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Abstract. In this paper we present a general theoretical framework to study interacting
electrons under the influence of an external time-periodic driving, such as a homogeneous laser
field. This is performed through a true many-body calculation and the use of Floquet theory.
In particular, we consider a linear atomic chain using the Hubbard model to describe the short-
ranged Coulomb interactions between electrons, plus Cluster Perturbation Theory to embed the
many-body exact solution for a finite system into both an extended and an infinite lattice. Due
to the presence of the external time-periodic perturbation, the electronic problem can be mapped
into the study of photon-dressed quasiparticles thanks to Floquet theorem, keeping into account
of all the virtual processes (absorption and emission of photons by electrons) with the laser field.
This leads to an extension of the many-body static theories to out-of-equilibrium systems. This
theoretical approach allowed us to show how the electronic properties of the system can be
controlled and tuned varying the laser parameters. Above all, an inverse insulator-to-metal
transition can be obtained for the one dimensional infinite lattice, and edge localized states
appear as a finite size effect in an extended truncated chain.

1. Introduction

The possibility of driving materials out of equilibrium with the application of a homogeneuos
laser field has been recently widely studied for simple non-interacting systems but with
meaningful results [1, 2]. In addition, these problems have become of greater interest thanks to
the experimental advances in time-and angle-resolved photoemission spectroscopy (Tr-ARPES)
[3] and the possibility of using cold atoms in optical lattices in presence of periodic drivings. In
these conditions, the electrons of the material interact with the monochromatic electromagnetic
field reaching a nonequilibrium steady state to form “photon-dressed quasiparticles”. These are
a combination of electrons from the material and photons from the driving field: therefore they
can be treated as free as a whole, replacing the concept of bare electrons interacting with an
external field. This scheme allows us to study the problem using the Floquet theory, mapping
the original out-of equilibrium time-periodic problem into an effective steady time-independent
one [4,5]. On the other hand, correlated static systems have always been fascinating due to their
wide range of properties and applications, as well as for the possibility to induce and control
phase transitions.

Therefore, the study of correlated systems with a true many-body approach in out-of-
equilbrium conditions is at the same time challenging and interesting for the possibility to
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control the new degrees of freedom due to the driving to obtain new properties and reach
conditions otherwise not accessible in static conditions. Indeed, the presence of correlation
between electrons is affected by the photon-dressing induced by the external time-periodic field,
emerging in a competing effect between the local e-e repulsion and the absorption or emission
of photons which leads to a renormalization of the kinetic energy of the electrons.

In this paper we considered the prototype system of a one dimensional atomic chain at
half filling, described in static conditions by the Hubbard Hamiltonian and predicted to be
insulating. Then, we included Floquet theory (section 2) to describe the exact interaction with
an external laser field using an effectively time-independent scheme: to do this, the problem
must be reformulated using the Green’s function formalism. First, we calculate the one-particle
Floquet-Green’s function in the interacting framework for a finite size atomic cell (section 3).
After that, this exact solution is embedded into the extended or infinite lattice with a Cluster
Perturbation Theory (CPT) method [6–10], here applied to non-equilibrium conditions, in order
to get the spectral functions and densities of states which describe the system (section 4).
Eventually, our results are focused on the quasienergy band dispersion of the infinite chain and
the comparison with the truncated chain, with highlight to finite-size effects (section 5).

2. The Floquet-Hubbard model

The problem of a lattice with a time-periodic external perturbation is characterized by an
electronic time-periodic Hamiltonian Ĥ(t) = Ĥ(t+ T ) (T = 2π

Ω being the period of the external
perturbation, Ω its frequency). Therefore, the time-dependent Schrödinger equation reads

Ĥ(t)Ψ(x, t) = i ∂tΨ(x, t) , (1)

where Ψ(x, t) = Ψ(x(1), x(2), ..., x(N), t) is the many-body wave function for N particles.
According to Floquet theorem, which can be interpreted as Bloch theorem in time domain,
the solution can be written as a factorization of a quasiparticle wave function periodic in time
and a complex exponential playing the role of the time-evolution of the quasiparticle:

