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Abstract
This paper investigates the critical condition whereby the compressed

edge of a beam subjected to large bending exhibits a sudden lateral heel-
ing. This instability phenomenon occurs through a mechanism different
from that usually studied in linear theory and known as flexural-torsional
buckling. An experimental test device was specifically designed and built
to perform pure bending tests on soft materials. Thus, the experimen-
tal campaign provides not only the moment-curvature behavior of beams
of narrow rectangular cross section, but also information regarding the
post-critical lateral buckling behavior. To study the local bifurcation
phenomenon, an analytical model is proposed in which a field of small
transversal displacements, typical of the linear stability of thin plates, is
superimposed on the large vertical displacement field of an inflexed beam
in the nonlinear elasticity theory. Furthermore, numerous numerical sim-
ulations through nonlinear FE analysis have been performed. Finally,
the results provided by the different methods applied were compared and
discussed.

Keywords: Finite elasticity; Equilibrium; Beam; Bending; Lateral buckling;
Bending experiments.

1 Introduction
The elastic stability of slender beams, deflected in the plane of maximum stiff-
ness, has been extensively investigated since the pioneering works by Prandtl
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(1899)1 [1] and Michell (1899) [2]. In these first studies, the critical load of
beams of rectangular cross section, under various conditions of loading and end-
support, was calculated.

In 1960, Cherry [3] presented test results in the form of bifurcation loads for
beams in uniform bending, whose compression flanges had prematurely buckled
locally. Cherry supported his experimental work with a theoretical analysis
based on the lateral stability. The interaction in thin-walled beams between
local and lateral buckling was subsequently studied by Hancock et al. [4].

Several authors have extended the theory of lateral buckling of thin-walled
beams by developing specific nonlinear analyses, including Reissner [5], Chang
et al. [6], Machado [7], Attard and Kim [8]. Stability analysis of thick block
subjected to large bending deformations were performed by Destrade et al. [9],
[10], also showing onset of surface instabilities. FE analyses of lateral buckling
were developed by Barsoum and Gallagher [11].

Fig. 1 illustrates the classic lateral buckling of an inflexed thin-walled2 beam
in the context of linearized elasticity. The beam is deflected in the vertical YZ -
plane by couples M applied at the ends. In the initial phase, increasing M, the
beam bends, with constant curvature (uniform bending) and the middle vertical
plane of the beam always belongs to the YZ -plane. These equilibrium configu-
rations are stable. Given the low transverse flexural stiffness, this situation can
radically change when a critical value of M, denoted by Mcr, is reached. Indeed,
when exceeding Mcr, the beam can deform laterally assuming (randomly) one
of the two possible buckled configurations (as shown in Fig. 1b). In this circum-
stance, it is important to note that the unbuckled vertical configuration becomes
unstable, while the two other adjacent buckled configurations are stable.

With reference to any intermediate section, the external vector moment M i
(where i is the unit vector in the direction of the X axis) can be decomposed
into three components evaluated along the ξ, η and ζ directions (cf. Fig. 1b
and 1c). The tangent component to the deformed axis, along the ζ direction,
is a torsion moment and is responsible for the global rigid rotation of the cross
section, as shown by Fig. 1c. For this reason, the stability problem considered
is often known as flexural–torsional buckling.

Once the three components of the vector moment according to the coordinate
axes ξ, η and ζ have been calculated, a system of three differential equilibrium
equations can be written in terms of the corresponding curvatures and twist.3
Rearranging this system, the governing equation for the angle of twist β(Z)
is obtained. This equation has a mathematical structure very similar to the
differential equation for the buckling of compressed beams (from which Euler’s

1Ludwing Prandtl studied mechanical engineering at the Technische Hochschule (TH) in
Münich and became an assistant of A. Föppl, who was also his doctoral tutor. Prandtl
addressed the lateral buckling problem of beams in his thesis, the title of which was: On
Tilting Phenomena, an Example of Unstable Elastic Equilibrium [1].

2Mechanically, a thin-walled beam, unlike a beam with a solid cross sectional area, is more
prone to lateral buckling.

