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A General Pipeline for Online Gesture Recognition
in Human-Robot Interaction

Valeria Villani, Cristian Secchi, Marco Lippi and Lorenzo Sabattini

Abstract—Recent advances in robotics have allowed the intro-
duction of robots assisting and working together with human
subjects. To promote their use and diffusion, intuitive and user-
friendly interaction means should be adopted. In particular,
gestures have become an established way to interact with robots
since they allow to command them in an intuitive manner. In
this paper, we focus on the problem of gesture recognition in
human-robot interaction (HRI). While this problem has been
largely studied in the literature, it poses specific constraints
when applied to HRI. We propose a framework consisting in a
pipeline devised to take into account these specific constraints. We
implement the proposed pipeline considering, as an example, an
evaluation use case. To this end, we consider standard machine
learning algorithms for the classification stage and evaluate their
performance considering different performance metrics for a
thorough assessment.

I. INTRODUCTION
Over the last years, progress in the design and development

of robotic systems has led to advanced solutions that are
entering our daily lives in several application fields, such as
social assistance, surveillance, tour guidance, rehabilitation,
and search and rescue. From the point of view of human-
robot interaction (HRI), in addition to the requirements for
safe interaction, this trend has further implications on the
modalities used to communicate with robots. First, it is im-
portant that communication from and to the robot is quick,
smooth, co-located and requires low attentional demand. In
other words, for efficient HRI, communicating to the robot
and understanding its messages should not be a bottleneck
and should not increase the overall complexity of teaming
up with a robotic agent, as it is usually in human-human
communication. Moreover, given the fact that most robotic
assistants are intended to be used by people without expertise
in robotics, it is also important that intuitive communication
is enabled, so that users do not have to learn commands that
are specific for the robot. In this regard, gestures represent a
valid candidate for intuitive communication with robots.

Gesture-based interaction with machines or robots has been
proposed by a large body of the literature, in both everyday and
industrial applications [1]–[10]. The problem of gesture-based
interaction can be split in two specific problems: recognizing
gestures and mapping gestures into commands to the interac-
tion system. The focus of our paper is on the first specific
problem applied to the domain of robotics, that is gesture
recognition in the context of HRI. While gesture recognition

Authors are with Department of Sciences and Methods for
Engineering, University of Modena and Reggio Emilia, Reggio
Emilia, Italy. Email: {vvillani, mlippi, csecchi,
lsabattini}@unimore.it

has long been an active area of research in computer vision and
machine learning [11], the use of gestures for interaction with
robots poses specific constraints. These constraints define the
prerequisites for successful gesture-based HRI. To improve the
use of gestures for HRI it is, then, beneficial that approaches
to gesture recognition are compliant by design with such
constraints. The second specific problem refers to designing
how gestures can be translated into commands to the robot,
possibly in an intuitive manner [2]. While these two specific
problems are independent, they jointly address the general
problem of gesture-based interaction with robots.

Building upon these lines, in this paper we propose a
pipeline for online gesture recognition in HRI. The approach
has been designed to be general and can be applied to any
set of gestures for interacting with any robot. To the best
of our knowledge, this is the first attempt in this direction,
since existing approaches have been designed to address spe-
cific use case scenarios. Conversely, we design the proposed
pipeline starting from the understanding of how gesture-based
interaction, in general, can be applied to HRI; no additional
constraints or requirements derived by specific use cases are
included to design the pipeline. As a result, the proposed
pipeline is application agnostic.

To achieve this, in Section III-A we first discuss the specific
constraints of gesture recognition for HRI, which have to be
taken into account to use gesture-based interaction in daily
life. Then, having these constraints in mind, in Section III-B
we propose an algorithmic pipeline to implement gesture
recognition in HRI. To show and discuss the application of
the proposed pipeline, we consider the experimental scenario
presented in [2], [12], [13]. In particular, we assess the
capability of the pipeline to generalize across multiple subjects
having different level of acquaintance with the use of gestures.
Indeed, prospectively, the use of gestures for interacting with
robots should be designed in such an intuitive way that it
is available to any user, and does not require specific prior
experience with gestures.

The rest of the paper is organized as follows. Section II
reports the state-of-the-art on gesture recognition in HRI.
In Section III we discuss how HRI constrains the use of
gesture-based interaction and, building upon such discussion,
we present the proposed pipeline. Then, Section IV focuses
on the classification stage, which is the core of the proposed
approach. In Section V the experimental setting considered
to validate the proposed architecture is presented. Then, in
Section VI we report the results of implementing the proposed
pipeline to the considered use case. Finally, Section VII
follows with some concluding remarks.
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II. GESTURE RECOGNITION FOR HRI

A large part of existing approaches to gesture recognition in
the domain of HRI rely on the use of vision systems [14], [15].
In [5] a stereo camera is mounted on the head of a personal ser-
vice robot for elderly assistance. Whole-body gestures, such as
walking or raising a hand, are then recognized from estimated
3-D human body components. Burke and Lasenby in [6] have
proposed the use of a Kinect sensor to detect pantomimic hand
gestures that control an unmanned aerial vehicle. Xu et al.
in [8] have focused on the problem of background subtraction
when using RGB-D cameras for hand gesture detection in
home-like dynamic environment. In [7] vision-based gesture
recognition is applied by Kim et al. to address the problem
of HRI at a long distance, approximately five meters from
the camera. The authors in [9] have considered to classify
the arm trajectories, seen as sequences of motor primitives.
To this end, RGB video sequences are used, with the subject
standing in front of the robot in a constrained setup. The same
requirement, that is the subject standing in front of the robot, is
set by Cicirelli et al. in [10], despite the use of multiple Kinect
cameras to monitor the surrounding environment. Chandarana
et al. in [16] used the infrared-based Leap Motion controller
to detect hand gestures for teleoperating unmanned aerial
vehicles (UAVs). UAV trajectories are built combining ges-
tures that define portions of flight paths. Generally speaking,
vision-based approaches require proper lighting conditions and
camera angles, and the user has to be in the field of view of
the camera. Hence, these characteristics pose a limitation to
the use of such approaches in real world HRI applications.

