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We investigate a model, inspired by Johnston et al. (2017) to describe the
movement of a biological population which consists of isolated and grouped
organisms. We introduce biases in the movements and then obtain a scalar
reaction–diffusion equation that includes a convective term as a consequence
of the biases. We focus on the case the diffusivity makes the parabolic equation
of forward–backward–forward type and the reaction term models a strong Allee
effect, with the Allee parameter lying between the two internal zeros of the
diffusion. In such a case, the unbiased equation (i.e., without convection) pos-
sesses no smooth traveling-wave solutions; on the contrary, in the presence of
convection, we show that traveling-wave solutions do exist for some significant
choices of the parameters. We also study the sign of their speeds, which provides
information on the long term behavior of the population, namely, its survival or
extinction.
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1 INTRODUCTION

In this paper, we investigate a model to describe the movement of biological organisms. Its detailed presentation appears
in Section 3. Inspired by the recent paper [1], we assume that the population is constituted of isolated and grouped organ-
isms; our discussion is presented in the case of a single spatial dimension but could be extended to the whole space. The
first rigorous mathematical deduction of movement for organisms appeared in [2]; since then, several models have been
proposed; see for instance [1, 3–6] and references therein. In this context, a common procedure is to start from a discrete
framework where the transition probabilities per unit time 𝜏 and for a one-step jump-width l are assigned, and then pass
to the limit for 𝜏, l → 0. In the aforementioned papers, the limiting assumptions make the diffusivity totally responsible for
the movement, and no convection term appears; see however [5, §5.3] and [7], for instance, for the deduction of a model
that also includes a convective effect. Here, we generalize the model in [1] by introducing a possibly biased movement,
which leads, in general, to a convective term. As a consequence, we show the appearance of a greater variety of dynamics
that allow to better investigate the long-term behavior of the population, in particular to predict its survival or extinction.
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original work is properly cited.
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2 BERTI ET AL.

Our model is described by a reaction–diffusion–convection equation

ut + 𝑓 (u)x = (D(u)ux)x + g(u), t ≥ 0, x ∈ R, (1.1)

where the functions 𝑓,D, and g satisfy (3.6), (3.7), and (3.8), respectively. The unknown function u denotes the density
(or concentration) of the population and then it has bounded range; for simplicity, we assume u ∈ [0, 1]. An interesting
feature of Equation (1.1) in this context is that negative diffusivities arise for several natural choices of the parameters. As
in [1], here we consider a diffusion term that makes Equation (1.1) of forward–backward–forward type. This occurrence
was already noticed in other papers; see for instance [8, 9] in the case of a homogeneous population under different
assumptions. Notice however that the deduction of the model both in [1] and in the present paper also involves the reaction
term, while in [8, 9] it is limited to diffusion. As opposite to positive diffusivities, which model the spatial spreading,
negative diffusivities are usually interpreted to model the “chaotic” movement, which follows from aggregation [8, 9]. In
turn, the latter is “a macroscopic effect of the isolated and the grouped motility of the agents, together with competition
for space”[10]. At last, we assume that the reaction term g shows the strong Allee effect; that is, it is of the so called bistable
type (see assumption (g) below).

We focus on the existence of traveling-wave solutions u(x, t) = 𝜑(x − ct) to Equation (1.1), for some profiles 𝜑 = 𝜑(𝜉)
and wave speeds c; see [11] for general information. If the profile is defined in R, it is monotone, nonconstant, and reaches
asymptotically the equilibria of (1.1), then the corresponding traveling-wave solution is called a wavefront. We consider
precisely decreasing profiles, which connect the outer equilibria of g, that is,

𝜑(−∞) = 1 and 𝜑(∞) = 0. (1.2)

The case when profiles are increasing, and then satisfy 𝜑(−∞) = 0, 𝜑(∞) = 1, is dealt analogously and leads to a similar
discussion. These solutions, even if of a special kind, have several advantages: They are global, they are often in good
agreement with experimental data [4], and they can be attractors for more general solutions [12]. Moreover, when u
represents the density of a biological species, as in this case, then condition (1.2) means that, for times t → ∞, the species
either successfully persists if c > 0, or it becomes extinct if c < 0. The wavefront profile 𝜑 must satisfy the ordinary
differential equation (

