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Within the Wigner-function formalism for electron quantum transport in semiconduc-
tors a two-time Wigner function is defined starting from the Green-function formalism.
After a proper Fourier transform a Wigner function depending on p and w as
independent variables is obtained. This new Wigner function extends the Wigner
formalism to the frequency domain and carries information related to the spectral
density of the system. A Monte Carlo approach based on the generation of Wigner
paths, already developed for the single-time Wigner function, has been extended to
evaluate the momentum and energy-dependent Wigner function. Results will be shown
for electrons subject to the action of an external field and in presence of scattering with
optical phonons.
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1. INTRODUCTION

The Wigner formulation of quantum mechanics
based on the concept of Wigner function (WF)
proved to be particularly suitable for the study of
quantum transport in mesoscopic systems due to
the many analogies which can be established with
the semiclassical transport theory [1]. Owing to the
possibility of comparing in many cases quantum
with classical results quantum effects can be

discussed in a physically intuitive but rigorous
theoretical framework [2].

Furthermore this formalism allows to describe
quantum transport in open systems [3] and the
quantum dynamical equation for the WF can be
solved by means of a Monte Carlo procedure based
on the generation of Wigner paths (WP) [4]. At
present, due to the heavy computational burden
required by the numerical algorithm, only paths
with few scattering processes can be accounted for.

* Corresponding author. Tel.: +39 059 2055277, Fax: +39 059 367488, e-mail: brunetti.rossella@unimo.it

375



376 R. BRUNETTI et al.

This computational limitation however is not too
severe for quantum transport in mesoscopic sys-
tems, where carriers crossing the regions of interest
experience few scattering events anyway.

A generalized WF that includes the phonon
states has been introduced [5] and the electron WF
is obtained from it by performing a trace over the
phonon variables. When the dynamical equation
for the electron WF is solved, due to the electron —
phonon interaction non-diagonal states in the
phonon variables must be included since the trace
does not commute with the interaction hamilto-
nian [5].

G<(r,ti;r,h) = % (Wl (ry, )T (r, 1)) (1)

where ¥ and U' the electron annihilation and
creation field operators, and () indicates quan-
tum and ensemble average. If electrons and
phonons are considered, the wave function de-
scribing the system of interest is ®(r,{n,},f)=
(r{ng}|®(?)), where {n,} is the set of quantum
numbers in the occupation-number representation
for the phonon gas. After some straightforward
manipulations of the above equations we get for
G*<:

G~ (rl,tl;rz,tz) =%ZZ<0

{ng} {n}}

The theoretical developments summarized
above have been analysed for the single-time WF
obtained from the corresponding single-time den-
sity operator, which is appropriate to analyse
transport properties like current density or elec-
tronic diffusion.

If information about the energy spreading of the
system is of interest, then a generalization of the
Wigner approach must be developed starting from
the two-time Green function G <.

This paper presents the above theoretical devel-
opment (Sect. 2) and it shows that the concept of
Wigner path can still be applied to calculate the
energy and momentum-dependent WF from a
Monte Carlo simulation (Sect. 3). Some results are
also shown at the end of the paper (Sect. 4).

2. THEORETICAL APPROACH

2.1. Definition of the Frequency-dependent
Wigner Function

The theoretical approach starts from the electron
Green function G <:

H \/L—' (ag)"®*(r2, {ng}, 22)U(t2, 11)®(r1, {n;}, t) H

[
(ah)™

)

(2)

/|
iiq.

The evolution operator U is obtained from
the hamiltonian H of the system which can be
written, in our case, as: H=H,+H,+H,, where
the three terms describe the electron and phonon
hamiltonians and the interaction term, respec-
tively. If the evolution operator in Eq. (2) is due
to the above Hamiltonian, then:

G < (ri,ti;r2, 1)

i -
= ize—th(Iz—tl)@*(rz, {nq}’ tz)q)(n, {nq}, tl)
{ng}

= %Zg*(rz, {nq}, tz)g("l, {nq}» tl)
{ng}

where g(r,{n,},?) = e“0D®(r,{n,},7) is the
wave function of the system, where the time
dependence due to free phonons has been elimi-
nated by the exponential factor.