Ψ(x, t) = e−iEt Φ(x, t) . (2)

We have named E the quasiparticle energy and Φ(x, t) the quasiparticle wave function, which
can be rewritten according to Fourier expansion as

Φ(x, t) =

+∞
∑

n=−∞

e−inΩt φn(x) . (3)

Substituting in (1) the form of the solution provided in (2) we get, after some algebra, the
following equation:

(

Ĥ(t)− i ∂t

)

Φ(x, t) = E Φ(x, t) . (4)

Defining the Floquet operator as ĤF ≡ Ĥ(t)− i∂t, playing the role of an effective Hamiltonian,
equation (4) is mapped into a time-independent eigenvalue problem as follows:

ĤF Φα(x, t) = Eα Φα(x, t) , (5)

where α are the labels for Floquet eigenstates and their corresponding quasi-energies. Moreover,
it’s important to notice that, according to Floquet theorem and the expansion in (3), if Eα is
a solution, then Eα + nΩ (with n any integer number) is a solution, too. This means that
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there are infinite replicas of Floquet quasienergies (or, equivalently, that they’re defined up to
multiples of the photon energy, Ω), which physically correspond to the exchange (either emission
or absorption) of photons of the electrons with the applied electromagnetic field. Eventually,
it’s noticeable that while the expectation values of the Hamiltonian calculated for Floquet
states are time-dependent (they are not conserved), namely 〈Ψα(t)|Ĥ(t)|Ψα(t)〉 = εα(t); Floquet
quasienergies are not, and they are therefore conserved.

Now, in order to study a one-dimensional insulating chain as a true many-body problem,
we can use the Hubbard Hamiltonian with one-orbital per atom, nearest-neighbor hopping and
on-site Coulomb interaction. In static conditions it is written in the second quantized form as

Ĥ = −
∑

〈i,j〉

∑

σ=↑,↓

Ji,j ĉ†i,σ ĉj,σ + U
∑

i

n̂i,↑ n̂i,↓ , (6)

J describing the unperturbed hopping (non-local), while U is the repulsive Hubbard term
(local). We can now describe the external driving by the vector potential in one dimension
A(t) = A0 sin(Ωt): according to Peierls’ substitution [11, 12] it can be included in the hopping
term of the Hubbard Hamiltonian provided that Ji,j → J eiA(t)·(xi−xj). It can also be rewritten
in an expanded form as follows:

J eiA(t)·(xi−xj) =

+∞
∑

p=−∞

Jp(A0(xi − xj)) e
ipΩt , (7)

where Jp(z) is the Bessel function of first kind and order p, with argument z. Moreover, for the
driven system we can expand the time-dependent creation and annihilation operators similarly
to (3), as follows:

ĉ†i,σ(t) =

+∞
∑

n=−∞

e−inΩt ĉ†i,σ,n , ĉi,σ(t) =

+∞
∑

n=−∞

einΩt ĉi,σ,n . (8)

The time-independent operators appearing in the expansion act both on electrons (creating or
annihilating one with spin σ on site i) and on the photons of the driving field, absorbing or
emitting n of them (attention must be paid since the sign of n is physically meaningful). With
the forementioned Peierls’ substitution and the time-dependent creation/anihilation operators
defined in (8), starting from (6), we can write the Floquet-Hubbard effective Hamiltonian as

ĤFH = −J
∑

〈i,j〉

∑

σ=↑,↓

+∞
∑

n,m=−∞

eiA(t)·(xi−xj) ĉ†i,n,σ ĉj,m,σ ei(n−m)Ωt + U
∑

i

n̂i,↑ n̂i,↓ − i∂t . (9)

Here we have put Ji,j = J , with the summation performed over i, j neighboring sites. Its solution
can be written in the form provided in (3), where the spatial many-body wave function φn(x)
can be espanded in a complete set of localized non-interacting N-particle states. However, this
can be done via exact diagonalization only for a finite and small number of electrons.

