Cap partitions of the Segre variety $\mathscr{S}_{1,3}$

R.D. Baker ${ }^{\mathrm{a}}$, A. Bonisoli ${ }^{\mathrm{b}, *}$, A. Cossidente ${ }^{\mathrm{b}, 1}$, G.L. Ebert ${ }^{\mathrm{c}, 2}$
${ }^{\text {a }}$ Department of Mathematics, West Virginia State College, Institute, WV 25112-1000, USA
${ }^{\text {b }}$ Dipartimento di Matematica, Università della Basilicata, via N. Sauro 85, 85100 Potenza, Italy
${ }^{\text {c }}$ Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA

Received 5 April 1999; received in revised form 19 October 1999; accepted 31 January 2000

Abstract

We prove that the Segre variety $\mathscr{S}_{1,3}$ of $P G(7, q)$ can be partitioned into caps of size $\left(q^{4}-1\right) /(q-1)$. It can also be partitioned into three-dimensional elliptic quadrics or into twisted cubics. (C) 2002 Elsevier Science B.V. All rights reserved.

Keywords: Partition; Cap in a projective space; Singer cycle; Segre variety

1. Preliminaries

We begin with a property of linear collinations of an odd-dimensional projective space over $G F(q)$. For $(k, q) \neq(3,2)$ it is a special case of Lemma 2.3 in [6].

Lemma 1. Let T be a transformation in $G L(2 k, q), k \geqslant 2$, inducing a collineation of order $q^{k}+1$ which fixes no r-dimensional subspace of $P G(2 k-1, q)$ for $r=0,1, \ldots$, $k-1$. Then T is a power of a Singer cycle of $G L(2 k, q)$.

Proof. Let $m(x)$ be the minimal polynomial of T over $G F(q)$. We want to show that $m(x)$ is irreducible of degree $2 k$. We have that $T^{q^{k}+1}$ is a scalar transformation and so $m(x)$ divides the polynomial $x^{\left(q^{k}+1\right)(q-1)}-1$, which in turn divides $x^{q^{2 k}-1}-1$. In particular $m(x)$ splits into linear factors in $G F\left(q^{2 k}\right)[x]$.

[^0]Let $f(x)$ be an irreducible divisor of $m(x)$ and assume the splitting field of $f(x)$ over $G F(q)$ is a proper subfield of $G F\left(q^{2 k}\right)$, hence one of $G F(q), G F\left(q^{2}\right), G F\left(q^{k}\right), G F\left(q^{h}\right)$ or $G F\left(q^{2 h}\right)$ for some proper divisor h of k. In each one of these cases the rational canonical form for T over $G F(q)$ would have an $r \times r$ block (the companion matrix of $f(x))$ for some $r \leqslant k$, hence the collineation induced by T on $P G(2 k-1, q)$ would have an invariant $(r-1)$-dimensional projective subspace, contradicting our assumption. Hence $f(x)$ has degree $2 k$. Since $f(x)$ is a divisor of $m(x)$, which in turn divides the characteristic polynomial of T which has degree $2 k$, we conclude that $m(x)$ is irreducible of degree $2 k$ and coincides with the characteristic polynomial of T. The rational canonical form of T over $G F(q)$ is thus simply the companion matrix of $m(x)$.

Represent the underlying $2 k$-dimensional vector space V as $G F\left(q^{2 k}\right)$. Let β be an element of $G F\left(q^{2 k}\right)$ having $m(x)$ as minimal polynomial over $G F(q)$. Consider the $G F(q)$-linear transformation M given by $V \rightarrow V, v \mapsto \beta v$. The minimal polynomial of M over $G F(q)$ is precisely $m(x)$, which is thus also the characteristic polynomial of M, hence the rational canonical form of M over $G F(q)$ is again the companion matrix of $m(x)$.

We conclude that M and T are conjugate in $G L(2 k, q)$. The transformation M is obviously a power of the Singer cycle given by $V \rightarrow V, v \mapsto \omega v$ where ω is a primitive element of $G F\left(q^{2 k}\right)$. Hence T is also a power of a Singer cycle.