3In these equations, displacements and angle of twist β(Z) are considered very small.
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Figure 1: Lateral buckling of a hinged-hinged slender beam. (a) Initial rectilin-
ear configuration. (b) Shape assumed after lateral buckling. (c) Rigid rotation
of a generic cross section.

formula was derived) and gives the following critical value [12]:

Mcr =
π
√
BY C

L
, (1)

which represents the smallest value of M at which buckling occurs. In the
previous equation, BY = HB3

12 E is the principal flexural rigidity in the YZ
plane, and C = HB3

3

(
1− 0.63B

H

)
G is the torsional rigidity4, where E denotes

the Young’s Modulus and G the shear modulus. From formula (1), it can be seen
that Mcr depends on the product of the smallest flexural rigidity BY and the
torsional stiffness C, but does not depend on the flexural stiffness BX = BH3

12 E.
This is due to the fact that the vertical displacements are small as the flexural
rigidity BX is high.

In this paper, the same buckling problem illustrated by Fig. 1 is studied
in the fully nonlinear context of finite elasticity. It is shown how the lateral
buckling for the beam can occur due to a substantially different mechanism than
the one described above. The intermediate cross sections do not only undergo
a global rigid rotation, but starting from the compressed edge they also exhibit
an important pure deformation, which shows how the lateral buckling is mainly
localized at the upper edge of the beam. In fact, the corresponding transversal
displacement field decreases quite quickly going towards the tensile part of the
beam. Compared to the case of the linearized theory, the displacement field,

4The torsional rigidity C was calculated by Timoshenko and Goodier [13] in the case of
narrow rectangle cross sections. In particular, to evaluate the constant 0.63, a logarithmic
series, that converges very quickly, was assigned to the stress function (see eq. (161) on page
278 of [13]).
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strains and stresses at each point of the beam change, but, above all, it is
different the critical moment that produces the lateral buckling. After having
formulated the lateral buckling for beams in finite elasticity, the comparison
between the results provided by the two theories is performed.

In the next Section 2, experimental evidences of lateral buckling for beams
capable of undergoing both large deformations and displacements are illustrated.

2 Experimental evidences
Experimental tests on lateral buckling of a beam are carried out reproducing
a pure bending device that is able to impart a prescribed rotation at the final
cross sections. This new device does not apply shear or axial forces to the
specimen and was built inspired by the prototype presented in [14], which was
designed to impart a prescribed rotation, but without the ability to perform
mechanical measurements. Otherwise, the new prototype is equipped with load
cells, which indirectly supply the reactive bending moment M associated with
the prescribed angle α0 (cf. Fig. 6b).

The new test machine is shown in Fig. 2. An external steel frame encloses
the entire device, which is composed of an actuator that pushes up the contrast
beam (brown beam in the bottom of Fig. 2 and sketched in Fig. 3a). The lower
beam is restrained with two vertical slides placed at the beam edges. These
slides constrain the vertical motion of the contrast beam along the vertical bars
who act as guides (see Fig. 3b). A load cell is positioned between the two
coupled blocks that compose the vertical slide. The load cells, symmetrically
positioned in the device, support the lower beam (see Figs. 2 and 3b). Thus,
the vertical motion of the actuator lifts the lower beam through the contrast
beam. During this motion, the load cells read the vertical forces applied to the
lower beam. Over the lower beam, a horizontal guide is fixed and equipped with
two horizontal linear slides. The same components (i.e., the lower beam with
a horizontal guide and linear slides) are fixed at the external steel frame in the
upper part of the device (see Fig. 2). On each linear slide (four in total, two
lower and two upper), the vertical masts of the pantograph are fixed. The masts
are hinged with the diagonal arms of the pantograph. The diagonal arms of the
pantographs extend a few centimeters beyond the inside part of the vertical
masts (see Fig. 3c). On the extensions of the pantographs arms, the clamping
system of the specimen is positioned (see Fig. 3c).

The operating principle of the device is the following: the vertical motion
of the lower beam induces the closure of the pantographs, whose arms rotate
around the hinged masts. The closure of the pantographs generates the hor-
izontal sliding of the vertical masts mounted on the horizontal guides, letting
free the final cross sections of the specimen to approach (see Fig. 4a). The rigid
rotation of the pantographs arms is transferred to the final cross section of the
specimen.

Because of the equilibrium conditions, the specimen is subjected to a couple

4
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Figure 2: Device for pure bending test of soft materials. The operating principle
is such that the approach of the lower beam, through the contrast bar pushed
by the actuator, toward the upper beam generates the bending of the specimen.
Between contrast beam and lower beam, two load cells (indirectly) measure the
prescribed bending moment. Bending of the specimen is induced by the rotation
of the pantograph arms which are hinged with the vertical masts. Vertical
masts are coupled with the upper and lower beams through slides restrained to
horizontal guides.
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Figure 3: Details of bending device. (a) Actuator fixed at the external steel
frame and connected with the moving contrast beam. (b) Detail of the two
blocks composing the vertical slide and load cell positioning between the contrast
beam and the lower beam. (c) Specimen clamping system and patterned surface
monitored with the optical cameras (DIC).

of equal and opposite bending moments M = F Ld cosω(α0), being F the
average force read by the load cells (2F = F1 + F2), Ld the distance between
the hinge of the diagonal arm of the pantograph, and ω(α0) the inclination angle
of the diagonal arms (cf. Fig. 4b).

