017)

Spectral CNN PBF-LB/M Acoustic waves Acoustic signalse Porosity level
prediction

Shevchik et al.
(2018, 2019)

Dynamic
segmentation
CNN

PBF-LB/M,
PBF-EB/M,
binder jetting

Visible light Optical images Semantic
segmentation
of anomalies
in powder bed

Scime et al.
(2020)

Deep CNN PBF-LB/M Visible light Optical images Process
condition
pattern
detection

Caggiano et al.
(2019)

SVM & DT &
KNN & Linear
discriminant (LD)
& K-means & NN

PBF-LB/M Atomic
emission
spectra

Optical emission
signatures

Percentage
porosity level

Montazeri et al.
(2020)

Bayesian classifier PBF-LB/M Visible light Optical images Layer quality
classification

Aminzadeh and
Kurfess (2019)

Linear/Quadratic
discriminant
analysis (LDA &
QDA) & DT &
KNN & SVM

DED-LB/M Thermal
emission

Pyrometer data Predict if melt
pool
characteristics
will result in
porosity or not

Khanzadeh et al.
(2018)

K-d Tree PBF-LB/M Thermal
emission

Pyrometry data Detection of
melt pools
likely to result
in porosity

Mitchell et al.
(2020)
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Table 3 (continued)

ML category Model architecture AM
process(es)

Signal type Data types
utilised

Purpose of
model

Reference
work(s)

DBN & CNN &
Multi-layer
perceptron NN

PBF-LB/M Thermal
emission

Thermal images Classification of
melt states

Ye et al. (2018a,
2018b)

Early stopping NN
& Random forest

DED-LB/M Thermal
emission

Pyrometry data Binary
classification
of porosity

Behnke et al.
(2021)

Active search +
Hyperdimensional
computing

PBF-LB/M Visible light Optical images Lack of fusion
pore detection

Chen et al.
(2021b)

NN PBF-LB/M Visible light +
Light intensity
+ Acoustic
waves + Other

Optical images,
photodiode
intensity,
acoustic signals
and scan
vectors

Defect detection Petrich et al.
(2021)

Unsupervised Self-organising map
(SOM)

DED-LB/M Thermal
emission

Pyrometer data Predict porosity
location

Khanzadeh et al.
(2019)

Bag of words PBF-LB/M Visible light Optical images Detect powder
spreading
anomalies

Scime and Beuth
(2018a)

Melt pool
feature
extraction

Scime and Beuth
(2019)c

DBN PBF-LB/M Acoustic waves Acoustic signals Defect detection Ye et al. (2018a,
2018b)

K-means clustering PBF-LB/M Visible light Optical images Hot-spot related
defect
detection

Bugatti and
Colosimo
(2021)

Semi-Supervised CNN PBF-LB/M Visible light High-speed
video segments

Predict average
track width
and track
continuity

Yuan et al.
(2019)

Optical
micrographs

Weld quality of
surfacea

Li et al. (2020)

CNN + RNN PBF-LB/M Thermal
emission

Thermal images Build condition
classification

Larsen and
Hooper (2021)

KNN DED-LB/M Other signal
type

Laser profiler
point cloud
data

Detect surface
defects

Chen et al.
(2021a)

K-means clustering
+ KNN

PBF-LB/M Other signal
type

Optical
tomography

Predict hotspots
in a layer

Yadav et al.
(2020)

Gaussian mixture
model (GMM)

PBF-LB/M Light intensity Photodiode
intensity
signals

Predict
conformity of
tensile bars to
strength
threshold

Okaro et al.
(2019)

Reinforcement Q-Learning PBF-LB/M Acoustic waves Acoustic signalse Porosity level
classifier

Wasmer et al.
(2019)

All studies utilising DED-LB/M were powder-fed, and terminology used in studies has been preserved where possible
aThese studies utilise an off-line optical micrograph image dataset, known as UB-Moog produced by Moog, Inc., Buffalo, NY (Zhang et al., 2019a)
bSimulated sensor data was used in this study
cDifferent aspects of the same study. The Unsupervised model provided the input to the Supervised model
dThe combination of simulated data and monitored signal is tested on both PBF-LB and DED-LB
eUsing the same acoustic data from the initial study (Shevchik et al., 2018)
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Fig. 9 Prevalence of a monitored
signal type, bML architecture
utilised, c ML category
employed, and d the AM process
being monitored for the works
reviewed in Table 3. Note: the
‘Other’ processes included here
relate only to non-laser metal
AM processes that were a part of
a study that did investigate
PBF-LB/M or DED-LB/M where
Machine Learning and in-situ
monitoring were applied
similarly to the laser AM process
studied

algorithms can learn unexpected features or relationships in
the data. Scime and Beuth (2019) used an unsupervised Bag
of Words method to group images of samples and found that
an expected feature was not detected by the algorithm, while
an unexpected feature was.