Let $P G(m, q)$ and $P G(k, q)$ be projective spaces over $G F(q)$ with $m \geqslant 1, k \geqslant 1$. Set $n=(m+1)(k+1)-1$. For each $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{m}\right) \in G F(q)^{m+1}$ and $\mathbf{w}=\left(w_{0}, w_{1}, \ldots, w_{k}\right)$ $\in G F(q)^{k+1}$ define

$$
(\mathbf{u} \otimes \mathbf{w})=\left(u_{0} w_{0}, u_{0} w_{1}, \ldots, u_{0} w_{k}, u_{1} w_{0}, u_{1} w_{1}, \ldots, u_{1} w_{k}, \ldots, u_{m} w_{0}, u_{m} w_{1}, \ldots, u_{m} w_{k}\right)
$$

The Segre variety of the two projective spaces is the variety $\mathscr{S}=\mathscr{S}_{m, k}$ of $\operatorname{PG}(n, q)$ consisting of all points represented by the vectors $(\mathbf{u} \otimes \mathbf{w})$ as \mathbf{u} and \mathbf{w} vary over all non-zero vectors of $G F(q)^{m+1}$ and $G F(q)^{k+1}$, respectively. For more details see [4, Section 25].

The Segre variety \mathscr{S} has two families of maximal subspaces with dimensions m and k respectively, say \mathscr{M} and \mathscr{K}, each of which forms a cover of \mathscr{S}. Two maximal subspaces from one and the same family are skew; two maximal subspaces from distinct families meet in exactly one point [4, Theorems 25.5 .2 and 25.5.3]. We have

$$
\begin{aligned}
\mathscr{M} & =\{P G(m, q) \otimes \mathbf{w} \mid \mathbf{w} \in P G(k, q)\}, \\
\mathscr{K} & =\{\mathbf{u} \otimes P G(k, q) \mid \mathbf{u} \in P G(m, q)\} .
\end{aligned}
$$

Let S and T be Singer cycles in $G L(m+1, q)$ and $G L(k+1, q)$, respectively. Then the Kronecker product $S \otimes T$ yields a linear collineation of $P G(n, q)$ fixing \mathscr{S} setwise [4, Theorem 25.5.9]. We will need the following result.

Lemma 2. Each point orbit of $\langle S \otimes T\rangle$ contained in \mathscr{S} meets each member of $\mathscr{M} \cup \mathscr{K}$ in at least one point.

Proof. Take a point in $P G(m, q)$ represented by the vector $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{m}\right)$, and take a point in $P G(k, q)$ represented by the vector $\mathbf{w}=\left(w_{0}, w_{1}, \ldots, w_{k}\right)$. By [4] we have $(\mathbf{u} \otimes \mathbf{w})\left((S \otimes T)^{j}\right)=\left(\mathbf{u} S^{j}\right) \otimes\left(\mathbf{w} T^{j}\right)$ for each $j \geqslant 1$.

Let $\mathbf{x} \otimes P G(k, q)$ be a member of \mathscr{K}. Since S induces a transitive collineation group on $P G(m, q)$, there exists an index j such that the point represented by the vector \mathbf{x} is equal to the point represented by the vector $\mathbf{u} S^{j}$, and so the point of \mathscr{S} represented by the vector $(\mathbf{u} \otimes \mathbf{w})\left((S \otimes T)^{j}\right)$ lies in $\mathbf{x} \otimes P G(k, q)$. We have proved that the $\langle S \otimes T\rangle$ orbit of the point of \mathscr{S} represented by the vector $\mathbf{u} \otimes \mathbf{w}$ meets $\mathbf{x} \otimes P G(k, q)$.

A similar argument holds for the members of \mathscr{M}.

