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Abstract

We demonstrate a new specific phenomenon of the long-time resonant energy exchange in carbon nanotubes (CNTs), which is
realized by two types of optical vibrations, the Circumferential Flexure Mode (CFM) and the Radial Breathing Mode (RBM). We
show that the modified nonlinear Schrdinger equation, obtained in the framework of the nonlinear theory of elastic thin shells,
allows us to describe the nonlinear dynamics of CNTs for specified frequency bands. Comparative analysis of the oscillations
of the CFM and RBM branches shows the qualitative difference of nonlinear effects for these branches. While the nonlinear
resonant interaction of the low-frequency modes in the CFM branch leads to energy capture in some domains of the CNT, the same
interaction in the RBM branch does not demonstrate any tendency for energy localization. The reason lies in the distinction in
the nonlinear terms in the equations of motion. While CFMs are characterized by soft polynomial nonlinearity, RBM dynamics is
characterized by hard gradient nonlinearity. Moreover, in contrast to the CFM, the importance of nonlinearity in the case of RBM
oscillations decreases as the length to radius ratio increases. Numerical integration of the equations of thin shell theory confirms
the results of the analytical study.
c© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of EURODYN 2017.
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1. Introduction

The nonlinear dynamics of CNTs is an important application of the various processes studied in physics, chemistry,
material science, and biophysics. Presently, theoretical research is conducted either in the framework of the atomistic
approach or is based on the dynamics of continuum systems. The last approach allows the application of the well-
developed methods of the theory of thin elastic shells. However, the results of the analysis have to comply with the
microscopic theory of CNTs. There is one more reason to apply the theory of elastic shells to the dynamics of CNTs.
It is well known that defectless CNTs can reversibly withstand large deformations without the appearance of any
plasticity.

In this work we will shortly discuss specific phenomenon, such as the interaction of linear optical-type vibrations
in the framework of the theory of elastic thin shells studied by Sanders and Koiter. We shall review the results of
mode coupling for two types of vibrations specific to thin shells (see fig. 1 and its caption). The first type corresponds
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Fig. 1. (a) The specific changes of lateral section of a CNT during the radial breathing (long-dashes) and circumferential flexure (dashes) os-
cillations. The solid curves show the undistorted profile of the CNT. The arrows show the specific radial displacements which occur during the
radial breathing (wRBM) and circumferential flexure (wCFM) oscillations. (b) The vibration spectrum according to the exact Sanders-Koiter thin
shell theory for the CNT with aspect ratio L/R = 30 under the periodic boundary conditions: solid curves correspond to the circumferential wave
number n = 0, dashed curves to n = 1, and dash-dotted curves - to n = 2. All the frequencies ω are dimensionless, the parameter k denotes the
number of longitudinal half-waves along the CNT.

to the axisymmetric deformations of CNTs and is often called the Radial Breathing Mode (RBM). The second one is
related to the asymmetric deformations of CNTs’ cross-section. Since a CNT’s axis does not deflect from a straight
line, these oscillations are identified as the Circumferential Flexure Mode (CFM). Both of these modes are specified
by a gap in the long wavelength edge of the spectrum, therefore they belong to the optical type. The values of the
gaps are determined by the rigidity of the graphen sheet under uniaxial deformation (RBM) and the bending modulus
of the sheet (CFM). Therefore, these values are different. However, a common feature of the optical-type vibrational
branches is the crowding of frequencies near the long wave edge of the spectrum. Thus, the possibility of the resonant
interaction of nonlinear normal modes (NNMs) appears. Nevertheless, the result of such interactions depends strongly
on the specified mode.

Because the model has been described in detail earlier [1–3] we will discuss below only the main hypotheses and
results of the analysis.

2. The background

A key problem in the study of CNT nonlinear dynamics dominated by certain types of vibrations is to construct an
adequately reduced model, which takes into account the main features of CNT deformations.