D(𝜑)𝜑′)′ + (
c −

.
𝑓 (𝜑)

)
𝜑′ + g(𝜑) = 0. (1.3)

We used the notation . ∶= d∕du and ′ ∶= d∕d𝜉. Although one can consider the case of discontinuous profiles (see [10, 13]
and references therein), in this paper we focus on regular monotone profiles of Equation (1.3). This means that they are
continuous and of class C2 except possibly at points where D vanishes; then solutions to Equation (1.3) are intended in
the distribution sense.

The existence of wavefronts is treated here in a quite general framework, which includes, in particular, our biological
model. More precisely, we fix three real numbers 𝛼, 𝛽, 𝛾 satisfying

0 < 𝛼 < 𝛾 < 𝛽 < 1, (1.4)

and assume (see Figure 1)

(f) 𝑓 ∈ C1[0, 1];
(D) D ∈ C1[0, 1], D > 0 in [0, 𝛼) ∪ (𝛽, 1], and D < 0 in (𝛼, 𝛽);
(g) g ∈ C1[0, 1], g < 0 in (0, 𝛾), g > 0 in (𝛾, 1), and g(0) = g(𝛾) = g(1) = 0.

Since 𝑓 in (1.1) is defined up to an additive constant, we can take 𝑓 (0) = 0. The term
.
𝑓 (u) represents the drift of the

total concentration u and prescribes in particular if a concentration wave is moving toward the right (
.
𝑓 (u) > 0) or toward

the left (
.
𝑓 (u) < 0). The parabolic equation (1.1) is of backward type in the interval (𝛼, 𝛽) and of forward type elsewhere;

moreover, it degenerates at 𝛼 and 𝛽.
The presence of wavefronts to (1.1) satisfying (D) and (g) and with 𝑓 = 0 was first discussed in [14], where it is shown

in particular that, if a wavefront exists, then 𝛾 ∉ [𝛼, 𝛽]. Such a situation and many others, again with 𝑓 = 0, was also
considered in [1, cases 6.3, 8.3], in the framework of the particular model deduced in that paper. The case with convection
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BERTI ET AL. 3

FIGURE 1 Typical plots of the functions D (dashed line) and g (dashdotted line).

is not yet completely understood. Then our issue here is

whether and when the presence of the convective flow allows the existence of wavefronts.

An intuitive argument (see Remark 2.3) shows that the answer is in the affirmative at least for suitable concave 𝑓 . We
now briefly report on the content of this paper.

In Section 2, we investigate the fine properties (uniqueness, strict monotonicity, estimates of speed thresholds) of the
wavefronts of Equation (1.1) that satisfy (f)-(D) and (g). A similar discussion for a monostable reaction term g appeared
in [15] and [16], respectively, in the general framework and for the population model with biased movements. We recall
that g is called monostable if g > 0 in (0, 1) and g(0) = g(1) = 0. In Section 3, we introduce our biological model, and in
Section 4, we give some preliminary results about it. In particular, we point out that the convection in the model can be
either concave, or convex or else change convexity–concavity at least once. The following sections separately deal with
each of these cases; we provide results for the existence of wavefronts (both sufficient conditions and necessary conditions)
and investigate the sign of the propagation speed. Section 7 resumes and compares all the results we obtained. At the
same time, we suggest a biological interpretation for them.

As in our aforementioned papers, we exploit here an order-reduction technique. Since we focus on profiles 𝜑 = 𝜑(𝜉)
that are strictly monotone when 𝜑 ∈ (0, 1), we can consider the inverse function 𝜑−1(𝜑) of 𝜑 and, by denoting z(𝜑) ∶=
D(𝜑)𝜑′ (𝜑−1(𝜑)