The DIC optical cameras are positioned in front of the device. DIC po-
sitioning is such to monitor the prescribed twisting angle α0 and both upper
and frontal surfaces of the rubber specimen (see Fig. 5). DIC is used in stereo
mode (two cameras). Thus, the entire 3D displacement filed has been acquired,
in-plane and out-of-plane components.

3 Kinematics of beams subjected to finite bend-
ing

Based on a three-dimensional model, the finite bending of a beam was recently
investigated in [15], [16] and [17]. We will start from the solutions presented in
these papers to get the geometry of the deformed configuration of a beam, with
a narrow rectangular cross section, subjected to a uniform bending moment.
The problem is similar to the one illustrated in Fig. 1, with the fundamental
difference that now both deformations and displacements can be large.

The longitudinal inflexion of the beam is generated by the application of a
pair of self-balanced bending moments or, equivalently, by a geometric boundary
condition which imposes a prescribed relative rotation between the two end faces
of the beam (cf. Fig. 6b). In the latter case, the longitudinal curvature imparted
to the beam is measured by the angle α0. The longitudinal radius of curvature,

6
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Figure 4: Static scheme of the pure bending device and computation of the
bending moment. (a) Reference configuration (black tones), deformed configu-
ration (blue tones), and kinematic control parameters activated by the actuator
(red color). (b) Free body diagram of the device used to compute the (reactive)
bending moment M from the acquisition of forces of the load cells.
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Figure 5: Pure bending test of the rubber specimen with evidence of lateral
buckling acquired with the digital image correlation (DIC) cameras. (a) Data
grid of the DIC in the reference configuration (green grid) and deformed con-
figuration (red grid). (b), (c) and (d) Norm of the displacement field at α0 =
0, 4, 20°, respectively.
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Figure 6: Geometric details of a beam under finite bending. (a) Undeformed
configuration. (b) Deformed longitudinal section. (c) Deformed cross section.

R0, and the transversal one, r, due to the anticlastic effect, are equal to [16]

R0 =
L

2α0
and r =

B

2β0
= R0

a+ 3b+ 2c

b+ c
. (2)

The radius R0 is given by the geometric boundary condition, while the radius
r is assessed by imposing the equilibrium conditions. In the expression of r
appear the material constants a, b and c of the stored energy function ω in the
form for compressible suggetio-Rivlin materials [18], [19]

ω (I1, I2, I3) = aI1 + bI2 + cI3 − (a+ 2b+ c) ln I3, (3)

where I1, I2 and I3 are the the principal invariants of the Cauchy-Green defor-
mation tensors. Once the two radii R0 and r have been defined, the Lagrangian
stretches can be evaluated at each point of the beam (eq. (9) of [16]))

{
λX = λY = e−

Y
r ,

λZ = 1 + r
R0

(
1− e−

Y
r cos X

r

)
.

(4)

Using (4), all the geometrical characteristics of the inflexed beam can be
evaluated. The transverse radii ρmin and ρmax, shown in Fig. 6c, hold

9
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{
ρmin = r −

∫H/2

0
λY (Y ) dY = r e−

H
2r ,

ρmax = r +
∫ 0

−H/2
λY (Y ) dY = r e

H
2r .

(5)

After deformation, the height H becomes

H ′ =
∫ H/2

−H/2

λY (Y ) dY = r
(
e

H
2r − e−

H
2r

)
= ρmax − ρmin. (6)

With reference to the vertical middle plane (x = 0), the height H ′ can be
divided into two segments of different lengths: ρmax − r = r

(
e

H
2r − 1

)
and

r− ρmin = r
(
1− e−

H
2r

)
, which characterize the heights of the compressed and

tensioned part of the beam.
Deformation transforms the width B into arcs that depend on variable Y

(cf. Fig. 6c)

B′(Y ) =

∫ B/2

−B/2

λX (Y ) dX = B e−
Y
r . (7)

From this expression some particular values are obtained: B′(−H
2 ) = B e

H
2r ,

B′(0) = B and B′(H2 ) = B e−
H
2r .5

All straight longitudinal fibers, parallel to the axis of the undeformed beam
(X = Y = 0), become arcs of circle. In the middle plane (X = 0), the length of
these longitudinal arcs can be evaluated as follows (cf. Fig. 6b):

L′(Y ) =

∫ L/2

−L/2

λZ(0, Y ) dZ = L

(
1 +

r

R0

[
1− e−

Y
r

])
. (8)

From this expression some particular values are obtained: L′(−H
2 ) = L

(
1 + r

R0

[
1− e

H
2r

])
,

L′(0) = L and L′(H2 ) = L
(
1 + r

R0

[
1− e−

H
2r

])
.6 L′(−H

2 ) is the length of the

top edge and L′(H2 ) of the bottom edge of the beam in the deformed configura-
tion.