To overcome the limitations linked to the use of vision
systems and given the recent advances in pervasive computing,
wearable devices have been used to detect and recognize
gestures [17]. Indeed, unobtrusive, wireless and inexpensive
body worn sensors, such as accelerometers and gyroscopes,
possibly integrated in inertial measurement units (IMUs), are
available on everyday mobile and ubiquitous systems, such as
smartwatches, wrist bands and mobile phones. They provide
information about body movements and, hence, can be used
to track user activity [18], [19]. Additionally, they have been
used for gesture recognition for human-machine interaction in
several works [3], [20], [21]. For what concerns gesture-based
interaction with robots, the authors in [4] have proposed the
use of five IMUs and an ultra wideband positioning system
to capture the human upper body shape and the relative
position between the human and the robot. Villani et al. in [2],
[12] have used inertial data recorded with a smartwatch to
control both wheeled and aerial robots. Gestures are used to
provide high-level commands, such as take off, land or stop,
whereas robot velocity is determined by mapping user’s wrist
movements. A similar setting was considered by Carfı̀ et al.
in [22]. However, their framework was not designed for HRI.
Indeed, gestures were executed in steady conditions, which
means that the user was in a fixed predetermined pose between
consecutive gestures. This condition limits the possibility to
use this interaction means while the user is performing ev-
eryday activities. Additionally, inter-subject robustness of the
classification approach was assessed to a limited extent since

TABLE I
SPECIFIC CONSTRAINTS OF GESTURE RECOGNITION IN HRI AND

PROPOSED APPROACHES TO COMPLY WITH THEM.

Specific constraints in HRI Proposed solution
C1 – Wearable and lean infrastruc-
ture

Smartwatch or other wrist-worn de-
vice embedding an IMU

C2 – Online gesture recognition Choice of efficient classification
stage

C3 – Online application in dynamic
conditions (e.g., moving user)

Sliding windows and specific deci-
sion rules

C4 – Robustness to inter-subject
variability

Different user’s confidence with the
gestures under analysis

C5 – Minimization of false positives Model selection with specific per-
formance metrics

it was tested with gestures performed by the same subjects
involved in the training phase.

Furthermore, wearable sensors based on surface electromyo-
graphy (sEMG) are being used for gesture recognition [23]–
[25]. Quite often, IMU and EMG data are combined together
to improve gesture recognition. Indeed, while inertial data
provide information about hand position, EMG sensors allow
to fully understand complex finger or hand gestures. This is
the case, for example, of the work by Jiang et al. in [26],
where sEMG and IMU sensing fusion allows to recognize
several air and surface gestures with two distinct force levels.
Georgi et al. in [27] have proposed the simultaneous usage
of IMU and EMG sensors for gesture-based interfaces and
Hidden Markov Models (HMMs) are used as classifiers to
discriminate between the defined gesture classes.

From an algorithmic point of view, most approaches to
gesture recognition resort to machine learning techniques to
deal with high-dimensional, multimodal streams of data that
are characterized by a large variability. Different machine
learning algorithms applied to gesture recognition have been
compared in [24], [28], [29]. Comparisons by Trigueiros et al.
in [28] and Wahid et al. [24] focused on hand gestures, as most
of the approaches proposed in the literature (e.g., [20], [21],
[23], [27]), whereas realistic daily life activities are considered
by Sagha et al. in [29].

The above mentioned approaches consider the use of ges-
tures for HRI in specific case studies and cannot be easily
scaled to other applications. Our aim in this paper is to address
the problem of gesture-based HRI from a general perspective,
identifying the specific constraints of this application domain
and proposing a pipeline that can be applied to any case study,
with some fine tuning.

III. PROPOSED ARCHITECTURE

We hereby describe the proposed pipeline for online gesture
recognition in HRI. It addresses several constraints specific for
gesture-based interaction with robots. A diagram representing
the proposed architecture is depicted in Figure 1.

A. Specific constraints of gesture recognition in HRI

As introduced in Section I, when dealing with gesture
recognition in HRI, it is important that using gestures does
not limit the user interacting with the robot, insofar gestures
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Fig. 1. Flowchart for the proposed pipeline for online gesture detection and classification in HRI. The proposed pipeline can be implemented in Robotic
Operating System (ROS), which can deal with data acquisition, data processing, gesture recognition and communication with the robotic platform.

are not perceived as a slowdown for the interaction. As a result,
the use of gestures in the context of HRI poses the following
specific constraints for the problem of gesture recognition.
C1 Gesture-based interaction should rely on a lean infrastruc-

ture that requires poor or no installation and does not limit
the user’s freedom to move around and/or with the robot.

C2 Gesture recognition should be performed online and not
introduce any perceivable delay between the execution
of a gesture and its effect, meant as command to the
robot. In other words, the algorithmic pipeline in charge
of gesture recognition should be fast enough, requiring
limited computational burden. Moreover, the architecture
should guarantee immediate communication of a detected
gesture to the robot.

C3 It should be possible to detect gestures online and in
dynamic conditions, while users are performing other
ordinary activities and movements.

C4 The system should be easily adapted to different users,
thus requiring robust generalization capabilities.

C5 While seeking to improve gesture recognition perfor-
mance, it is particularly important to minimize the rate
of false positives since they would initiate an unintended
communication towards the robot.

It is noteworthy that some of these constraints are gen-
eral for gesture-based interaction and apply also to other
domains, as discussed, for example, in [14], [30]. Nevertheless,
as regards HRI, they define the prerequisites for successful
gesture-based HRI. These constraints are summarized in the
left column of Table I, while the right column describes how
the proposed system tackles them. More details are given in
the following subsections.