3. Cluster Floquet-Green’s Function

It is convenient for our theoretical development to use the Green’s function formalism, here
extended to correlated driven systems treated with Floquet aproach. In particular, we can write
the Floquet-Green’s function in the Lehmann representation as follows:

Gij,nm(ω) = lim
η→0+

∑

n′,n′′,m′,m′′

∑

ξ

(

〈ΦN
0,m′ |ĉ

†
j,m|Φ

N−1
ξ,m′′〉〈Φ

N−1
ξ,n′ |ĉi,n|Φ

N
0,n′′〉

ω − EN
0 + EN−1

ξ − iη
δm′′+m,m′ δn′′−n,n′

+
〈ΦN

0,m′ |ĉi,n|Φ
N+1
ξ,m′′〉〈Φ

N+1
ξ,n′ |ĉ

†
j,m|Φ

N
0,n′′〉

ω + EN
0 − EN+1

ξ + iη
δm′′−n,m′ δn′′+m,n′

)

. (10)



4

1234567890

7th Young Researcher Meeting  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 841 (2017) 012021  doi :10.1088/1742-6596/841/1/012021

In order to compute it, we need to know all the interacting (N + 1)- and (N − 1)-particles
eigenstates and eigenvalues, plus the ground state of N particles and its energy. Actually,
this last step requires us to define an interacting many-body ground state for a system in non-
equilibrium conditions, whose energy is given up to multiples of the photon energy of the driving.
Indeed, even though the result is independent on which replica of the ground state level is chosen,
still the states of a Floquet mode are mixed with other replicas of different modes. This means
that excited states of a given mode can have lower energies of the ground state of a higher mode
(i.e.: if E1,n − E0,n < Ω, then E1,n−1 = E1 + (n − 1)Ω < E0,n = E0 + nΩ). In order to solve
this intrinsic ambiguity and make a meaningful physical choice, we have adopted an adiabatic
criterion: once the ground state for the static condition (represented by a null vector potential
A0 = 0) is found (the problem can be solved in this limit even without Floquet approach), we
switch the perturbation on incresing the vector potential and we calculate the energy levels for
the different values of A0. The ground state energy at each value of the external field is then
obtained continuously and smoothly following the ground state level through the increasing of
the driving, from A0 = 0 up to the desired value.

4. CPT and Lattice Floquet-Green’s Function

Once we have obtained the Floquet-Green’s function to describe a small cluster of atoms in the
presence of correlation and a time-periodic driving, the extension to a larger or infinite system
can be performed through Cluster Perturbation Theory. In an operatorial form the following
Dyson-like expression holds:

Ĝlat(ω) = Ĝcl(ω) + Ĝcl(ω) T̂ Ĝlat(ω) . (11)

Ĝcl(ω) and Ĝlat(ω) are the cluster and the lattice Floquet-Green’s functions respectively, and T̂
represents the interaction between clusters. The latter contains solely the hopping term, which
is the factor allowing for tunneling of electrons between the atomic sites of the lattice, and is
the only non-local term in the Floquet-Hubbard Hamiltonian connecting neighboring clusters.
Translated into the Floquet-Hubbard formalism, this becomes

Glat
ij,nm(ω) = Gcl

ij,nm(ω) +
∑

〈i′,j′〉

∑

n′,m′

Gcl
ii′,nn′(ω) Ti′j′,n′m′(k, ω) Glat

j′j,m′m(ω) , (12)

where the summation is performed over neighboring sites. Ti′j′,n′m′(k, ω) =
∑

l Jn′−m′(A0(xi′ −
xj′)) eikRl is the effective time-independent hopping as appearing in expression (7) with the
periodicity of the cluster. The lattice Floquet-Green’s function can be computed numerically
by equation (12): it is valid both for an infinite lattice and for an extended finite one. In the
former case periodicity is included in the hopping term of interactions between clusters, while in
the latter one a Floquet-Green’s function for M-sites (M large) can be computed starting from a
few-sites function explicitly including the interactions (which are here a finite number) between
neighboring clusters (in this case the k-dependence in it vanishes). For an infinite lattice we can
compute the spectral functions of the photon-dressed quasiparticles as

D(k, ω) = −
1

π

∑

b

Im
{

Glat
b (k, ω)