Substantially, the middle plane of the beam assumes the shape of an annulus
sector, with the center of radial symmetry the pole C1 of Fig. 6b. Meaning that
along any radial direction, the cross sections all have the same geometric shape,
stretches and stresses.

For the center line of the middle plane (x = z = 0), the law of transformation
of the Lagrangian variable Y into the corresponding Eulerian y assumes the

5The same values can be calculated using the arc length formula: B′(−H
2
) = ρmax2β0 =

B e
H
2r , B′(0) = r 2β0 = B and B′(H

2
) = ρmin2β0 = B e−

H
2r .

6The same values can be calculated using the arc length formula: L′(−H
2
) =

[R0 − (ρmax − r)] 2α0 = L
(
1 + r

R0

[
1− e

H
2r

])
, L′(0) = R0 2α0 = L and L′(H

2
) =

[R0 + (r − ρmin)] 2α0 = L
(
1 + r

R0

[
1− e−

H
2r

])
.

10
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following simple form (eq. (17) of [16]):7

y = r
(
1− e−

Y
r

)
. (9)

Substituting (9) in (4), the Eulerian stretches for X = x = 0 are obtained
{
λx = λy = λ = 1− y

r ,

λz = 1 + y
R0

,
(10)

which can be used to evaluate the longitudinal Cauchy principal stresses (eq.
(28) of [16])

T3 =
2

λ2λz

{(
λ2
z − 1

)
a+ 2

(
λ2λ2

z − 1
)
b+

(
λ4λ2

z − 1
)
c
}
. (11)

Given the radial symmetry, the stretches (10) and stresses (11), evaluated for
vertical middle plane, are the same along every straight line outgoing from pole
C1.

4 Formulation and resolution of the stability prob-
lem

In the previous Section, the geometrical characteristics of a beam with a rect-
angular cross section under finite bending were illustrated, describing the shape
assumed by the beam in the deformed configuration. The vertical middle plane
of the beam transforms into the annulus sector shown in Fig. 7. Considering
the radial symmetry, to represent any point P on this plane it is convenient to
introduce a system of polar coordinates, with pole C1, radius ρ ∈ [ρmin, ρmax]
and polar angle ϑ ∈ [−α0,α0]. The same figure shows the principal Cauchy
stress distributions (11), which have as resultant two self-equilibrated bending
couples M.

From the situation illustrated in Fig. 7, the aim is now to identify a critical
value of the angle α0 for which lateral buckling becomes incipient (as can be
seen from Fig. 6, the angle α0 is half the angle of relative rotation between
the two end cross sections of the beam). Lateral buckling manifests itself with
the appearance of an additional displacement field u(ρ, ϑ), orthogonal to the
middle plane, which, as seen in Section 2, has the shape similar to a semi-wave
at the upper compressed edge, whose amplitude quickly decreases as the radius
ρ grows. Obviously, in the absence of this displacement field u(ρ, ϑ), there is
no lateral buckling.

To model the stability problem, a small orthogonal displacement field, which
has the role of a perturbation of the equilibrium solution, is superimposed on
the large vertical displacement generated by the nonlinear bending of the beam.

7That is to say that, while in the undeformed configuration Y ∈ [−H/2, H/2], in the
deformed configuration the corresponding y ∈

[
−r

(
e

H
2r − 1

)
, r

(
1− e−

H
2r

)]
(cf. Fig. 6c).

11
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Figure 7: The vertical middle plane of the beam in the deformed configuration.

Being small, this orthogonal displacement field can be evaluated using the lin-
earized elasticity theory. Namely, starting from the deformed configuration
shown in Fig. 7, a small increase in the lateral displacements is added, assum-
ing that this lateral deflection surface has a shape similar to that highlighted
by the experimental tests (cf. Fig. 5). Then, the magnitude that the Cauchy
stresses (caused by the prescribed angle α0) must have in order to keep the
middle plane in such a slightly buckled shape is calculated. Instability therefore
occurs when the (linear) perturbed equilibrium problem admits the solution
u(ρ, ϑ).