Using the conventional new set of space-time
variables: t=(t;+%)/2, T=t,—t;, r=(r1+r)/2,
¥ =r,—r; and applying a Fourier transform we
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obtain the following WF:

fw(ripi t7w) = _ihG < (r’pi t7w)

(o)
-3 / o7/
{ng} 47
xdr’/ e “dr
—00

We can finally extend the above equation to
describe a system which is not diagonal on the
phonon variables as follows:

glr—v/2,{ns},t - 7/2)
g r+v/2{ng},1+7/2)

fw(rapa {nq}: {n;}a t,LU) =

[ee]
_ / o gy
—00

0 .
X / e “Tdr
—00

As for the single-time WF, we have:

g(r—r/2,{ng},t —7/2)
gr+v/2,{n},t+7/2)

Folr,p,t,w) =D fulr,p, {ng}, {ng}, 1, w).
{ng}

2.2. Dynamics of the Frequency-dependent
Wigner Function

The dynamical evolution equation for the WF in
the above equation is:

0 ,
Efw(rapa {nq}, {nq}7 Z w) =

e ¢] o0 X
= / erihay / e “dr
—00 —00

x { [g; glr—v/2,{n},t - T/z)]

0
Flr 22 e |

By calculating the time derivative of g and g* the
terms coming from the free-phonon dynamics can

be eliminated yielding:

0 /
'&fW(raPa {"q}a {nq}) Z,w) =

o o) . 1
— / etpr’/hdrl / e W dr —
oo oo in

[(He + Hep)g(r — ¥ /2,{ng}, 1 — 7/2)]
gr+r/2,{nj},t+17/2)

—g(r —r'/2,{ng},1 — 7/2)[(H. + He)
glr+v/2,{n},t+7/2)|"

The electron hamiltonian H, = He + Hg + V is
the sum of the kinetic term H,, the external field
term Hg, and a term associated to a non-smooth
potential profile like, for example, the band offset
of a heterostructure. The effect of the three terms
on the WF dynamics can be studied separately.

The mathematical manipulation of the kinetic
term provides the same result obtained for the
traditional WF [1]:

fw("aPa {nq}a {n;}7 t) w) = - %Vrfw

9
ot

The contribution of any potential V(r) to the WF
dynamics has the general form:

0
E VfW(r,p, {nq}v {nlq}v t, w)
— [ apVatep = Pl (), ) 1)
(3)
where
1 1
Vy(r,p) = EW

/ areé? "V (e — v 2) — V(r++/2)]

The same result applies for the potential term Hg
due to external fields. In the simple case of a
constant or harmonic force, however, the above
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term reduces to:

0
ot Ffw("»P, {nq}7 {n;}’ Z w)

= VV(I)Vpfu(r, p, {ng}, {ng}, t,w) = —F%fw

The manipulation of the contribution to the time
evolution of the WF due to electron—phonon
hamiltonian

Hey = ih Y F(q)(bye” — bl,e ")
ql

(where F is a real function) requires more
attention.

The contribution to the time evolution of the
WF coming from this term has the form:

9
ot

fw(";P» {nq}» {n;}’ t’w)
ep

= /oo ey /oo e““’”erF(q’)
o0 —o 7

{by et Dg(r —r'[2),{ng},t - 7/2)
g (r+v/2,{n},t+1/2)

— Bl it e g(r — 1 [2), {ng},1 — 7/2)
g(r+v/2,{n},t+7/2)

+8(r—r/2),{ng}, 1 — 7/2)[byeid -+
e+ 72, (), 4 /2]

—8(r = ¥/2),{ng}, 1 = 7/2)[blye~ia+r/)
g+ /2, (), -+ 7))}

By applying the phonon creation and annihilation
operators b, and b:f] to the function g, after some
calculations which must be omitted here for
brevity, we get:

fu(r,p, {ng}, {ng}, 1, w)

ep

= SR e g T
q

fulr,p —1q [2,{m,...,ng +1,.. .}, {n}}, t,w0 — wy /2)