2. The construction

Let T be a Singer cycle in $G L(4, q)$. The matrix T is conjugate in $G L\left(4, q^{4}\right)$ to the diagonal matrix $D_{2}=\operatorname{diag}\left(\omega, \omega^{q}, \omega^{q^{2}}, \omega^{q^{3}}\right)$ by the matrix

$$
E=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
\omega & \omega^{q} & \omega^{q^{2}} & \omega^{q^{3}} \\
\omega^{2} & \omega^{2 q} & \omega^{2 q^{2}} & \omega^{2 q^{3}} \\
\omega^{3} & \omega^{3 q} & \omega^{3 q^{2}} & \omega^{3 q^{3}}
\end{array}\right)
$$

for some primitive element ω of $G F\left(q^{4}\right)$ [5]. Since $\omega^{q^{2}+1}$ is a primitive element of $G F\left(q^{2}\right)$, we have that there exists a Singer cycle S in $G L(2, q)$ which is conjugate to $D_{1}=\operatorname{diag}\left(\omega^{q^{2}+1}, \omega^{q^{3}+q}\right)$ in $G L\left(2, q^{2}\right)$.

The Kronecker product $S \otimes T$ is conjugate in $G L\left(8, q^{4}\right)$ to the Kronecker product

$$
\begin{aligned}
& D_{1} \otimes D_{2} \\
& \quad=\operatorname{diag}\left(\omega^{q^{2}+2}, \omega^{q^{2}+q+1}, \omega^{2 q^{2}+1}, \omega^{q^{3}+q^{2}+1}, \omega^{q^{3}+q+1}, \omega^{q^{3}+2 q}, \omega^{q^{3}+q^{2}+q}, \omega^{2 q^{3}+q}\right) .
\end{aligned}
$$

The elements

$$
\omega^{q^{2}+2}, \omega^{q^{3}+2 q}, \omega^{2 q^{2}+1}, \omega^{2 q^{3}+q} \quad \text { and } \quad \omega^{q^{2}+q+1}, \omega^{q^{3}+q+1}, \omega^{q^{3}+q^{2}+1}, \omega^{q^{3}+q^{2}+q}
$$

form two full sets of elements of $G F\left(q^{4}\right)$ which are conjugate over $G F(q)$. That means the rational canonical form of $S \otimes T$ over $G F(q)$ is a block diagonal matrix

$$
R=\left(\begin{array}{cc}
C_{1} & 0 \\
0 & C_{2}
\end{array}\right)
$$

consisting of two 4×4 blocks C_{1} and C_{2}, each of which is the companion matrix of an irreducible quartic polynomial over $G F(q)$. It follows that the linear collineation g induced by R on $\operatorname{PG}(7, q)$ fixes (setwise) two projective 3-dimensional subspaces, say Σ_{1} and Σ_{2}.

Lemma 3. The order of the collineation g induced by R is $\left(q^{4}-1\right) /(q-1)$.

Proof. The eigenvalues of R are $\omega^{q^{2}+2}, \omega^{q^{2}+q+1}$ and their conjugates over $G F(q)$. It is easily seen that the equality $\omega^{\left(q^{2}+2\right)\left(q^{4}-1\right) /(q-1)}=\omega^{\left(q^{2}+q+1\right)\left(q^{4}-1\right) /(q-1)}$ holds and that this is an element in $G F(q) \backslash\{0\}$. Hence the order b of the collineation g is at most $\left(q^{4}-1\right) /$ $(q-1)$. Assume $b<\left(q^{4}-1\right) /(q-1)$. It follows that $\omega^{\left(q^{2}+2\right) b}=\omega^{\left(q^{2}+q+1\right) b} \in G F(q) \backslash\{0\}$. Hence $\omega^{(q-1) b}=1$ and $q^{4}-1$ divides $b(q-1)$, implying $\left(q^{4}-1\right) /(q-1)$ divides b, a contradiction.

Lemma 4. The collineation group G generated by g acts semiregularly on $P G(7, q) \backslash\left(\Sigma_{1} \cup \Sigma_{2}\right)$.