B. Overview of the proposed pipeline

To track the movements of the user, we consider inertial data
recorded by a wrist-worn device, and thus focus on forearm
gestures. This allows to comply with constraint C1 since
wearable devices recording inertial data are not cumbersome
to wear and are easily available on the market. Inertial data

are then analyzed, by considering sliding windows of fixed
length, with one sample shift. Recorded data are continuously
processed and the occurrence of a gesture is continuously
verified, thus complying with C3. In particular, to search
for gestures, for each sliding window a set of statistical
features are computed for each of the measured signals. The
extracted features represent the input for the classification
stage. In this paper, we start considering different classical
classification algorithms, such as K-nearest neighbors, support
vector machines, random forests and neural networks. Among
them, we then select the algorithm that best complies with
the specific constraints for gesture-based HRI, in a validation
use case. To select the most appropriate algorithm for the
considered application domain, different performance metrics
are considered, tailoring the severity of false positives in
HRI, so as to comply with C5. Moreover, starting from the
results achieved in our case study, the determination of the
classification stage is driven by considerations related to the
need for inter-subject robustness and computational burden,
thus complying with C2 and C4. The right column of Table I
summarizes how the proposed pipeline complies with the
specific constraints for gesture-based HRI.

With reference to Figure 1, all the considered algorithms
share the same general structure. They require previous train-
ing and validation with respect to the specific gestures of the
considered use case. As output, each algorithm provides a
score referred to the probability that one of the considered
gestures occurred in the current sliding window. A threshold
is set on such scores; the threshold can be tuned in order
to balance between false positives and false negatives. If the
confidence of the classifier is below such threshold, then the
process moves to the following sliding window. Otherwise, in
case the confidence of the classifier is above the threshold for
at least one gesture, a decision is not taken immediately, but
the system checks for the same condition also in the subse-
quent sliding windows. If the condition is met, then a decision
is taken and the corresponding command is sent to the robot.
The rationale behind this behavior is to improve the robustness
of the detection phase. Since consecutive sliding windows are
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shifted by one sample, it is likely that a gesture occupies more
than one window, depending on the sampling frequency of the
recording device. Hence, it is likely that, when a gesture is
performed, it is recognized by the classification algorithm in
several consecutive windows, whose number depends on the
duration of the gesture and the device sampling frequency. On
the other side, if a gesture is detected in a window only, it is
likely to be a false positives and should be discarded.

IV. CLASSIFICATION STAGE

The classification stage of the proposed architecture consists
in a machine learning module that receives as input the
statistical features computed on the current sliding window and
provides as output a decision whether a gesture is recognized
or not. In this section, we overview the general setting of
supervised machine learning, and we briefly describe four
classic algorithms that have been tested in our experimental
evaluation.

Broadly speaking, in a classification task, the goal is to
predict the category y ∈ Y , sometimes also named class,
label, or output, of a given observed example x ∈ X , which
instead represents the input of the system. In a supervised
setting, we are given a collection D of m input/output pairs
D = {(xi, yi)}mi=1 and we aim to fit a function f : X → Y
so that we can then predict the category ŷ of a given, novel
(not previously seen) example x̂. Clearly, different machine
learning approaches exploit different definitions for function
f , as well as different algorithms and techniques to learn such
a function. To identify the best approach for the proposed
HRI pipeline, we have compared classic machine learning
approaches, namely K-nearest neighbors, support vector ma-
chines, random forests and neural networks. However, other
different classification algorithms can be considered. In all
these cases, we have considered a setup where each input
instance x is described by a vector of real numbers, which
are the characteristics, or features of that instance.

The parameters chosen to implement each approach are dis-
cussed in Sec. V-C, with reference to the considered datasets.

A. K-Nearest Neighbors

Based on the concept of distance between examples, the K-
Nearest Neighbors (KNN) classifier is not properly a learning
algorithm. In fact, given a test example x̂ to be classified,
the algorithm looks for the K examples in the training set
that are the closest ones to x̂ according to a chosen metric
(e.g., the Euclidean distance). The prediction is then performed
via a majority voting procedure among the classes of the K
nearest neighbors. Although very simple, this algorithm can
work well in practice, when the distance computed on the
feature vectors is highly discriminative of the target class. The
parameter K defines the size of the neighborhood to consider
for classification.

B. Support Vector Machines

Support Vector Machines (SVM) are another classic method
for supervised classification in machine learning. Considering

binary classification, SVMs are trained to learn a discrim-
inative function that best separates positive and negative
examples, with the maximum possible margin [31]. Given
a collection of m training samples, such a discriminative
function is computed as:

f(x) =

m∑
i=1

αiK(xi, x) + b (1)

where αi are the learnable model parameters, and the kernel
function K(·, ·) aims to measure the similarity between exam-
ples. Function K is, in general, a nonlinear function, so that the
classifier can model nonlinear dependencies between features
and class. Decision function f only depends on those training
examples whose corresponding coefficient αi is different from
zero: these are called support vectors. In general terms, the
decision function f defines a hyperplane, which constitutes
the decision boundary used to classify the data points. Data
points falling on either side of the hyperplane can be attributed
to different classes. This idea can be extended to the case of
multiclass classification, breaking down the multiclassification
problem into multiple binary classification problems. Two
approaches can be selected to this end: in the one-versus-one
approach, a binary classifier is set per each pair of classes,
regardless of the other classes; in the one-versus-rest, a binary
classifier is set per each class, to distinguish it from the rest
of data.

A commonly used kernel function for SVM classifiers is the
Radial Basis Function (RBF). The RBF kernel function for two
points x1 and x2 computes the similarity or how close they
are to each other, as a function of their Euclidean distance. It
is specified by means of two parameters: C and γ. While C
sets a trade off between misclassification of training examples
and simplicity of the decision surface, γ defines the width of
the radial functions.

C. Random Forests

A Random Forest [32] (RF) consists in a collection of
individual Decision Trees (DTs) [33], whose predictions are
combined typically through a voting process. A DT inductively
learns a set of explainable classification rules by imposing
conditions of the values of the features describing the ex-
amples. When creating a RF, each DT is trained from a
distinct set of n examples randomly sampled from the original
training set, and by testing only m out of M features at
each node in the tree. The process of combining the outcome
of individual classifiers into a single prediction is usually
named as an ensemble approach, and it is known to typically
improve the performance of the overall system, as well as to
reduce overfitting. Each individual DT in the RF produces a
class prediction and the class with most votes becomes the
prediction of the model, as in classic ensemble approaches.