Methods for stability analysis, known in the literature, can be used to calcu-
late the above critical load. To evaluate the lateral displacement field u(ρ, ϑ),
the deformed beam is now assimilated to a (linear) plate 8, in the shape of an
annulus sector, loaded solely in its own plane by the Cauchy stresses (11). Using
the polar coordinates, the differential equation for the buckled plate is 9

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂ϑ2

)(
∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2
∂2u

∂ϑ2

)
=

1

Dρ2
Nϑ

(
∂2u

∂ϑ2
+ ρ

∂u

∂ρ

)
,

(12)
where D = EB3

12(1−ν2) and Nϑ = T3 B is the normal forces per unit length. In
both these terms, the thickness B can be considered constant, because it sub-
stantially undergoes a very small variation, being r much larger than Y (cf. eq.
(7)). The symbol E denotes the Young’s modulus and ν the Poisson’s ratio.
The corresponding tangent values matured in the deformed configuration of the
beam must be assigned to these two constitutive parameters.10 To evaluate T3,

8In linearized elasticity, a similar approach was proposed by Reissner [20].
9Since beams with narrow rectangular cross sections are considered, Kirchhoff plate theory

is applied.
10In the case of infinitesimal deformations, the compressible Mooney-Rivilin law reproduces

12
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variable y can be replaced with the radial radius ρ in (10) and these in turn
introduced in (11).

Boundary conditions must be added to the field equation (12). Taking into
account the shape of the lateral deflection surface, these, for the short sides, are

u =
∂u

∂ϑ
= 0, for ϑ = ±α0. (13)

For the upper edge the bending moment and the shearing force are null, since the
side ρ = Rmin = R0 + r

(
1− e

H
2r

)
is free. In kinematic terms these conditions

become {
∂2u
∂ρ2 + ν

ρ
∂u
∂ρ + ν

ρ2
∂2u
∂ϑ2 = 0,

∂(∇u)
∂ρ + (1−ν)

ρ2

[
∂3u

∂ρ∂ϑ2 − 1
ρ
∂2u
∂ϑ2

]
= 0,

(14)

with ∇u = ∂2u
∂ρ2 + 1

ρ
∂u
∂ρ + 1

ρ2
∂2u
∂ϑ2 . At the bottom edge, that is the side with

ρ = Rmax = R0 + r
(
1− e−

H
2r

)
, the same boundary conditions apply.

However, the boundary value problem, formulated by the field equation (12)
and boundary conditions (13) and (14), is difficult to solve, since the lateral load
Nϑ is variable in ρ and, consequently, the differential equation (12) has variable
coefficients. In this situation, the energetic method can be conveniently applied
in investigating buckling of plates, and also to assess an approximate value of the
critical load [12]. This method assumes that the plate undergoes some small out-
of-plane bending consistent with the boundary conditions. Such small bending
can be produced without stretching the middle plane. The critical forces, for
which the flat form of the plate becomes unstable and lateral buckling occurs,
can be evaluated by equating the variation of strain energy of bending, δU ,
for every possible shape of lateral buckling, to the variation of work done by
external forces acting in the middle plane of the plate, δL. These energies have
the following expressions:

δU =
D

2

∫ α0

−α0

∫ Rmax

Rmin

(
∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2
∂2u

∂ϑ2

)2

−2 (1− ν)
∂2u

∂ρ2

(
1

ρ

∂u

∂ρ
+

1

ρ2
∂2u

∂ϑ2

)
+

(15)

2 (1− ν)

(
1

ρ

∂2u

∂ϑ ∂ρ
− 1

ρ2
∂u

∂ϑ

)2

ρ ∂ρ ∂ϑ,

δL =
1

2

∫ α0

−α0

∫ Rmax

Rmin

Nϑ

(
1

ρ

∂u

∂ϑ

)2

ρ ∂ρ ∂ϑ. (16)

To apply the energy method, the general expression of u (ρ, ϑ), which satis-
fies the boundary conditions (13) and (14), can be taken in the following form

the classic linear constitutive one with [15]
{
E =

4(a+b)(a+4b+3c)
a+3b+2c

ν = b+c
a+3b+2c

.
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of an infinite trigonometric series:

u (ρ, ϑ) =
∑

m,n

amn

(
1 + bm cos

mπ

Rmax
ρ+ cm sin

mπ

Rmax
ρ

)(
1 + cos

nπ

α0
ϑ

)
,

(17)
where the constants amn, bm and cm will be determined depending on the
specific case studied. As is known in stability problems, the solution is always
determined to less than a multiplicative constant.