_ eildr—wg1) g
fw("P—hlI//z’{nl»m,":/ - 1,...},{n;},t,w+wa/2)

RN

folr,p —Tig [2,{ng}, {n}, ... .1, +1,.. .}, 0 —wy /2)

— dr—wen) |
or—wy n;’

folr,p+hq [2,{ng}, {ny,... 1

9
ot

-1, . hwtwy/2)}
4)

By collecting the above results we obtain the
integro-differential equation for the WF of inter-
est:

9 / 1.X% 9, _ 0| | O
atfw(",Pa {nq}: {nq},t,w) +mrfw + Fapfw =73

tly Ot

ep

where (0/01)|yfu(r,p,{ng},{n,},t,w) is given by
Eq. (3), and (9/01)|,fuw(r,p, {ng}, {n,}, #,w) is given
by Eq. (4).

The left-hand-side of the above equation is the
standard Liouvillian operator of the Boltzman
transport equation. This allows the standard use of
path variables to transform the Wigner transport
equation into its integral form. Considering for
simplicity only a linear external potential besides
the interaction with optical phonons we have:

fw(",P, {nq}v {n;}’ Z w) :fw("o,Po, {nq}a {n;}) = 0,0.)) + / dr ZF(J)
0 q

(O 00) S T ()00 = B 2, 1, + 1o A 0 — g /2)

— e O—wet) et (), p(¢) — Hig )2, {n1, . .. g — 1 g} w4 we /2)

+ e @)=t [ + U(r(€), p(f) — g /2, {ng},{n}, .. omy + 1, 1, 1w — wy /2)

= SO0 ot b (1), p(C) 4 R 12, (g, Dy — 1, ot g 2)) (5)
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FIGURE 1 Wigner function as a function of frequency in absence of external fields at T = 300K and t =50 fs for a fixed value of p.
Continuous line represents the sum of the zero-order term of the Neumann expansion plus the corrections coming from paths with
one (dotted line) and two (dashed line) optical-phonon scatterings.
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FIGURE 2 Wigner function as a function of frequency in absence of external fields at T =300 K and t = 100 fs for the same value of
p used in Figure 1. Continuous line represents the sum of the zero-order term of the Neumann expansion plus the corrections coming
from paths with one (dotted line) and two (dashed line) optical-phonon scatterings.
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3. SIMULATIVE APPROACH WITH
WIGNER PATHS

Following the approach already developed for the
single-time WF, the above equation must be
substituted into itself to obtain the perturbative
Neumann series with terms at arbitrary perturba-
tive orders.

The concept of Wigner path mentioned above is
still applicable and allows to extend the Monte
Carlo procedure based on the generation of WP
already used to evaluate the single-time WF [4] for
the calculation of £,,(r, p, {ng}, {n,},t,w). The only
requirement to be added in the sequence of
random choices and operations which define a
particular path [4] is that at each electron—phonon
interaction vertex half of the phonon frequency
(besides half of the phonon momentum) is either
added or substracted to the electron energy
according to the selected integrand in the rhs of
Eq. (5).

If the simulation is performed backward in time,
the final (r,p,w) is first chosen, where the WF will
be evaluated, the path is evaluated backward in
time and at the end of this evaluation the initial
point of the WP, where the initial WF will be
“read”, is obtained.

As an example f,(r,p,{ns},{n,},t,w) has
been calculated from a Monte Carlo calculation
including paths with one and two phonon scatter-
ing in absence of external fields. Figures 1 and 2
show the results obtained at t=150 and t=100fs
as functions of w assuming an equilibrium

maxwellian initial condition for the WF and a
fixed value for p. It is shown that the WF is
broadened in the energy domain and the effect is
increasing at increasing times, while the zero-order
peak is reduced by the negative contribution
coming from the virtual (scattering-out) terms.
For a classical particle the result would be a é
function centered at the frequency corresponding
to p*/2m.
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