D. Neural networks

A Neural Network [34] (NN) is a nonlinear function trans-
forming a set of input variables in a set of output variables
via a set of adjustable parameters. In particular, a NN is a
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combination of nonlinear basis functions. Each basis function
is itself a nonlinear function (called activation function) of a
linear combination of the inputs, and the coefficients in such
combination are adaptive weights, that can be learned to fit
the training data. Several layers of adaptive weights can be
stacked to form a deep network.

V. EXPERIMENTAL IMPLEMENTATION
In this section we present the experimental setting that was

considered to implement the pipeline shown in Fig. 1. We first
introduce the validation use case and describe different sets
of features extracted from the raw signals; then we illustrate
the adopted training and evaluation procedure, and finally the
performance metrics employed at prediction time.

A. Use case
To validate the proposed pipeline, we considered the

gesture-based HRI approach introduced in [2]. In particular,
the scenario consists in recognizing the following Ngest = 5
gestures, depicted in Figure 2:

1) Up: sharp movement upwards in a plane parallel to the
sagittal one,

2) Down: sharp movement downwards in a plane parallel to
the sagittal one,

3) Circle: movement in a circular shape in a plane parallel
to the frontal one,

4) Left: sharp movement to the left, from sagittal plane to
frontal one, in a plane parallel to the transverse one,

5) Right: sharp movement to the right, from sagittal plane
to frontal one, in a plane parallel to the transverse.

Examples can be seen in the multimedia attachment to [2].
These gestures are meant to be performed with the right arm,
with the subject wearing an IMU on the right wrist.

As our input device we considered a commercial multi-
purpose smartwatch, namely the Samsung Gear S device. Data
used in the analysis presented in this paper consist of triaxial
inertial measurements recorded by the smartwatch, namely
x ∈ R10, and include timestamp, angular velocities and
linear accelerations (raw and with automatically compensated
gravity). Data are accessed by means of a Tizen interface
and are provided on an uneven sampling grid. On average,
approximately 25 samples per second are provided.

As regards the overall software architecture, data are
recorded via Tizen and sent via Wi-Fi to an external computer,
for ease of implementation. The classification stage is imple-
mented in Python, using the scikit-learn library [35] and
Tensorflow 2.0.0 [36].

ROS can be, then, used for implementing the remaining of
the pipeline [37]. It is is an open-source hardware-independent
middleware widely used in robotics and consists in a set of
software libraries and tools that allow communication with
robots, actuators, sensors and other devices commonly used
in robotic applications. Since it supports Python, it can deal
with data acquisition, data processing, gesture recognition
and communication with the robotic platform. To this end,
a publish-subscribe pattern can be used that can efficiently
handle communication events, such as arriving messages and
inform the robot about the detection of a gesture.

Fig. 2. Gestures considered in this study: from left to right, Up, Down, Circle,
Left and Right. Animated examples can be seen in the multimedia attachment
to [2].

TABLE II
COMPOSITION OF THE TRAINING AND TEST DATASET. THE DURATION IS

EXPRESSED IN AVERAGE NUMBER OF SAMPLES, WITH ITS STANDARD
DEVIATION.

Tr
ai

ni
ng

Label Instances Duration ([samples])
Up 60 29.5± 2.9

Down 60 29.9± 3.3

Circle 60 32.6± 4.8

Left 60 25.9± 2.5

Right 60 28.9± 2.5

Ntrain 300

Te
st

Instances Subject

Ntest 200
90 by S1

10 each by S2, . . . , S12

B. Feature extraction

Starting from the data provided by the wrist-worn device,
synthetic features are extracted and passed to the classification
stage as input data. We considered three sets of features,
which were compared as possible different inputs for the
classification algorithms. The first two feature sets, denoted
in the following as F1 and F2, were defined as follows. Set
F1 includes standard statistics computed in the domain of
time, for each inertial quantity: mean value, standard deviation,
maximum value, and minimum value. These are customarily
used in many gesture recognition applications (for example,
see work in [38]). Following [24], [26], set F2 includes mean
absolute value, count of slope sign changes, count of zero
crossings and waveform length, as follows:

• mean absolute value: 1
L

∑L
k=1 |xk|

• slope sign change: (xk − xk−1)(xk+1 − xk) < 0
• zero crossing: xkxk+1 < 0
• waveform length:

∑L
k=2 |xk − xk−1|

where L is the number of samples in a sliding window.
Set F3 is obtained from the union of F1 and F2 and hence

consists of 8 features.
As a result, for each feature set, each input sequence for

classification (both for training and test data sets) is repre-
sented by 36 features for F1 and F2 and 72 features for F3,
since the above mentioned features were computed for each
of the nine inertial quantities measured by the smartwatch.

C. Training and evaluation

All the considered classification algorithms were trained by
considering a labelled data set of 300 gestures, which included
60 trials per gesture. Such gestures were all performed by
the same subject, denoted in the following as S0, standing in
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TABLE III
ARCHITECTURES FOR NEURAL NETWORKS CONSIDERED IN THE

CLASSIFICATION STAGE. LEARNING RATE WAS SET TO 1E-3, THE NUMBER
OF TRAINING EPOCHS TO 500, AND THE BATCH SIZE TO 100 FOR ALL THE

CONSIDERED ARCHITECTURES.

Layer Type Nodes Activation function

Model 1

Input Dense 100 ReLU
Hidden Dense 50 ReLU
Hidden Dense 25 ReLU
Output Dense 6 Softmax

Model 2
Input Dense 100 ReLU

Hidden Dense 50 ReLU
Output Dense 6 Softmax

Model 3
Input Dense 50 ReLU

Hidden Dense 25 ReLU
Output Dense 6 Softmax

steady state. The data set contains inertial samples that refer
to the execution of the gestures, only: samples between two
consecutive gestures were manually excluded. The composi-
tion of the training data set is detailed in Table II. In order to
tune the hyperparameters of the different classifiers, an inner
k-fold cross-validation on the training set was conducted.