There is also a strong preference for the collection of vis-
ible and thermal emission data, together comprising 70% of
all instances in the literature surveyed. Imaging sensors, in
both visible and IR bands, can provide spatial resolution from
a fewmicrometres per pixel, allowing for defects and features
to be identifiable. This can also allow for multiple features
to be identified within individual frames, providing a rich
data source for defect detection algorithms. Thermal mon-
itoring, image-based or otherwise, can additionally provide
valuable data on thermal history and melt pool condition.
However, both thermal and visible light signals are typically
limited to surface measurements and can miss indications of
sub-surface defects which might instead be detected through
other monitoring technologies, such as acoustic sensors.

The preference for visual and thermal data corresponds
strongly with the CNN-based and SVM type model archi-
tectures, occupying 35% and 17% of all approaches,
respectively. Both algorithms are well understood and can
be highly informative. CNN algorithms are especially adept
at processing image-based data, while SVM algorithms can
rapidly process vectorized data, such as temperature–time
signals. As typically supervised algorithms, these can be
expensive to train, and CNNs additionally require extensive
computing resources, proportional to the size of input images.
Given the large variety of ML algorithms available, further
advancement of other approaches may well provide new

insights into the formation of defects and undesirable
product states.

Finally, there is a strong tendency towards investigation in
PBF-LB/M systems compared to DED-LB/M. Over 75% of
studies consider PBF-LB/M systems for their investigations,
while just 18%analyseDED-LB/M,with none of those being
wire-fed systems. The remainder here is comprised of pro-
cesses being compared to a laser metal AM within the same
study but utilising a relevant approach. It should also be con-
sidered that ML implementation in other fields often benefits
from transfer learning on similar data sets to improve the
robustness of predictions. And while there are instances of
transfer learning relying on data from outside of the AMfield
(Mojahed Yazdi et al., 2020), there are no studies utilising
transfer learning between PBF-LB/M and DED-LB/M.

Anomaly detection without machine learning

In many manufacturing processes, signals are monitored in
real-time and deviations from a prescribed range of values
are considered anomalous. These deviations are often cor-
related with out-of-control processing that may lead to the
formation of a defective product. This approach is different
to the application of ML, and typically detects anomalous
process conditions rather than individual defects. Addition-
ally, these detection limits are frequently hard-coded and
determined from experimentally informed process maps, by
operator experience, or from a simulation, not learned from
the data as is the case with ML.

The detection of undesirable conditions using process
limits has shown some promise as a viable and practical
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method. One example is the commercially available
CLAMIR (Control for Laser Additive Manufacturing with
Infrared imaging) system, a thermographic imaging and con-
trol package demonstrated by Ramirez (2019) tomonitor and
actively modify the dimensions of the melt pool in DED-
LB/M manufacturing. A similar approach is described by
Chen et al. (2018), where the intensity of different spectral
lines was monitored in an DED-LB/M process, and con-
trol limits were established based on “normal” operation.
Deviations from these control limits were associated with
the formation of unwanted deposit or defects. It should be
noted, however, that the detections presented in this paper
were the result of extreme changes to the process parameters,
and therefore did not demonstrate the realistic sensitivity of
this method.

Control limit detection of defective states is a compar-
atively simple method for detecting poor build conditions
when contrastedwithML-based detections. Following detec-
tion, some studies have exploited Statistical Process Control
(SPC) for controlling melt pool size (Ding et al., 2016;
Ramirez, 2019), cooling rate (Farshidianfar et al., 2016),
and deposition height in Gas Tungsten Arc AM (Xiong
et al., 2019; Zhu & Xiong, 2020). Indeed, control limits, and
associated SPC of process variables have proven useful in
improving consistency and quality in the metal AM industry,
but are generally incapable of learning new relationships in
data or for detecting individual defects as they occur.