Proof. Let P be a point neither on Σ_{1} nor on Σ_{2}, represented by the vector $\mathbf{x}=\left(u_{1}, u_{2}\right.$, $\left.u_{3}, u_{4}, w_{1}, w_{2}, w_{3}, w_{4}\right)$. In particular, we have $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \neq(0,0,0,0)$ and $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}, w_{4}\right) \neq(0,0,0,0)$. Assume that \mathbf{x} is proportional to $\mathbf{x} \cdot R^{i}$ for some index i with $0 \leqslant i<\left(q^{4}-1\right) /(q-1)$. Then there exists a non-zero element $\lambda \in G F(q)$ such that $\lambda \mathbf{u}=\mathbf{u} \cdot C_{1}^{i}, \lambda \mathbf{w}=\mathbf{w} \cdot C_{2}^{i}$, which means that C_{1}^{i} and C_{2}^{i} have a common eigenvalue in $G F(q) \backslash\{0\}$. Hence we have $\lambda=\omega^{\left(q^{2}+2\right) i}=\omega^{\left(q^{2}+q+1\right) i q^{j}}$ for some $j \in\{0,1,2,3\}$. Since λ is in $G F(q)$, we have $\lambda=\lambda^{q^{4-j}}=\omega^{\left(q^{2}+q+1\right) i}$ and so $\omega^{\left(q^{2}+2\right) i}=\omega^{\left(q^{2}+q+1\right) i}$. This implies that $q^{4}-1$ divides $\left(q^{2}+q+1\right) i-\left(q^{2}+2\right) i=(q-1) i$, whence $\left(q^{4}-1\right) /(q-1)$ divides i, a contradiction.

As described in Section 1, G leaves invariant a Segre variety $\mathscr{S}=\mathscr{S}_{1,3}$, disjoint from $\Sigma_{1} \cup \Sigma_{2}$.

Theorem 5. Each point orbit of G on \mathscr{S} is a cap of size $\left(q^{4}-1\right) /(q-1)$.
Proof. Let \mathcal{O} be one such orbit. Denote by \mathscr{M} the family of maximal subspaces of dimension 1 on \mathscr{S}, and denote by \mathscr{K} the family of maximal subspaces of dimension 3 on \mathscr{S}. The collineation g leaves each family \mathscr{M} and \mathscr{K} invariant.

We have seen that each G-orbit on \mathscr{S} meets each line in \mathscr{M} in at least one point. Moreover, it follows from the above lemmas that $|\mathcal{O}|=q^{3}+q^{2}+q+1=|\mathscr{M}|$. Hence, since any two lines in \mathscr{M} are disjoint, each line in \mathscr{M} meets \mathcal{O} in exactly one point. Furthermore, since each solid in \mathscr{K} meets \mathcal{O} in at least one point, we see that the group G is transitive on \mathscr{K}. As the family \mathscr{K} consists of $q+1$ solids, the stabilizer of a solid in \mathscr{K} under G is the subgroup $H=\left\langle g^{q+1}\right\rangle$ of order $q^{2}+1$ of G, and so H fixes the family \mathscr{K} elementwise.

Since the group G is semiregular on $P G(7, q) \backslash\left(\Sigma_{1} \cup \Sigma_{2}\right)$, so is the subgroup H and each point orbit of H inside a solid in \mathscr{K} has length $q^{2}+1$. We conclude that H induces a cyclic linear collineation group of order $q^{2}+1$ on each solid Π of \mathscr{K} with point orbits of equal size $q^{2}+1$. In particular, H fixes no point or line of Π and so the action of H on Π is induced by a power of a Singer cycle, see Lemma 1 or [6, Lemma 2.3].

By [2] we have that each H-orbit on Π is an elliptic quadric, hence a cap of Π and thus of $\operatorname{PG}(7, q)$ as well. We also see that the orbit \mathcal{O} meets each solid of \mathscr{K} in an elliptic quadric.

Suppose now that a line ℓ of $\operatorname{PG}(7, q)$ meets \mathcal{O} in three distinct points. As \mathscr{S} is the intersection of quadrics, we have that ℓ is entirely contained in \mathscr{S}. Hence ℓ is either a line in \mathscr{M} or lies in some solid Π of \mathscr{K}. The former case cannot occur, as each line in \mathscr{M} meets \mathcal{O} in precisely one point. In the latter case the line ℓ lies entirely in Π, and hence ℓ meets the elliptic quadric $\mathcal{O} \cap \Pi$ in three distinct points, a contradiction.