Based on preliminary experiments, in the analyses reported
in this paper, for KNN we tested values for K = 5, 7, 10, 15.
Since the two hyperparameters, C and γ, have to be jointly
chosen, we exploited a grid search with an internal cross-
validation1 as customary in this kind of applications. We
finally selected C = 0.1 and γ = 10−6. As for RF, we
considered a total of 100 trees in our model. For NN, we con-
sidered three different architectures, summarized in Table III.
Each network was trained using the Adam optimizer [39] with
batch normalization, and the hyperparameters (learning rate,
momentum and number of training epochs) were set with
Bayesian optimization2.

To test the algorithms under analysis, we considered streams
of inertial data containing gestures. In other words, consec-
utive gestures were separated by a non-constant number of
samples in which the user moved in a natural manner, as
described below. The goal was to replicate real life scenarios
in which the subject is free to move while interacting with
a robot. Occurrences of gestures were manually annotated to
serve as ground truth. To deal with online classification, and
following [2], input data were provided to the algorithms by
considering sliding windows of length L = 35 samples, with
one sample shift. As a result, the test set includes Ntest = 200
gestures performed with the subjects moving in a natural
manner between consecutive gestures (e.g., walking, waving,
drinking). These gestures were performed by 12 subjects,
namely S1, S2, . . . , S12, different from the one contributing to
the training set. They were not told the movements to execute
between gestures, but were left free to chose. An equal number
of the five gestures under consideration was included. The
composition of the test set is detailed in Table II.

All the algorithms were implemented in a multiclass config-
uration. This implies that the detection of a gesture is accepted

1We used the GridSearchCV class of scikit-learn.
2We used the library Keras Tuner.

only if the confidence of the classifier is above a certain
threshold that can be tuned in order to balance between false
positives and false negatives. To this end, different thresholds
have been considered. In the case of RF, performance has
been computed considering three different thresholds, namely
σ1, σ2 and σ3, on the predicted probabilities for each class, to
be used as a confidence level for gesture recognition. Specif-
ically, for each input sequence, Ngest predicted probabilities
Pi, i = 1, . . . , Ngest are given as output, each representing the
likelihood for that sequence to contain one of the considered
gestures. For each threshold σj , gesture i is, then, detected
if maxPi > σj , with j = 1, 2, 3. In a similar manner, for
SVM a one-versus-one approach for multiclass classification
is selected and five thresholds are considered, denoted as θk,
k = 1, . . . , 5. A score for each sample in relation to each
gesture is provided and the threshold θk is set with respect to
such score. The results achieved for RF and SVM with the
different thresholds σj and θk (j = 1, 2, 3 and k = 1, . . . , 5)
are reported in Section VI3. A threshold is considered also in
the case of KNN: it was set to τ = 1 for any value considered
for K, and, hence, is not reported in Section VI. Alternatively,
when dealing with a specific case study, the optimal threshold
can be set with a cross-validation step.

Finally, as introduced in Section III-B, a gesture was de-
tected only if the same outcome was predicted by a classifier
throughout several consecutive sliding windows. Given the av-
erage duration of the considered gestures (reported in Table II)
and the approximate sampling frequency of the smartwatch
of about 25 Hz, we set such number of consecutive sliding
windows to 25.

D. Performance metrics

A set of established metrics have been computed to compare
the performance of the considered algorithms [40], [41]. The
selection of these metrics was guided by the need to guarantee
high recognition performance in general, while taking into
account specific HRI constraints as well. We name Recall
the percentage of gestures in the test set that have been
correctly detected by the classifier, whereas Precision is the
percentage of predicted gestures that are correct4. These two
measures account for different kinds of error: namely, Recall
considers false negatives since it takes into account those
gestures that are not recognized by the system, while Precision
considers false positives, which are gestures that the system
wrongly recognizes. The latter are much more dangerous in
HRI, where a gesture starts a command to the robot, as
highlighted by constraint C5 in Section III-A. Hence, in the
need for a compromise between performance on Precision and
Recall, it is important that Precision is as high as possible.
Low Precision means that the risk of providing unintended
commands to the robot is high, which is clearly unacceptable.
Conversely, a false negative in HRI means that the user has

3We set σ1 = 0.55, σ2 = 0.60 and σ3 = 0.65, and θk = 4.240+k·0.005,
with k = 1, . . . , 5.

4In general, in multiclass problems, Precision and Recall are more fre-
quently computed on a per-class basis, while in our application scenario
we prefer to report classifier-level metrics in order to focus on the global
performance of the system.
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performed a gesture to command the robot, but this command
was not received by the robot. Although annoying for the user,
this circumstance is less dangerous than the previous one, since
it does not have direct consequences in terms of unintended
behaviour of the robot.

Precision and Recall are usually combined in the Fβ score,
defined as:

Fβ score = (1 + β2)
Recall · Precision

Recall + β2Precision
(2)

The parameter β quantifies the importance of Recall over
Precision and is typically set to 1. Since, in our context, it
is more important that Precision, rather than Recall, is large,
we set β = 0.5, to attribute more importance to Precision
over Recall [40], [41]. Thus, in our analysis we consider
F0.5 score, following constraint C5.

In order to better highlight the difference between the two
main error categories (i.e., missed or misclassified gestures)
and comply with constraint C5, we introduce two additional
metrics. The Misclassification Gesture Rate (MGR) is the
percentage of real gestures that are assigned to the wrong
category, whereas the Undetected Gesture Rate (UGR) is the
percentage of real gestures that are not detected. We hereby
remark that Recall +MGR+ UGR = 1. Following the line
of reasoning above, it is more important to minimize MGR
than UGR, since the former accounts for unintended swaps
among commands to the robot, while the latter refers to the
need, for the user, to repeat a gesture.

Finally, to guarantee real-time gesture recognition (see con-
straint C2 in Section III-A), algorithms have been compared
also in terms of computational burden. To this end, the classifi-
cation time has been considered. With respect to Figure 1, this
amounts to considering the time required from the selection of
a sliding window (dashed rectangles on the left) to the output
of classification algorithms for that window (boxes “Gesture
recognized?” in the figure).