)
, we reduce the problem (1.3) to a first-order singular boundary-value problem for z in [0, 1]. This problem

is tackled by the classical techniques of upper and lower solutions. This technique requires lighter assumptions than
the phase-plane analysis in [1] and is simpler than the geometric singular perturbation theory exploited in [13]. Then
wavefronts satisfying (1.2) are obtained by suitably pasting traveling waves. The results appear in Section 2; they are given
for an arbitrary equation (1.1) satisfying conditions (f), (D), and (g), and they are original. About (g), the mere requirement
that g is continuous and the product Dg differentiable at 0 would be sufficient for us. Both for (D) and (g), we made slightly
stricter assumptions than necessary both for simplicity and because they are satisfied by our biological model with biased
movements. The cases when the internal zero of g is before 𝛼, i.e. 𝛾 ∈ (0, 𝛼), or after 𝛽, that is 𝛾 ∈ (𝛽, 1), are not treated
here. Equation (1.1) with 𝑓 = 0 admits wavefronts in these cases and we expect that they persist also in the presence of
the convective effect 𝑓 .

The issue of the linear stability of the wavefronts is certainly interesting; we claim that it could be developed as in
[13, 17], with a similar discussion.

2 THEORETICAL RESULTS

In this section, we provide the theoretical results that are needed for the investigation of model (3.5). In the following, we
consider Equation (1.1) and we always assume (1.4) and (f), (D), and (g), without any further mention. The existence of
a wavefront solution to (1.1), whose profile satisfies (1.2), is obtained by pasting profiles connecting 0 with 𝛼, 𝛼 with 𝛾 , 𝛾
with 𝛽, and 𝛽 with 1. Each subprofile exists for c larger or smaller than a certain threshold, which varies according to the
subinterval: We denote them by

c∗0,𝛼, c∗𝛼,𝛾 , c∗
𝛾,𝛽
, c∗

𝛽,1,

respectively. The expressions of these thresholds are not explicit, but we provide below rather precise estimates for them.
We denote

c0 ∶= min
{

c∗0,𝛼, c∗𝛼,𝛾
}

and c1 =∶ max
{

c∗
𝛾,𝛽
, c∗
𝛽,1

}
. (2.1)
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4 BERTI ET AL.

FIGURE 2 Some profiles with the same speed c, in the case c1 < c0 in Theorem 2.1; profiles have been shifted so that 𝜑(𝜉𝛾 ) = 𝛾 .

In the above pasting framework, c0 involves the speeds of profiles connecting 0 with 𝛼 and then 𝛼 to 𝛾 , while c1 refers
to the connections 𝛾 to 𝛽 and then 𝛽 to 1.

The following main result concerns general necessary and sufficient conditions for the existence of wavefronts.

Theorem 2.1. If
c1 < c0, (2.2)

then for every c ∈ (c1, c0), there are wavefronts to Equation (1.1) satisfying (1.2).
Conversely, if c1 > c0, there exists no wavefronts to Equation (1.1) satisfying (1.2).

We point out that, in the case c1 < c0, there are infinitely many profiles with the same speed c ∈ (c1, c0). More precisely,
see Figure 2, for every such c there exists 𝜆c < 0 and a family of profiles 𝜑𝜆, for 𝜆 ∈ [𝜆c, 0), which are characterized by

𝜑𝜆(𝜉𝛾 ) = 𝛾 and 𝜑′
𝜆
(𝜉𝛾 ) = 𝜆,

for some 𝜉𝛾 ∈ R. The first condition simply says that all profiles have been shifted so that they reach the value 𝛾 at the
same 𝜉 = 𝜉𝛾 (in order to make a comparison possible); the second one states that their slopes at 𝜉𝛾 cover the cone centered
at (𝜉𝛾 , 𝛾) and opening [𝜆c, 0). We refer to [18] for more information.

We denote the difference quotient of a scalar function of a real variable F = F(𝜑) with respect to a point 𝜑0 as

𝛿(F, 𝜑0)(𝜑) ∶=
F(𝜑) − F(𝜑0)
𝜑 − 𝜑0

, 𝜑 ≠ 𝜑0. (2.3)

If F is differentiable in 𝜑0, then we understand 𝛿(F, 𝜑0)(𝜑0) =
.
F(𝜑0).