We will start our study with the dimensionless energy of the elastic deformation of a CNT, which can be written as
follows:
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1
2
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where εξ, εϕ and εξϕ are the longitudinal, circumferential and shear deformations, and κξ, κϕ and κξϕ are the longitu-
dinal curvature, circumferential curvature, and torsion, respectively.

The dimensionless energy and time variables are measured in the units E0 = YRLh/(1−ν2) and t0 = 1/
√

Y/ρR2(1 − ν2),
respectively. Here Y is the Young modulus of a graphene sheet, ρ - its mass density, ν - the Poisson ratio of the CNT;
R, L and h are the CNT’s radius, length and wall thickness. Two dimensionless geometric parameters characterize a
CNT: the inverse aspect ratio α = R/L, and the relative thickness of the effective shell β = h/R.

The Sanders-Koiter approximation of a defectless thin shell allows us to write the nonlinear deformations (ε) and
curvatures (κ) in the following form
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where u, v and w are dimensionless (in the units of the CNT’s radius R) longitudinal, tangential and radial displace-
ments, respectively; ξ is a dimensionless (in the units of the CNT’s length L) coordinate along the CNT axis; ϕ is the
circumferential angle.

Introducing the applicable physical hypotheses we will reduce the full set of dynamical equations to an analytically
solvable model.

3. Radial breathing mode

In this section we will consider radial breathing oscillations. Taking into account that RBMs represent the axisym-
metrical mode, we can conclude that for the azimuthal angle ϕ the respective azimuthal wave number n equals 0 and
the tangential displacement v equals 0. Under this assumption the dispersive relation of the linearized problem can be
obtained as follows:

ω2 =
1
2

(
1 + α2k2 +

√
(1 − α2k2)2 + 4α2ν2k2

)
, (4)

where k is the longitudinal wave number (see fig. 1(b)). The respective eigenvector

(u,w) = (−ανk, 1) (5)

shows the relationship between the longitudinal and radial components of the displacement field. Taking into account
the expression (5) we can exclude the longitudinal displacement u and write the equation for radial displacement w as
follows:
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To perform an asymptotic analysis of the long wavelength dynamics of the RB modes, it is convenient to rewrite
equation (6) in complex variables ψ = 1/

√
2 (∂w/∂τ + iw).

We can now show that the assumption of the smallness of the Poisson ratio ν < 1 allows us to get an adequate
description of the nonlinear dynamics of the RMB. Representing the variable ψ as a sum over the small parameter and
performing a multi-scale expansion, we obtain the equation for the main order amplitude in the “slow” time τ2 (see
[2,3] for details):
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Equation (7) admits the plane-wave solution

ψ0 = A exp (−i (ω̃τ2 − kξ)). (8)

Equation (7) is the modified Nonlinear Schrödinger Equation (NLSE) whose nonlinearity has a positive gradient.
The standard NLSE admits a localized solution. However, no localized solution of equation (7) is known. We will try
to examine the possibility of energy localization while dealing with equation (7). First of all, we replace equation (7)
with its modal representation, taking into account only two resonant NNMs with wave numbers k1 and k2.

ψ0 = χ1(τ2) sin (πk1ξ) + χ2(τ2) sin (πk2ξ) (9)

After the substitution of solution (9) into equation (7) we use the Galerkin procedure to obtain the equations for
complex amplitudes χ1 and χ2:
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a) b) c)

Fig. 2. (Color online) The energy exchange in the CNTs with different aspect ratios: (a) L/R = 20, (b) L/R = 40, (c) L/R = 80. The initial
”occupation number” X equals 0.5. The dark blue and light beige areas correspond to the low and high densities of the energy, respectively.

where δωi =
1
2π

2k2
i , (i = 1, 2) are the modal frequency shifts (in the ”slow” time scale τ2) from the boundary

frequency ω0 = 1 of the considered branch and
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Equations (10) have two integrals of motion: the energy H and the ”occupation numbers” X, which characterizes
the excitation level of the system:
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X = |χ1|2 + |χ2|2 , (13)

An analysis of the energy H that takes into account the additional integral X shows that the nteraction of nonlinear
modes results in the energy exchange between different parts of the CNT only. The variations in the period of the
energy exchange corresponding to variations in the aspect ratio of the CNT are presented in fig. 3.