VI. ANALYSIS OF THE EXPERIMENTAL DATA

In this section, we analyze and discuss the experimental
data collected implementing the proposed pipeline in the
use case introduced in Section V-A. In particular, besides
comparing the performance of the considered four classical
machine learning approaches with different feature sets, we
will focus on the generalization capabilities of the classifiers
across different subjects, with varying levels of familiarity
with the selected gestures and inclusion in training set. The
idea behind this analysis is to assess the amount of user’s
contribution, meant in terms of participation in the training
set or gained acquaintance with the gestures, that is needed to
achieve satisfactory performance for gesture recognition. To
this end, we consider three different conditions: a) subjects
with different familiarity with the considered gestures, whose
data were not included in the training set; b) a subject with
previous experience on the use of the selected gestures, but
whose data were not included in the training set; c) the same
subject as in the previous condition, whose data contributed,
in small part, to the training set.

a) Multiple subjects, expert and novel, not included in
the training set: Table IV reports the performance of the
classification stage, for the different algorithms considered, in
the case of subjects with and without prior familiarity with
the considered set of gestures. With reference to Table II,
numbers in Table IV refer to 200 gestures performed by all
the subjects in the test set (from S1 to S12). We remark that
these subjects were not represented in the training set and had
received different amount of instructions on how to execute
the gestures. Specifically, subject S1 had previous experience
with the considered set of gestures, while all the others had
not, and received little training soon before recording the test
set. The table shows that satisfactory results can be achieved
with RF (with features F3) for Precision and MGR, which are
the most relevant metrics for HRI applications, as discussed in
Section V-D. Nevertheless, performance achieved for the other
metrics are extremely low. The performance achieved with the
other algorithms are quite poor, too.

b) Expert subject, not included in the training set: To
improve the performance of gesture recognition, we limited
the test set to gestures performed by an expert subject, who
had prior experience in using them, namely S1. Indeed,
although the considered gestures consist in simple and natural
movements, they are meant as sharp movements, as described
in Section V-A, and require some experience to get familiar
with movement speed and initial and final positions. Table V
reports the results achieved in this condition. As for the
previous analysis, the subject contributing to the training set
was not included in the test set. The table shows that a notable
increase in performance is achieved. However, classification
performance is still quite low for all the considered algorithms.
In particular, while very good performance can be achieved in
terms of Precision and MGR, Recall is still quite low. Satisfac-
tory Recall is achieved with NNs (Model 1 and features F1),
at the expenses of low Precision and F0.5 score. There is no
algorithm, among those considered, that returns satisfactory
results for both Recall and Precision.

c) Expert subject, included in the training set: As a
further attempt to improve the performance of gesture recog-
nition, we increased the training set adding some gestures by
the same subject in the test set. In particular, with reference
to Table II, the training set was augmented adding 100 new
gestures (20 per type) by subject S1. Regarding the test set,
we considered 90 gestures performed by S1 (i.e., the same
as condition b)). Table VI reports the performance achieved
in this condition. The best classification performance are
achieved with SVM with features F1, which proves successful
for all the considered metrics. All the thresholds θk, with
k = 1, . . . , 4 return similar results, while θ5 is less performing.
Considering F0.5 score, which is the weighted combination
of Recall and Precision, the threshold θ1 returns the highest
value. RF provides slightly better performance for Precision
and MGR than SVM, but F0.5 score for RF is quite low.
Good performance, in terms of Recall, UGR and MGR, is also
achieved with NNs with features F1, although Precision and
F0.5 score are quite low. In summary, it is possible to argue
that better performance can be achieved when using SVM with
threshold θ1 and features F1.
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TABLE IV
CLASSIFICATION PERFORMANCE FOR GESTURES PERFORMED BY MULTIPLE SUBJECTS, EXPERT AND NOVEL, NOT INCLUDED IN THE TRAINING SET.

(R: Recall; P: Precision; UGR: Undetected Gesture Rate; MGR: Misclassification Gesture Rate; F0.5 : F0.5 score.)

Features F1 Features F2 Features F3

R P UGR MGR F0.5 R P UGR MGR F0.5 R P UGR MGR F0.5

RF (σ1) 29.1 72.2 62.8 8.1 33.0 20.9 31.1 55.6 23.5 22.4 27.0 67.9 62.8 10.2 30.7
RF (σ2) 20.9 91.1 77.0 2.1 24.7 16.8 63.5 74.0 9.2 19.7 21.0 90.7 76.8 2.2 24.8
RF (σ3) 17.3 91.9 81.2 1.6 20.7 8.2 69.6 88.3 3.5 9.9 12.8 92.6 86.2 1.0 15.4
KNN (K = 5) 44.4 56.5 33.7 21.9 46.4 21.9 62.3 66.8 11.3 25.2 29.6 68.2 59.7 10.7 33.4
KNN (K = 7) 43.4 60.7 38.3 18.3 46.0 14.3 60.9 77.6 8.1 16.9 25.5 70.4 65.8 8.7 29.2
KNN (K = 10) 40.3 67.5 44.9 14.8 43.8 11.2 62.9 82.7 6.1 13.4 20.9 75.9 73.0 6.1 24.5
KNN (K = 15) 37.2 75.3 52.0 10.8 41.4 5.6 55.0 90.3 4.1 6.8 14.3 71.8 80.6 5.1 17.0
SVM (θ1) 51.5 35.1 15.3 33.2 47.1 44.4 26.0 10.7 44.9 38.9 50.0 27.9 9.7 40.3 43.2
SVM (θ2) 48.5 33.5 17.9 33.6 44.5 42.3 24.5 9.7 48.0 37.0 47.4 28.4 10.7 41.9 41.9
SVM (θ3) 45.9 34.1 20.9 33.2 42.9 37.8 23.6 12.2 50.0 33.7 41.8 27.4 11.2 46.9 37.9
SVM (θ4) 43.4 44.0 31.6 25.0 43.5 34.2 23.0 11.7 54.1 31.2 37.2 26.6 14.3 48.5 34.5
SVM (θ5) 39.8 70.3 50.0 10.2 43.6 32.1 24.0 15.8 52.1 30.1 32.7 28.4 24.5 42.8 31.7
NN (Model 1) 51.9 35.3 28.8 19.3 37.3 35.2 25.4 35.0 29.8 26.7 47.2 32.0 27.3 25.5 33.9
NN (Model 2) 50.1 29.6 26.6 23.3 31.9 41.5 34.7 35.2 23.3 35.4 49.4 33.2 26.1 24.5 35.2
NN (Model 3) 46.8 29.2 27.2 26.0 31.3 38.2 29.2 36.8 25.0 30.5 47.2 30.3 25.9 26.9 32.4