5 Numerical analysis
Following a numerical approach, finite element simulations are performed us-
ing the finite element code COMSOL Multiphysics® v.6.1. The compressible
Mooney-Rivlin law (see eq. (3)) is implemented by using the principal stretches
variables of the finite element code. The beam subjected to finite bending is
modeled using brick elements, with aspect ratio of 1, and characterized by cu-
bic serendipity shape functions. This first approach numerically models lateral
buckling in a fully nonlinear context.

Specifically, the first FE analysis consists of an incremental procedure where
the kinematic control parameter of the analysis is the prescribed rotation at the
final cross section of the beam. The lateral heeling of the beam is investigated
by introducing a geometrical imperfection of the beam. The beam is modeled
by extruding the transversal cross section along the cosinusoidal axes of the
beam (see Fig. 8). The amplitude A of the cosinusoidal axis represents the
imperfection which allows us to look for the buckled configuration as a stable
configuration. We have assumed a negligible imperfection: A = L/5000. The
objective of this small imperfection is to best simulate the results provided by
the experimental tests.

The second numerical approach consists of a linear buckling analysis. The
objective of this second analysis is to numerically compare the nonlinear solution
with the classical linear one. In this second FE analysis, the beam is modeled as
a linear elastic parallelepiped with rectilinear axis (the above imperfection has
been removed) and we proceed as in a classical eigenvalue problem, after having
defined Young’s modulus and Poisson’s ratio consistent with the Mooney-Rivlin
material. A unitary bending moment resultant is applied to the final cross
sections of the beam.11 Thus, the first critical load factor provided by the code
COMSOL represents the critical bending moment.

6 Comparisons
In this Section, three different approaches (analytical, numerical and experimen-
tal) are applied to solve the lateral buckling problem and the results obtained
are compared and discussed.

11For details regarding aspects of FE modeling see Section 5 of [18].
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(b)(a)

(c)

Figure 8: Deformed shape of the bent beam subjected to prescribed rotations
at the ends. (a) FE mesh. (b) deformed shape along Z direction for the fiber
X = Y = 0. (c) 3D sketch of the deformed shape for different values of the
angle α0.

For a beam under finite uniform bending, the critical value of the angle
α0 for which lateral buckling becomes incipient is evaluated with the energy
method proposed in the previous Section 4, which superimposes to the large
displacement field of a deformed beam under finite bending (cf. Section 3) a
small perturbation constituted by the small displacement field of linear stability
problems of deflected plates.

Discrete investigations concerning specific prismatic samples were performed
through experimental trials carried out with a specifically designed testing ma-
chine, whose operation has been described in Section 2. For the experimental
tests, three beam samples with heights H = 50, 60 and 70 [mm], width B = 10
[mm] and length L = 200 [mm], are considered.

The material used for the experiments is a Neoprene rubber. The uniaxial
characterization of the material has led to the following constitutive parameters:
a = 554.9, b = 523.4 and c = 11938 [kPa].

As reported in Section 4, an upper bound estimation of the critical angle

15
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Figure 9: Curves of the strain energy and external work varying the angle α0

for the samples with H = 50, 60 and 70, B = 10 and L = 200 [mm].

αCR, that causes the buckling of the system, is the value of this angle that rends
the variation of the strain energy (15) equals to the variation of the external
work (16), based on the out-of-plane perturbation assumed in compliance with
expression (17). Such a calculation has been performed by truncating the series
expansion (17) to the first terms. In particular, it is found that good approxi-
mations are obtained by assuming only three terms of the series: a single term
in the ϑ coordinate and two in the ρ coordinate, namely:

u (ρ, ϑ) =

(
1 + b1 cos

π

Rmax
ρ+ c1 sin

π

Rmax
ρ

)(
1 + cos

π

α0
ϑ

)
. (18)

Constants b1, c1 have been found to make the solution a minimum through
an iterative procedure. The starting values b1(0), c1(0) have been determined
according to a best fitting procedure in such a way to resemble a rigid rotation
of the cross section around ρ = Rmax (i.e., by assuming a linear dependence of
displacement u on ρ coordinate). Based on such an approach, Fig. 9 have been
obtained about the samples with H = 50, 60 and 70 [mm], thus finding αCR =
10.52°, 7.39° and 5.59°.