4. Circumferential flexure mode

These vibrations are the lowest-frequency optical-type oscillations of the CNT (see fig. 1(b)), which correspond to
the variations in the shape of the transversal cross-section without the alteration of its contour length (fig. 1(a)). The
CNT axis does not deflect from a straight line, but the generatrix bends. So, such vibrations are not accompanied by
any substantial circumferential and shear deformations. The circumferential wave number n equals 2. The hypotheses
of smallness of circumferential and shear deformations leads to the relations:

εϕ = 0; εξϕ = 0 (14)

(These hypotheses about the relationship of widely used theories of thin shells were discussed in [4] in detail.)
However, these assumptions don’t imply that the displacements included in the circumferential and shear deforma-
tions are small. Contrary to linear theory, we have to take into account the axisymmetric constituent of the displace-
ment, which accompanies oscillations with wave number n. Using relations (14) we can express the longitudinal and
transversal displacements via the radial displacement:
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Omitting the calculations, the final equation of motion in terms of radial displacement w(ξ, t) have the form:
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where
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and only the main order terms are taken into account (see [2] for details).
The frequency gapω0 is small because the effective thickness is slight. We introduce the dimensionless time, which

is scaled by the gap frequency ω0: τ0 = ω0τ.
The frequency spectrum in the case of simply supported edges can be written as follows:

ω2 =
ω2

0+µ π
2k2+κπ4k4

1+γπ2k2 , (18)

where k is a longitudinal wave number.
Introducing complex variables (see below) and using the multi-scale expansion, equation (16) may be rewritten as

follows:
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where the main order value χ0 relates to the complex function ψ = χ0 exp (−iτ0). Equation (19) admits the plane-
wave solution

χ0 = A exp (−i(ωτ2 − kξ)). (20)

where A is the amplitude. Solution (20) corresponds to the nonlinear normal mode with dispersion ratio
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0γ)k
2 + κk4
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2
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As it can be seen, this dispersion relation is in accordance with the relation (18). The nonlinear equation (19) can
be used for the analysis of the interaction of NNMs. Considering the sum of the resonant NNMs with wave numbers
k1 and k2:

χ0 = χ01(τ2) sin (πk1ξ) + χ02(τ2) sin (πk2ξ) (22)

we can obtain equations for the complex amplitudes χ01 and χ02:
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where δωi are the intervals between the modal frequencies.
Equations (23) have two integrals of motion:
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(24)

X = |χ01|2 + |χ02|2 , (25)

The solutions of equations (23) describe the evolution of the initial excitation in terms of the modes’ envelopes.
The detailed analysis of the Hamiltonian (24) (see [2]) for different values of the parameter X shows that, similarly
to the RBM energy exchange, a slow migration of energy along the CNT occurs if the occupation number X is small
enough. However, there is a critical value of X, when the energy of the CFM oscillations turns out to be captured in
the initially excited region of the CNT. The evolution of the energy migration with the increase of X is shown in the
fig. 4(a-c).
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(a) (b) (c)

Fig. 3. (Color online) Distribution of the energy of circumferential oscillations along the CNT axis dirung the MD simulation of (20,0) CNT with
aspect ratio 1/α = 20. (a) X = 0.1Xloc, (b) X = 0.995Xloc, (c) X = 1.25Xloc. The energy is measured in K, and the time - in the periods of the gap
mode.

5. Conclusions

To sum up, we emphasize that the phenomenon of partial or full energy exchange is specific to the resonating
nonlinear normal modes [1,2,5–8]. However, the result of intermodal interaction is determined by the relationships
between the parameters of nonlinearity and the difference between frequencies, as well as by the type of nonlinear
terms. The comparison of the RBM and CFM oscillations shows that in spite of the fact that both types of vibrations
are optical and nonlinear resonance occurs, the distinction in the nonlinear terms leads to a distinction in the processes
of energy exchange and localization.
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