TABLE V
CLASSIFICATION PERFORMANCE FOR GESTURES PERFORMED BY AN EXPERT SUBJECT, NOT INCLUDED IN THE TRAINING SET. (R: Recall; P: Precision;

UGR: Undetected Gesture Rate; MGR: Misclassification Gesture Rate; F0.5 : F0.5 score.)

Features F1 Features F2 Features F3

R P UGR MGR F0.5 R P UGR MGR F0.5 R P UGR MGR F0.5

RF (σ1) 43.0 84.1 51.2 5.8 47.7 30.2 28.6 37.2 32.6 29.9 41.9 80.0 47.7 10.4 46.3
RF (σ2) 34.9 90.9 61.6 3.5 39.8 24.4 63.6 61.6 14.0 27.8 33.7 90.6 62.8 3.7 38.6
RF (σ3) 30.2 92.9 67.4 2.4 34.9 16.3 73.7 77.9 5.8 19.3 23.3 95.2 75.6 1.1 27.4
KNN (K = 5) 59.3 60.0 23.3 17.4 59.4 33.7 82.9 62.8 3.5 38.3 46.5 83.3 50.0 3.5 51.0
KNN (K = 7) 58.1 64.9 29.1 12.8 59.4 20.9 90.0 77.9 1.2 24.7 40.7 89.7 58.1 1.2 45.7
KNN (K = 10) 57.0 77.8 34.9 8.1 60.2 17.4 93.8 81.4 1.2 20.8 33.7 100.0 66.3 0.0 38.9
KNN (K = 15) 53.5 88.5 43.0 3.5 58.1 9.3 100.0 90.7 0.0 11.4 24.4 100.0 75.6 0.0 28.8
SVM (θ1) 68.6 31.9 3.5 27.9 55.8 57.0 27.8 4.7 38.3 47.1 68.6 33.5 4.7 26.7 56.7
SVM (θ2) 66.3 33.3 9.3 24.4 55.3 52.3 25.4 4.7 43.0 43.2 62.8 31.6 5.8 31.4 52.4
SVM (θ3) 60.5 39.1 20.9 18.6 54.5 46.5 24.4 5.8 47.7 39.4 53.5 29.9 7.0 39.5 46.2
SVM (θ4) 57.0 56.3 33.7 9.3 56.8 40.7 22.6 5.8 53.5 35.1 45.3 27.1 9.3 45.4 40.0
SVM (θ5) 51.2 83.0 47.7 1.1 55.4 40.7 23.8 5.8 53.5 35.6 41.9 28.1 12.8 45.3 38.1
NN (Model 1) 83.6 44.5 9.8 6.6 48.8 41.8 25.3 32.2 26.0 27.5 78.4 44.9 8.1 13.5 48.8
NN (Model 2) 76.8 32.5 10.0 13.2 36.6 57.8 37.9 19.9 22.3 40.5 80.7 43.4 5.4 13.9 47.6
NN (Model 3) 70.5 34.8 13.3 16.2 38.6 52.2 32.1 25.5 22.3 34.8 79.0 42.6 5.6 15.4 46.6

TABLE VI
CLASSIFICATION PERFORMANCE FOR GESTURES PERFORMED BY AN EXPERT SUBJECT, INCLUDED IN THE TRAINING SET. (R: Recall; P: Precision; UGR:

Undetected Gesture Rate; MGR: Misclassification Gesture Rate; F0.5 : F0.5 score.)

Features F1 Features F2 Features F3

R P UGR MGR F0.5 R P UGR MGR F0.5 R P UGR MGR F0.5

RF (σ1) 61.6 98.1 38.4 0.0 66.6 36.0 81.6 58.1 5.9 40.6 45.3 92.9 52.3 2.4 50.5
RF (σ2) 52.3 100.0 47.7 0.0 57.8 29.1 100.0 70.9 0.0 33.9 30.2 96.3 68.6 1.2 35.0
RF (σ3) 40.7 100.0 59.3 0.0 46.2 24.4 100.0 75.6 0.0 28.8 27.9 100.0 72.1 0.0 32.6
KNN (K = 5) 74.4 52.9 18.6 7.0 68.8 25.6 53.7 69.8 4.6 28.6 40.7 62.5 54.7 4.6 43.8
KNN (K = 7) 73.3 56.3 19.7 7.0 69.1 14.0 50.0 84.9 1.1 16.3 33.7 64.4 64.0 2.3 37.3
KNN (K = 10) 73.3 64.9 23.2 3.5 71.4 11.6 62.5 87.2 1.2 13.9 26.7 79.3 73.3 0.0 30.8
KNN (K = 15) 64.0 75.3 36.0 0.0 65.9 7.0 85.7 93.0 0.0 8.5 18.6 94.1 81.4 0.0 22.2
SVM (θ1) 96.5 91.2 2.3 1.2 95.4 66.3 47.5 7.0 26.7 61.4 88.4 67.9 4.6 7.0 83.3
SVM (θ2) 94.2 95.3 5.8 0.0 94.4 65.1 51.9 8.2 26.7 61.9 88.4 74.5 5.8 5.8 85.2
SVM (θ3) 94.2 96.4 5.8 0.0 94.6 62.8 54.0 10.5 26.7 60.8 84.9 76.0 9.3 5.8 83.0
SVM (θ4) 94.2 97.6 5.8 0.0 94.8 62.8 55.1 10.5 26.7 61.1 80.2 77.5 14.0 5.8 79.7
SVM (θ5) 83.7 98.6 16.3 0.0 86.3 59.3 58.0 17.4 23.3 59.0 77.9 83.8 18.6 3.5 79.0
NN (Model 1) 94.6 62.9 3.4 2.0 67.3 55.0 41.0 24.4 20.6 42.9 90.8 63.4 6.3 2.9 67.0
NN (Model 2) 94.8 54.9 2.3 2.9 59.8 56.1 43.8 26.4 17.5 45.5 88.9 59.8 4.9 6.2 63.3
NN (Model 3) 94.6 62.9 3.4 2.0 67.1 58.9 42.7 17.6 23.5 45.0 87.0 50.6 5.5 7.5 54.9
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Building upon this result, we tested this classifier consid-
ering gestures performed during intense motion conditions or
moderate physical activity. To this end, subject S1 was asked
to perform N IM