As shown in Fig. 10a, the critical angle αCR decreases as H increases.
Note also that the gap between nonlinear FE and theoretical solutions decreases
with H. This can be ascribed to the fact that the analytic formulation has
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Figure 10: Comparison between theoretical and FE results. (a) Values of the
critical angle αCR varying the height H of the beam. (b) Values of the critical
angle MCR varying the height H of the beam. Note that, in compliance with
the clamped-clamped condition, results provided by (1) have been doubled.

been based on the Kirchhoff-Love theory for thin plates, thus neglecting the
shear deformations and other deformations in the thickness of the plates, which
instead are taken into consideration by the nonlinear FE analysis based on brick
elements. In any case, the difference between theoretical and FE results are not
important, despite the fact that only few terms have been taken into account in
expression (18). As shown in Fig. 10b, conversely to the critical angle αCR, the
critical bending moment MCR increases as H increases due to the enhancement
of the flexural rigidity with H. An almost linear trend of MCR vs H is found,
while the MCR/αCR ratio decreases as αCR increases. In Fig. 10a and 10b,
using a dotted curve, the values obtained from the application of the classic
formula (1) are also shown. These values are multiplied by two to take into
account the different constraint conditions at the ends of the beam: clamped-
clamped instead of hinged-hinged. It can be noted that the values given by
(1) are less accurate from the beginning and the approximation increases as H
increases. This confirms that lateral buckling of thin-walled beams occurs with
a critical mode different from that predicted by (1) derived in the framework of
classical Euler-Bernoulli beam theory.

The main results provided by the numerical simulations based on the nonlin-
ear incremental analyses are shown in Figs. 11-12. Fig. 11 shows the response of
the samples subjected to an increasing value of the bending angle α0. Fig. 11a
shows the dimensionless bending moment as a function of dimensionless curva-
ture, χ0L/2, for the case of a beam of height 50, 60 and 70 mm, red, green and
blue markers respectively. The choice of the adimensionalisation parameters is
such that it provides a unitary slope corresponding with the linear elasticity
(solid line), corresponding with the real linear Young modulus of the material
obtained from uniaxial tests (Ereal), while the dashed line represents the ratio
between the real Young modulus and the Young modulus of the Mooney-Rivlin
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material (EMR) provided by the best-fit procedure of the uniaxial test. Since
the best-fit of the Mooney-Rivlin material underestimates the real stiffness of
the material, it can be noted that the use of nonlinear constitutive law will
bring an underestimation of the critical bending moment of the Neoprene rub-
ber. Under the linear segments, the grey region denotes the onset of bending
instability as highlighted by the buckled deformed configuration grasped with
the DIC optical monitoring (see the detail of Fig. 11a).

Figs. 11b-d show the bending moment as a function of the prescribed bend-
ing angle α0 of the three investigated cases compared with the nonlinear static
analysis of the FE models. Square markers denote experimental values, while
the cross marker is used to distinguish the onset of instability, that is the point
(αCR,MCR). Such values are reasonably chosen in correspondence to the first
experimental value which deviates markedly from the initial trend. Likewise,
the nonlinear static incremental analysis, denoted with continuous lines (FEM),
exhibits a sudden change, which represents the bifurcation. Before bifurca-
tion, FE models are overlapped with the linear trend supporting the negli-
gibility of the imperfection introduced in the FE models. The values of the
critical angles predicted by the buckling analysis of FE models and the theo-
retical approach of Section 4 are introduced with framed values in Figs. 11b-d,
αCR,FEM Bk and αCR, Th, respectively.

The comparison between the post-critical behaviour of the experiments and
the nonlinear static analysis of the FE models is reported in Fig. 12. This com-
parison is done in terms of out-of-plane displacement of the point P1(0, H/2, 0),
shown on the right side of the Fig. 12. Experiments, denoted with square
markers, exhibit a progressive lateral heel since the beginning of the tests. This
suggests the presence of an imperfection of the specimens axes. For this reason,
Fig. 12 reports the behaviour of the lateral heeling of two different nonlinear FE
models characterized by two different imperfections: A = L/5000 (continuous
line) and A = L/200 (dashed lines). The smallest and negligible imperfection
deviates significantly from the lateral heel observed during tests. Conversely,
the greatest imperfection shows a good agreement suggesting the presence of an
imperfection on the Neoprene specimens of the order of 1 mm.

To summarize the results obtained, Table 1 reports the values of the critical
angle αCR provided by the three different approaches. As already mentioned,
the theoretical approach provides an upper bound of the critical bending angle.
The experiments conducted on samples with small aspect ratios H/B are a
little less suitable for describing the problem studied. As the height H of the
specimens increases, a substantial convergence of the results is observed.