Few studies have compared control limit detection to ML
detection of defective production. However, one example by
Grasso and Colosimo (2019) has shown that ML algorithms
can ameliorate the detection of out-of-control processes over
purely statistical control limits. In this study, the authors
apply an SVM to improve the region of interest and con-
trol chart design over a statistical model they had previously
produced (Grasso et al., 2018). TheML-augmented approach
enabled earlier detection of out-of-control manufacture and
at a significantly reduced time. As control-limit detection
and SPC can be considered the current industry standard for
in-situ detection and control, comparisons to these in future
publications would prove beneficial to the field.

Discussion and future directions

As the AM industry continues to transition from a prototyp-
ing and research dominated sector into a commercially viable
manufacturing option, demands on quality control and assur-
ance will continue to increase. ML-based defect detection
and process monitoring offer a pathway towards the realisa-
tion of feedback process control and defect-free products for
high-value industries.

The rapid and accurate detection of some defect classes
are beginning to be realised in the field of laser metal

AM. A recent study by Ren et al. (2023) reported 100%
prediction accuracy for keyhole pore detection in PBF-
LB/M/Ti6Al4V using supervised machine learning on IR
imaging data. This result was made possible through the
use of a multiphysics simulation informed by synchrotron
X-ray monitoring. Approaches such as this one elucidate the
underlying physical phenomena that give rise to the defect
formation, therefore providing a physics-informed pathway
to process modification and feedback control.

In-situ process control is a new paradigm inAM that seeks
to control the process variables, like laser power, to maintain
targeted values for monitored signals, such as temperature.
Once detected and identified by ML algorithms, defective
build conditions could be modified and adapted during pro-
duction. This potential for closed-loop control is expected
to provide a solution to the lack of part consistency in the
industry. The currently employed optimisation of process
parameters fails to account for stochastic fluctuations and
process variations that are well known to cause the formation
of undesirable features. Control systems are already com-
mon in other industries and allow systems to adapt to these
changes, minimising the effects they have on the quality of
the product.

Closed-loop process control would introduce several ben-
efits to AM, including reduced waste, minimisation of
manufacturing defects, and improved production consis-
tency. There currently exist systems, such as the previously
discussed CLAMIR system (Ramirez, 2019), which demon-
strate the capability to control the melt pool size in real-time,
moving beyond detecting adverse conditions and enabling
improved product quality. However, these systems, governed
by control limits, are limited to pre-defined responses only
and make no diagnosis of potential problems nor offer the
possibility for remediation. Alongside the minimisation of
non-critical defects, such as pores, that are known to affect
the mechanical responses of the final component (Salarian
et al., 2020), intelligent ML control systems could give rise
to a paradigm of in-process certification, drastically reducing
the requirement for extensive quality control testing post-
manufacture (Mazumder, 2015).

Furthermore, recent advancements within the ML field
have led to the development of programs capable of out-
performing human experts in non-analytical circumstances.
An RL algorithm called AlphaGo Zero, designed to play
the board game ‘Go’ (with more than 10575 total possible
moves and board configurations (Cai & Wunsch, 2007)),
consistently defeats human expert players andotherAI-based
approaches, andhas evendevelopednovel strategies that have
since been adopted by human players (Sutton&Barto, 2018).
The number of processing parameters andmaterials available
to laserAMis on the order of several dozen (Silbernagel et al.,
2019; Spears & Gold, 2016), and these parameters are typ-
ically non-discrete in nature. This makes the possibility of
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mapping out the material-process space in any AM category
similarly impractical to mapping out the game space of ‘Go’
to identify a solution to every situation. It is likely that simi-
larly inspired RL approaches can be adapted to the AM field
to learn their own corrective actions after detecting defects
or process deviations, and that existing ML models could be
used to train these algorithms (Yeung et al., 2020). Such self-
learning programs could result in adaptive process control by
machines capable of observing multiple signals and correct-
ing deviations in real-time. Such capability would result in a
dramatic rise in AM components’ quality and a correspond-
ing increase in the uptake of AM processes by high-value
industries.