The proof of the above theorem immediately implies the following result.
Theorem 6. The Segre variety $\mathscr{S}_{1,3}$ in $P G(7, q)$ can be partitioned into caps of size $\left(q^{4}-1\right) /(q-1)$. Moreover, it can also be partitioned into $(q+1)^{2}$ elliptic quadrics.

We now show that the Segre variety $\mathscr{S}=\mathscr{S}_{1,3}$ can be partitioned in yet another way.

Theorem 7. The Segre variety $\mathscr{S}_{1,3}$ in $P G(7, q)$ can be partitioned into $\left(q^{4}-1\right) /(q-1)$ twisted cubics.

Proof. Let F be the subgroup of G generated by $g^{q^{2}+1}$. If we let $\omega^{q^{2}+2}$ and $\omega^{q^{2}+q+1}$ be eigenvalues of C_{1} and C_{2}, respectively, then by looking at the eigenvalues of $R^{q^{2}+1}$ we see that the linear collineation $g^{q^{2}+1}$ induces a collineation of order $(q+1) /$ $\operatorname{gcd}(q+1,3)$ on Σ_{1} and a collineation of order $(q+1) / \operatorname{gcd}(q+1, q+2)=q+1$ on Σ_{2}, the induced collineation being a power of a Singer cycle in either case. The theorem in the appendix of [3] yields for $i=1,2$ the existence of a regular spread \mathscr{R}_{i} in Σ_{i} which is linewise fixed by F : each line of \mathscr{R}_{1} is a full point orbit under F if $\operatorname{gcd}(q+1,3)=1$ or is the union of three point orbits under F if $\operatorname{gcd}(q+1,3)=3$; each line of \mathscr{R}_{2} is always a full point orbit under F. Let P be a point on \mathscr{S} represented by the vector $\mathbf{x}=\left(u_{1}, u_{2}, u_{3}, u_{4}, w_{1}, w_{2}, w_{3}, w_{4}\right)$. Since $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \neq(0,0,0,0)$ and $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}, w_{4}\right) \neq(0,0,0,0)$, there exist uniquely determined lines $\ell_{1} \in \mathscr{R}_{1}$ and $\ell_{2} \in \mathscr{R}_{2}$ containing the points of Σ_{1} and Σ_{2} represented by \mathbf{u} and \mathbf{w}, respectively. Then the 3 -subspace Σ spanned by ℓ_{1} and ℓ_{2} is fixed by F since so are both lines ℓ_{1} and ℓ_{2}. Again, we consider the eigenvalues of $R^{q^{2}+1}$ and see by [1] that the action of F on Σ has ℓ_{1} and ℓ_{2} as fixed lines and is semiregular on the remaining points, yielding orbits of equal length $q+1$ which are twisted cubics. Since F also fixes the Segre variety \mathscr{S}, we see that $\mathscr{S} \cap \Sigma$ is partitioned into F-orbits that are necessarily twisted cubics, and so in particular the F-orbit of P is a twisted cubic on \mathscr{S}.

References

[1] A. Cossidente, Mixed partitions of $P G(3, q)$, J. Geom. 68 (2002) 48-57.
[2] G.L. Ebert, Partitioning projective geometries into caps, Canad. J. Math. 37 (1985) 1163-1175.
[3] J.W.P. Hirschfeld, Projective Spaces of Square Size, Simon Stevin 65 (1991) 319-329.
[4] J.W.P. Hirschfeld, J.A. Thas, General Galois Geometries, Oxford University Press, Oxford, 1991.
[5] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967.
[6] C. Suetake, Flag transitive planes of order q^{n} with a long cycle l_{∞} as a Collineation, Graphs Combin. 7 (1991) 183-195.

[^0]: * Corresponding author.

 E-mail address: bonisoli@unibas.it (A. Bonisoli).
 ${ }^{1}$ These authors were supported by GNSAGA of the Italian CNR (project "Calcolo Simbolico") by the Italian Ministry MURST and by the NATO grant 970185.
 ${ }^{2}$ This author gratefully acknowledges the support of the NATO grant 970185.