6.1 Approximate formula
The shape of the deformed configuration in the planes normal to the Y direction
(ZX planes) resemble the first buckling mode of a linear beam clamped at both
ends. This suggests a way to obtain an empirical estimation of the critical angle
αCR. In particular, considering the critical load of a beam fixed at both ends
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(b)(a)

(d)(c)

1

EMR/EReal

Figure 11: Experimental flexural behavior and comparison with the linear case.
(a) Experimental response of the bent samples in terms of moment-curvature
curves. (b) Experimental moment-bending angle α0 curve for the sample with
H = 50 mm. (c) Experimental moment-bending angle α0 curve for the sample
with H = 60 mm. (d) Experimental moment-bending angle α0 curve for the
sample with H = 70 mm.

H (mm) Experimental FEM (NL st.) Theoretical
50 7.95 8.60 10.52
60 6.40 6.20 7.39
70 4.93 4.80 5.59

Table 1: Values of the critical angles αCR (in deg), obtained from experiment
analysis, FEM using the nonlinear incremental static analysis with an initial
imperfection and theoretical formulation.
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P1≡(0, H/2, 0)

P1

u(P1)

’

Experiments:   H = 50 mm
  H = 60 mm
  H = 70 mm

FEM: Imperfection L/5000
Imperfection L/200

Figure 12: Out-of-plane horizontal displacement of point P1 of the bent samples
versus the angle of rotation α0 at the ends. Comparison among experimental
(discrete points) and FE results (dashed and solid lines).

with length L, and equating the width of the beam with h∗ one finds

αCR ≃ π2B2

3L (H − h∗)
, (19)

where h∗ ∈ (0.7H, 0.8H). A good approximation of the critical angle is achieved
by taking h∗/H ≃ 0.77. Such an empirical formula has been used to obtain
the curve labelled as “empirical formula” in Fig. 10. With the same degree
of approximation, the MCR values shown in Fig. 10b have been obtained by
multiplying the αCR values provided by (19) by the bending stiffness 2EIX/L,
where IX and L are the moment of inertia of the cross section about the X
axis and the length of the undeformed beam, while the Young’s modulus E is
the corresponding elastic modulus of a Mooney-Rivlin material reported in the
footnote (10).

7 Conclusions
In this paper, the problem of lateral buckling of a beam inflexed in finite elas-
ticity has been investigated. The possibility that the beam can undergo large
deformations transforms the collapse mechanism compared to that of the classi-
cal linearized elasticity, where the intermediate cross sections exhibit only rigid
rotation (flexural-torsional buckling). In finite elasticity, differently, the cross
sections can deflect transversely, showing also pure deformation in addition to
rigid rotation. In particular, starting from the compressed edge of the beam,
an out-of-plane displacement field appears, which takes the form of a cosine
half-wave that rapidly decreases moving towards the tensioned edge.
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To study the problem from an experimental point of view, a special test
machine was designed and built, and with it an extensive experimental campaign
was carried out. The technical details of the test equipment were delivered in
Section 2, while the most important results of the experimental analysis were
reported, discussed and compared in Section 6.

To model the lateral buckling, a linear stability analysis was superimposed
on the nonlinear bending problem. Specifically, starting from the deformed
configuration of the beam, a very small lateral displacement field, similar to that
highlighted by the experimental tests, was added. Then, the magnitude that
acting Cauchy stresses must reach to move the beam out of the middle plane is
calculated. Instability therefore occurs when the (linear) perturbed equilibrium
problem admits a solution, namely a small displacement field orthogonal to the
middle plane of the beam. Operationally, to compute the critical load the energy
method was applied.

Following a numerical approach, the beam subjected to finite bending was
studied by FE analyses with brick elements, characterized by cubic serendipity
shape functions. The FE analysis consists of an incremental procedure, where
the lateral heeling of the beam is investigated by introducing a geometrical
imperfection of the beam. This nonlinear static incremental analysis exhibits a
sudden change, which represents the bifurcation, and then reproduces the post-
critical equilibrium path. For a useful comparison, linear buckling analyses were
also performed.

All the methods applied, although of different types (analytical, numerical
and experimental), provide comparable results.
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 We study the lateral buckling occurring in prismatic plate-like solids under finite bending.

 The onset of buckling is quantified through the energy criterion.

 A small out of plane small perturbation is superposed to the in-plane nonlinear displacement

field induced by large bending.

 Upper bound of the critical curvature is found and compared with FE buckling analyses and 

experiments finding good agreement.
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