}

, (13)

where the summation is intended over all the bands, and with

Glat
b (k, ω) =

∑

ij,nm

e−ik(xi−xj) cbi,n(k)
∗ cbj,m(k) Glat

ij,nm(k, ω) . (14)
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The coefficients cbi,n(k) and cbj,m(k) are obtained from the solution of the Floquet problem without
interactions (single-particle). On the other hand, for a finite chain the local and the total density
of states are given respectively by

ni(ω) = −
1

π

∑

b

∑

n,m

Im
{

(cbi,n)
∗ cbi,m Glat

ii,nm(ω)
}

, n(ω) =
∑

i

ni(ω) . (15)

5. Results

Using this theoretical approach, we firstly computed the exact diagonalization for a cluster
formed by two sites at half occupation, then we calculated the infinite lattice Floquet-Green’s
function and the corresponding spectral function. We performed a systematic calculation of the
Floquet quasienergy bands for different values of the correlation (0 < U < 4) and the external
field parameters (0 < A0 < 5 and 1 < Ω < 10), analyzing their features: in particular, as
pointed out in [13], an insulator-to-metal transition can be driven by the external field at low
frequencies (Ω . J) and values of A0 non-trivially depending on these parameters. However,

Figure 1. (a) Zero-mode Floquet quasienergy band dispersion for an infinte 1D chain calculated
for U/J = 2.0 and Ω = 1.0 J in 11 k-points in the FBZ, as a function of the field intensity A0/J .
Dashed blue lines are drawn in correspondence of the zero-energy states of the finite chain lying
in the bulk gap (see Fig. 2(a)). (b) Zero-mode quasienergy band dispersion for U/J = 2.0,
Ω = 1.0 J and A0/J = 0.7 within the FBZ.

this is not due to the Floquet quasienergies replicas, but to virtual processes, since it shows up
also in the zero Floquet mode where the average number of photons exhanged is zero. In Fig.
1(a) is represented the quasienergy band dispersion for some k-points for different A0 values
in the case of Ω = 1.0 J and U/J = 2.0 : the closure of the gap in the Floquet zero-mode
around the Fermi level in the quasienergy band dispersion occurs at A0/J ≈ 0.7, A0/J ≈ 2.78,
A0/J ≈ 3.84 and higher values. In Fig. 1(b), instead, the band dispersion within the FBZ is
reported for the specific value of A0/J = 0.7, for which the gap is closed and the chain has
a metal behaviour. With the same parameters of the driving field we calculated the density
of states for an extended linear chain of 30 atoms, with the repetition of a 2-sites cluster: the
results are shown in Fig. 2(a) as a function of the vector potential A0. It can be seen that for
this finite system zero-energy levels appear in correspondence of the gap of the inifite lattice
band dispersion (reported as dashed blue lines in Fig. 1(a)). Moreover, analyzing for these
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parameters the local density of states for each site of the chain as represented in Fig. 2(b), it
is clear that the these zero-energy states appearing in the finite chain are localized at the edges
and exponentially decay in the inside.

Figure 2. (a) Density of states of an open 1D chain with 30 atoms, calculated for U/J = 2.0
and Ω = 1.0 J . In panel (b) the local densities of states for the zero-energy level are reported
as a function of the sites positions, for U/J = 2.0, Ω = 1.0 J and A0/J = 3.0.

6. Conclusion

In conclusion, we have developed a theoretical method to calculate Floquet quasienergies for
extended correlated systems driven out of equilibrium by a periodic perturbation. In order to
treat the many-body problem we used the exact diagonalization of the Hubbard model including
Floquet theory for time-periodic systems in it. Moreover, we combined CPT to the Floquet-
Green’s function formalism in order to describe extended or infinite lattices. In this paper, we
applied the theory to a one dimensional chain, comparing the infinite lattice to the truncated
chain in order to characterize the finite size effects for this system. In fact, in the periodic
lattice insulating and metallic phases can be driven by the external field, while gapless edge
states appear in the bulk insulating phase. Since this procedure is fairly general, it can be
extended to 2- or 3-dimensional lattices, while the Hubbard model could be also applied to
superconductors describing attractive e− e interactions.
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