VariousML approaches have been applied to defect detec-
tion and build classification in laser metal AM, using a wide
variety of data structures and process monitoring technolo-
gies. Thermal and visible light imaging methods are among
themost implemented technologies, providing large amounts
of image data to CNNs for classification of defects. These
sensors are known to provide valuable information on the
process conditions, but they also create large volumes of data
with storage and transmission difficulties. Vector-fed algo-
rithms, such as SVMs,Decision trees andANNs,make use of
features extracted fromprocessing signals and canutilise data
from spectrometers, photodiodes, and acoustic transducers,
as well as images. These sensors can provide unique benefits
and inform on different aspects of the build process that can-
not be deduced from image data alone. Several other sensor
technologies are being investigated for process monitoring,
but these are either best suited to research tasks or require
further development before they can be widely adopted and
will likely foster further ML investigations.

Recent studies have demonstrated the capabilities of ML
algorithms to detect the presence of defects or undesirable
build conditions from various forms of sensor data, including
visual images, spectrographic intensity ratios and acous-
tic signals. Supervised ML approaches, such as CNNs and
SVMs, have dominated the available literature regarding the
detection of undesirable states from sensor signals, provid-
ing for relatively high accuracy in simple classification tasks.
Some approaches have even been reported as capable of pro-
viding classifications in real-time through the use of simpler
networks, downsized data or refined feature selections. As
research continues to advance the use of ML-based detec-
tion systems toward real-time and closed-loop control of AM
processes, there are several critical aspects of the literature
that will reflect the progress made:

1. Reporting of inference rates between studies investigat-
ing the applicability of ML for the detection of defects is
not yet consistent. This is needed to directly compare dif-
ferent approaches and help drive networks’ development
for real-time detection.

2. The spatial resolution and data generation rates of moni-
toring sensors are rarely described in detail. These relate
directly to systems’ physical detection limits and the
applicability of the generated data for rapid evaluation
necessary for closed-loop control.

3. Prediction results of ML algorithms are typically framed
only within the context of each study, making it difficult
to compare performance across studies. The use of a uni-
versal benchmark would foster the development of more
robust ML systems for wider AM use.

4. The current range of predicted outcomes from many
currentML approaches is limited to simple two- or three-
class predictions. Quantitative outputs, such as dilution
ratios and morphological predictions, will provide more
detailed information on the building process.

5. There is a strong tendency toward using supervised ML
approaches, particularly using CNN and SVM algo-
rithms, for the investigation of PBF-LB/M processes and
monitoring by visual or thermal cameras. The exploita-
tion of other available technologies and monitoring
strategies may improve process understanding or result
in stronger predictive performance of ML approaches.

6. Improvements in data handling, transfer, and conversion
to useable formats for ML algorithms will need to be
made as the development of real-time detection in closed-
loop process control grows.
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Appendixes