We also introduce the integral mean of the difference quotient and denote it as

Δ(F, 𝜑0)(𝜑) ∶=
1

𝜑 − 𝜑0 ∫
𝜑

𝜑0

𝛿(F, 𝜑0)(𝜓)d𝜓 = 1
𝜑 − 𝜑0 ∫

𝜑

𝜑0

F(𝜓) − F(𝜑0)
𝜓 − 𝜑0

d𝜓. (2.4)

Again, if F is differentiable in 𝜑0, we agree that Δ(F, 𝜑0)(𝜑0) =
.
F(𝜑0).

Notice that for every 𝜑 ∈ (0, 𝛾) there is 𝜑1 ∈ (0, 𝛾) such that Δ(Dg, 𝛼)(𝜑) = 𝛿(Dg, 𝛼)(𝜑1). Then we have

sup
[0,𝛾]

Δ(Dg, 𝛼) ≤ sup
[0,𝛾]

𝛿(Dg, 𝛼), (2.5)

and the same estimate holds true in the interval [𝛾, 1] by replacing 𝛼 with 𝛽.
The following results provide necessary and sufficient conditions for the existence of decreasing profiles, in order to

make condition (2.2) more explicit in terms of the functions 𝑓 , D and g. The proofs are deferred to the end of this section.

Corollary 2.1 (Necessary condition). If there are wavefronts to Equation (1.1) whose profiles satisfy (1.2), then

min
{
inf
[0,𝛾]

𝛿(𝑓, 𝛼),
.
𝑓 (𝛼) − 2

√
.

D(𝛼)g(𝛼)
}

≥ max
{
sup
[𝛾,1]

𝛿(𝑓, 𝛽),
.
𝑓 (𝛽) + 2

√
.

D(𝛽)g(𝛽)
}
. (2.6)
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BERTI ET AL. 5

In particular, wavefronts exist only if both conditions

.
𝑓 (𝛼) −

.
𝑓 (𝛽) ≥ 2

√
.

D(𝛼)g(𝛼) + 2
√

.
D(𝛽)g(𝛽), (2.7)

inf
[0,𝛾]

𝛿(𝑓, 𝛼) − sup
[𝛾,1]

𝛿(𝑓, 𝛽) ≥ 0, (2.8)

are satisfied. Notice that inequality (2.7) separates the behavior of 𝑓 from that of Dg.

Remark 2.1. When 𝑓 is strictly concave, we have

inf
[0,𝛾]

𝛿(𝑓, 𝛼) = 𝛿(𝑓, 𝛼)(𝛾) = 𝑓 (𝛾) − 𝑓 (𝛼)
𝛾 − 𝛼

, sup
[𝛾,1]

𝛿(𝑓, 𝛽) = 𝛿(𝑓, 𝛽)(𝛾) = 𝑓 (𝛾) − 𝑓 (𝛽)
𝛾 − 𝛽

, (2.9)

and then

inf
[0,𝛾]

𝛿(𝑓, 𝛼) − sup
[𝛾,1]

𝛿(𝑓, 𝛽) = 𝑓 (𝛾) − 𝑓 (𝛼)
𝛾 − 𝛼

− 𝑓 (𝛾) − 𝑓 (𝛽)
𝛾 − 𝛽

> 0. (2.10)

The following result shows, in particular, how far from zero must be the difference in (2.8) in order to have solutions. We
denote with J the set of admissible speeds, that is, the speeds c such that there is a profile with that speed satisfying (1.2).

Corollary 2.2 (Sufficient condition). We have the following results.

1. Assume
inf
[0,𝛾]

𝛿 (𝑓, 𝛼) − sup
[𝛾,1]

𝛿 (𝑓, 𝛽) > 2 sup
[0,𝛾]

√
Δ (Dg, 𝛼) + 2 sup

[𝛾,1]

√
Δ (Dg, 𝛽). (2.11)

Then, Equation (1.1) admits wavefronts satisfying (1.2), and J is a bounded interval.
2. We have

(i) either J ⊂ (0,∞) or J = ∅, in the case

max
{
sup
[𝛾,1]

𝛿(𝑓, 𝛽),
.
𝑓 (𝛽) + 2

√
.