test = 20 gestures during running and leg skipping
sessions and arm circumductions. These movements were
intended as spurious noise for the classification algorithms.
Nevertheless, SVM, with threshold θ1 and features F1, has
returned quite good performance also in this extreme motion
condition: R = 100%, P = 57.1%, UGR = 0.0%, MGR =
0.0%, F0.5 score = 87.0%. While Recall is very high, the
effect of intense motion can be seen in lower Precision, due
to an increased number of false positive gestures.

A. Discussion

Tables IV, V and VI report the classification performance
achieved considering a possible implementation of the pro-
posed pipeline. To this end, we considered four standard
classification algorithms and implemented them with different
parameters. The achieved results show that, to achieve satis-
factory classification performance, it is needed that the user
receives some sort of training on how to execute the selected
gestures. In particular, even if natural and easy movements
are considered, the user should practise them, in order to get
familiar with range and speed of motion and other specific
features. To this end, including, in the classification algorithm,
some amount of user specific training is beneficial. It is
noteworthy that this is not in contrast with constraint C4 of
Table I. Indeed, in Table VI we considered the case that the
algorithms were trained with data from a subject not in the test
set in large part and, in small part, with data from the same
subject in the test set. This is customary in devices running, for
example, algorithms for voice or handwritten text recognition,
which usually require some fine training by the user in charge.

As Table VI shows, if the user is familiar with the selected
set of gestures and algorithms are trained also with her/his
data, classification performances become highly satisfactory
and allow an efficient use of gestures in HRI. This is confirmed
also by the classification performance achieved in the case
of intense motion condition: although this represents a quite
unusual condition in HRI, these results show that gestures can
be used without restrictions to any other tasks the user might
be carrying out while interacting with a robot.

B. Analysis of computational burden

The computational burden of the proposed pipeline was
assessed to verify its applicability to real-time gesture recog-
nition (constraint C2 in Table I). To this end, we computed the
average classification time required by each of the considered
algorithms. The measured times, averaged over 5, 000 sliding
windows, are reported in Table VII.

We hereby make two observations. First, according to the
decision rule presented in Section III-B and Section V-C, a
gesture is detected only if it is recognized in 25 consecutive
sliding windows. In other words, the recognition of a gesture
requires that 25 windows elapsed. Hence, since times in
Table VII refer to classification for a single time window,
the recognition of a gesture implies a delay that is 25 times

TABLE VII
AVERAGE COMPUTATIONAL TIME FOR GESTURE CLASSIFICATION ON A

SINGLE TIME WINDOW.

Model RF KNN SVM NN NN NN
Model 1 Model 2 Model 3

Time (ms) 23 3 2 16 17 18

the one reported in the table, from the beginning of its
execution. Second, for ease of computation, we implemented
the classification stage on an external computer5 running
Python. Computation times reported in Table VII refer to
this setting. In a real world operational setting, an hardware-
driven software implementation should be considered, possibly
relying on the computational capacity of the robot.

Table VII shows that all the algorithms are quite fast, with
SVM being the fastest among those considered. Even consid-
ered the need to process 25 consecutive windows, the delay
introduced by the classification operation does not affect the
fluency of gesture-based interaction. As a result, the selection
of the most suited algorithm for the proposed classification
can be guided by classification performances only.

VII. CONCLUSIONS

In this paper we considered the problem of forearm gesture
recognition for HRI. The ultimate goal is that of providing
commands to robots by means of intuitive gestures. To this
end, we proposed a pipeline for gesture recognition specifically
designed for HRI applications. As input data we consider
wrist inertial movements, which can be recorded with any
commercial device mounting an IMU. Gesture detection and
classification is performed by a classification stage that relies
on machine learning algorithms. To this end, we compared
the performance of several machine learning algorithms used
in classification problems: RF, KNN, SVM, and NN. An
extensive evaluation was performed, including also an analysis
of computational burden for real time gesture recognition.
Different performance metrics were introduced, to provide a
thorough assessment of algorithms and to highlight the specific
needs of gesture recognition in HRI context. In particular, we
highlighted that the cost of false positives and misclassifica-
tions (wrongly recognized gestures) is much higher than that
of false negatives (gestures not detected at all), thus motivating
the need for models with a high precision, even though at the
cost of a lower recall.

An evaluation use case was selected to show an implemen-
tation of the proposed pipeline. It consisted of five gestures,
recorded with a smartwatch. Twelve subjects were included
in the validation, considering different confidence with the
selected gestures. Firstly, we analyzed whether a general,
meant as opposite to user tailored, training of classification
algorithms could be sufficient to achieve satisfactory recogni-
tion performance. Then, to improve recognition performance,
we considered the need of training algorithms also with a small
amount of data from the subject in charge.

5The computer used for this analysis embeds an Intel i5 3.2 GHz CPU and
8 GB RAM, and it runs Ubuntu 16.04.7.
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As concluding remarks, it is noteworthy that the proposed
pipeline is general. Indeed, it can be used implementing other
classification algorithms, or with other parameters. Addition-
ally, it can be used to interact with any kind of robots and
with other sets of gestures.
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