Appendix 1: Abbreviations

Abbreviation Definition

AI Artificial Intelligence

AM Additive Manufacturing

ANN/NN Artificial Neural Network

CLAMIR Control for Laser Additive Manufacturing with
Infrared imaging

CNN Convolutional Neural Network

DBN Deep Belief Network

DED Directed Energy Deposition

DIC Digital Image Correlation

DL Deep Learning

DLD Directed Lased Deposition

DT Decision Tree

EB Electron beam

ECT Eddy Current Testing

EM Electromagnetic

FGM Functionally Graded Material

GMM Gaussian Mixture Model

HIP Hot Isostatic Pressing

ICI Inline Coherent Imaging

IR Infrared

KNN K-Nearest Neighbours

LB Laser beam

LD/LDA Linear Discriminant/Linear Discriminant
Analysis

LENS Laser Engineered Net Shaping

LIBS Laser-Induced Breakdown Spectroscopy

LMD Laser Metal Deposition

LOF Lack of Fusion

ML Machine Learning

MNIST Modified National Institute of Standards and
Technology

MP Megapixels

OCT Optical Coherence Tomography

OES Optical Emission Spectrum

PBF Powder Bed Fusion

PCA Principal Component Analysis

QDA Quadratic Discriminant Analysis

RBM Restricted Boltzmann Machine

RF Random Forest

RL Reinforcement Learning

SAW Surface Acoustic Wave

SOM Self-Organising Map

SPC Statistical Process Control

Abbreviation Definition

SRAS Spatially Resolved Acoustic Spectroscopy

SVM Support Vector Machine

SVR Support Vector Regression

XCT X-ray Computed Tomography

Appendix 2: Categories of machine learning

Within the field of Machine Learning (ML), there are four
primary categories of learning styles: supervised learning,
unsupervised learning, semi-supervised learning, and rein-
forcement learning. Supervised learning refers to approaches
that use fully-labelled data; that is, the data provided to
the algorithm has a pre-determined correct answer. The
algorithm then inspects the data and over many training iter-
ations, learns to identify patterns in the data that correspond
to the correct answer (Lecun et al., 2015). Construction of
such a dataset can be extremely time-consuming and expen-
sive, especially when that requires micro X-ray computed
tomography (XCT), human inspection or destructive testing
to determine the existence or severity of defects. As larger
datasets frequently result in improved ML performance, this
can limit the practicality of supervised learning approaches.
The convolutional neural network (CNN) is an example
of a highly successful supervised algorithm that has been
used extensively in Additive Manufacturing (AM) for defect
detection and part classification (Gonzalez-Val et al., 2020;
Kunkel et al., 2019).

Unsupervised learning, by contrast, has no pre-defined
label for the data. Instead, the algorithm recognises similar-
ities between subsets of the data and groups these together.
A human operator may then inspect the groups and allo-
cate a label to that grouping. One example of this is the Bag
of Words algorithm, utilised by Scime and Beuth (2019),
where images were grouped by features, and then correlated
with similar feature images of known conditions. The authors
were able to categorise several different defect states by this
method, but they also discovered that one of the expected
defect categories, severe keyholing, was not identified by
this method, while another unexpected category, spattering,
was identified. The unsupervised approach has the advantage
of reducing the time and cost of constructing a dataset whilst
also having the potential to discover unexpected correlations.
However, it is worth noting that supervised approaches can
be simpler to evaluate and interpret.

Semi-supervised learning utilises a combination of these
two data structures, grouping unlabelled data with simi-
lar data that is labelled. By implementing this strategy, the
advantages of both supervised and unsupervised learning are
combined. Semi-supervised learning can be more accurate
than purely unsupervised training, as demonstrated using a
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CNN model by Yuan et al. (2019), while it can be signif-
icantly easier and cheaper to assemble the dataset than it
is for purely supervised learning. Studies have also demon-
strated that using unlabelled data in addition to labelled data
acquired during production can result in increased prediction
accuracy (Li et al., 2020; Okaro et al., 2019).

Instead of attempting to group or classify data provided
to it, a reinforcement learning algorithm aims to achieve
an overall goal by interacting with its environment through
the exploration of different actions available to it. When
a model effects a change that causes the environment to
move towards the desired state, a reward is provided to it,
encouraging further actions that promote that desired state
(Sutton & Barto, 2018). Reinforcement methods have so
far been limited in the AM monitoring field, but one study
by Wasmer et al. (2019) demonstrated it for predicting
the quality of laser beam powder bed fusion (PBF-LB)
components. This approach applied a Q-Learning algorithm
to learn the relationships between clips of acoustic data
and the resultant porosity level. The authors presented this
research as a feasibility study that achieved lower accuracies
than their supervised approaches (Shevchik et al., 2018;
Shevchik et al., 2019; K. ; K ), but that they expected to
show improvement with further optimisation in the future.

Appendix 3: Confusionmatrix

A confusion matrix, such as that shown in Fig. 10 is a com-
mon method for illustrating the performance of a predictive
ML algorithm. In this example, of all input data or samples
that are belong to Condition A, 95% of them are predicted
correctly, while 2% and 3% are predicted to belong to condi-
tions B and C, respectively. Hence, the diagonal cells show
the “true positive” rate for each condition. This example illus-
trates that the true positive prediction is lowest for condition
B, and that this condition is more likely to be incorrectly
predicted as condition C than condition A. This can show
that the algorithm may have some difficulty differentiating
these categories or that the data provided may be unbalanced
(Fig. 10).

Predic�on

Ground Truth
Condi�on A Condi�on B Condi�on C

Condi�on A 0.95 0.02 0.03

Condi�on B 0.07 0.75 0.18

Condi�on C 0.05 0.03 0.92

Fig. 10 Example of a normalised, three-class confusion matrix
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