D(𝛽)g(𝛽)
}
> 0; (2.12)

(ii) either J ⊂ (−∞, 0) or J = ∅, in the case

min
{
inf
[0,𝛾]

𝛿(𝑓, 𝛼),
.
𝑓 (𝛼) − 2

√
.

D(𝛼)g(𝛼)
}
< 0. (2.13)

We now investigate when the set J of admissible speeds contains positive values.

Corollary 2.3. Assume
inf
[0,𝛾]

𝛿(𝑓, 𝛼) > 2 sup
[0,𝛾]

√
Δ(Dg, 𝛼). (2.14)

Then either J = ∅ or J ∩ (0,∞) ≠ ∅.

2.1 The proofs
In the proof of Theorem 2.1, we will reduce the existence of a wavefront to Equation (1.1) satisfying (1.2) to the
investigation of a solution z to the following singular first-order problem in the interval [0, 1]:

⎧⎪⎨⎪⎩
.z(𝜑) =

.
𝑓 (𝜑) − c − D(𝜑)g(𝜑)

z(𝜑)
in (0, 𝛼) ∪ (𝛼, 𝛽) ∪ (𝛽, 1),

z < 0 in (0, 𝛼) ∪ (𝛽, 1),
z > 0 in (𝛼, 𝛽),
z(0) = z(𝛼) = z(𝛽) = z(1) = 0.

(2.15)
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6 BERTI ET AL.

By a solution to (2.15), we mean a function z(𝜑) that is continuous on [0, 1] and satisfies Equation (2.15)1 in integral form,
that is,

z(𝜑) = 𝑓 (𝜑) − c𝜑 − ∫
𝜑

0

D(𝜎)g(𝜎)
z(𝜎)

d𝜎, 𝜑 ∈ [0, 1].

Notice that we exploited here the assumption 𝑓 (0) = 0. It is clear that such a z belongs to C1 ((0, 1) ⧵ {𝛼, 𝛽}). To solve
problem (2.15), we divide it into four subproblems, which correspond to the subintervals [0, 𝛼], [𝛼, 𝛾], [𝛾, 𝛽], and [𝛽, 1] of
the interval [0, 1]. In order to have a unified treatment of any of these problems, we now collect results from [18, Lemma
4.1, Corollary 4.1, Remark 4.1] for the problem{ .z(𝜑) = h(𝜑) − c − Q(𝜑)

z(𝜑)
, 𝜑 ∈ (𝜎1, 𝜎2),

z(𝜑) < 0, 𝜑 ∈ (𝜎1, 𝜎2).
(2.16)

Lemma 2.1. Let h and Q be continuous functions on [𝜎1, 𝜎2], with Q > 0 in (𝜎1, 𝜎2) and Q(𝜎1) = Q(𝜎2) = 0. Then
we have:

(a) For any c ∈ R, there exists a unique 𝜁c ∈ C0[𝜎1, 𝜎2] ∩ C1 (𝜎1, 𝜎2) satisfying (2.16) and 𝜁c(𝜎2) = 0.
(b) Denote c∗(𝜎1, 𝜎2) ∶= sup {c ∈ R ∶ 𝜁c(𝜎1) < 0} ∈ (−∞,∞]. If c∗(𝜎1, 𝜎2) < ∞, then for every c > c∗(𝜎1, 𝜎2), there

exists 𝛽(c) ∈ (−∞, 0) such that there is a unique zc,s ∈ C0[𝜎1, 𝜎2] ∩ C1 (𝜎1, 𝜎2] satisfying (2.16), zc,s(𝜎1) = 0,
zc,s(𝜎2) = s < 0, if and only if s ≥ 𝛽(c). Moreover, we have

max

{
sup
(𝜎1,𝜎2]

𝛿 (𝑓, 𝜎1) , h(𝜎1) + 2
√

.
Q(𝜎1)

}
≤ c∗(𝜎1, 𝜎2) ≤ sup

(𝜎1,𝜎2]
𝛿 (𝑓, 𝜎1) + 2 sup

(𝜎1,𝜎2]

√
Δ(Q, 𝜎1), (2.17)

where 𝑓 (𝜑) ∶= ∫ 𝜑

0 h(𝜎)d𝜎, 𝜑 ∈ [0, 1].
(c) If

.
Q(0) exists, then c∗(𝜎1, 𝜎2) is finite.

Conditions (2.17) also exploit estimates on the threshold speeds recently proposed in [19]. With the help of Lemma 2.1,
in the proof of the following proposition we analyze the subproblems we mentioned above.

Proposition 2.1. Problem (2.15) is solvable if c1 < c0, and it is not solvable if c1 > c0; in the former case, we have
c ∈ [c1, c0].

Estimates for the thresholds c∗0,𝛼 , c∗𝛼,𝛾 , c∗
𝛾,𝛽

, and c∗
𝛽,1 are provided by (2.21), (2.24), (2.26), and (2.28), respectively.

Proof. The proof analyzes the restriction of problem (2.15) to the four above intervals.
Case [0, 𝛼]. For 𝜑 ∈ [0, 𝛼], we define

h1(𝜑) =∶ −
.
𝑓 (−𝜑 + 𝛼), D1(𝜑) =∶ D(−𝜑 + 𝛼), g1(𝜑) =∶ −g(−𝜑 + 𝛼).

We also define w(𝜑) ∶= z(−𝜑 + 𝛼) and c̃1 ∶= −c. Then, when restricted to the interval [0, 𝛼], problem (2.15) is
equivalent to { .w = h1 − c̃1 − D1g1∕w in (0, 𝛼),

w < 0 in (0, 𝛼),
w(0) = w(𝛼) = 0.

(2.18)

Lemma 2.1 applies with 𝜎1 = 0, 𝜎2 = 𝛼 and Q = D1g1: since Q is differentiable in 0, then Lemma 2.1 provides a
threshold c̃∗0,𝛼 such that (2.18) is solvable iff c̃1 ≥ c̃∗0,𝛼 , that is, c ≤ −c̃∗0,𝛼 =∶ c∗0,𝛼 . By (2.17), we obtain

max
{
sup
(0,𝛼]

𝛿(𝑓1, 0), h1(0) + 2
√

.
D1(0)g1(0)

}
≤ c̃∗0,𝛼 ≤ sup

(0,𝛼]
𝛿(𝑓1, 0) + 2 sup

(0,𝛼]

√
Δ(D1g1, 0), (2.19)

with
𝑓1(𝜑) = ∫

𝜑

0
h1(𝜎)d𝜎 = ∫

𝜑

0
−

.
𝑓 (−𝜎 + 𝛼)d𝜎 = −∫

𝛼

𝛼−𝜑

.
𝑓 (s)ds = 𝑓 (𝛼 − 𝜑) − 𝑓 (𝛼),

whence
sup

s∈(0,𝛼]
𝛿(𝑓1, 0)(s) = sup

s∈(0,𝛼]

𝑓1(s)
s

= sup
s∈[0,𝛼)

𝑓 (s) − 𝑓 (𝛼)
𝛼 − s

.
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BERTI ET AL. 7

Moreover, we have

∫
s

0

D1(𝜑)g1(𝜑)
𝜑

d𝜑 = ∫
s

0
−

D(−𝜑 + 𝛼)g(−𝜑 + 𝛼)
𝜑

d𝜑 = ∫
𝛼

𝛼−s
−

D(𝜎)g(𝜎)
𝛼 − 𝜎

d𝜎.

Then formula (2.19) can be written as

max
{
sup
[0,𝛼)

[−𝛿(𝑓, 𝛼)] ,−
.
𝑓 (𝛼) + 2

√
.

D(𝛼)g(𝛼)
}

≤ c̃∗0,𝛼 ≤ sup
[0,𝛼)

[−𝛿(𝑓, 𝛼)] + 2 sup
[0,𝛼)

√
Δ(Dg, 𝛼). (2.20)

Hence,

inf
[0,𝛼)

𝛿(𝑓, 𝛼) − 2 sup
[0,𝛼)

√
Δ(Dg, 𝛼) ≤ c∗0,𝛼 ≤ min

{
inf
[0,𝛼)

𝛿(𝑓, 𝛼),
.
𝑓 (𝛼) − 2

√
.

D(𝛼)g(𝛼)
}
. (2.21)

Case [𝛼, 𝛾]. We denote
h2(𝜑) ∶= −

.
𝑓 (𝜑), D2(𝜑) ∶= −D(𝜑), g2(𝜑) =∶ −g(𝜑).

We also define w(𝜑) ∶= −z(𝜑) and c2 ∶= −c. Then problem (2.15), when restricted to the interval [𝛼, 𝛾], becomes{ .w = h2 − c2 − D2g2∕w in (𝛼, 𝛾),
w < 0 in (𝛼, 𝛾],
w(𝛼) = 0.

(2.22)

By Lemma 2.1, we deduce the existence of a threshold c̃∗𝛼,𝛾 such that (2.22) is solvable iff c2 ≥ c̃∗𝛼,𝛾 , that is, c ≤ −c̃∗𝛼,𝛾 =∶
c∗𝛼,𝛾 . Moreover, by (2.17), we deduce

max
{
sup
(𝛼,𝛾]

𝛿(𝑓2, 𝛼), h2(𝛼) + 2
√

.
D2(𝛼)g2(𝛼)

}
≤ c̃∗𝛼,𝛾 ≤ sup

(𝛼,𝛾]
𝛿(𝑓2, 𝛼) + 2 sup

(𝛼,𝛾]

√
Δ(D2g2, 𝛼),

where
𝑓2(𝜑) ∶= ∫

𝜑

𝛼

h2(𝜎)d𝜎 = −𝑓 (𝜑) + 𝑓 (𝛼), 𝜑 ∈ [𝛼, 𝛾].

Whence, by returning to the variables h,D, g, we find

max
{
sup
(𝛼,𝛾]

{−𝛿(𝑓, 𝛼)} ,−
.
𝑓 (𝛼) + 2

√
.

D(𝛼)g(𝛼)
}

≤ c̃∗𝛼,𝛾 ≤ sup
(𝛼,𝛾]

{−𝛿(𝑓, 𝛼)} + 2 sup
(𝛼,𝛾]

√
Δ(Dg, 𝛼). (2.23)

Hence,

inf
(𝛼,𝛾]

𝛿(𝑓, 𝛼) − 2 sup
(𝛼,𝛾]

√
Δ(Dg, 𝛼) ≤ c∗𝛼,𝛾 ≤ min

{
inf
(𝛼,𝛾]

𝛿(𝑓, 𝛼),
.
𝑓 (𝛼) − 2

√
.

D(𝛼)g(𝛼)
}
. (2.24)

Case [𝛾, 𝛽]. For 𝜑 ∈ [𝛾, 𝛽], we define

h3(𝜑) ∶=
.
𝑓 (−𝜑 + 𝛾 + 𝛽), D3(𝜑) =∶ −D(−𝜑 + 𝛾 + 𝛽), g3(𝜑) =∶ g(−𝜑 + 𝛾 + 𝛽).

We also denote w(𝜑) ∶= −z(−𝜑 + 𝛾 + 𝛽). Then in the interval [𝛾, 𝛽], problem (2.15) can be written as{ .w = h3 − c − D3g3∕w in (𝛾, 𝛽),
w < 0 in [𝛾, 𝛽),
w(𝛽) = 0.

(2.25)

By Lemma 2.1, problem (2.25) is solvable iff c ≥ c∗
𝛾,𝛽

, for some threshold c∗
𝛾,𝛽

. Upper and lower estimates for c∗
𝛾,𝛽

can
be obtained, as in the previous cases, by applying (2.17). In conclusion, we find the estimates

max
{
sup
[𝛾,𝛽)

𝛿(𝑓, 𝛽),
.
𝑓 (𝛽) + 2

√
.

D(𝛽)g(𝛽)
}

≤ c∗
𝛾,𝛽

≤ sup
[𝛾,𝛽)

𝛿(𝑓, 𝛽) + 2 sup
[𝛾,𝛽)

√
Δ(Dg, 𝛽). (2.26)
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8 BERTI ET AL.

Case [𝛽, 1]. In this case, we directly apply Lemma 2.1: the problem{ .z =
.
𝑓 − c − Dg∕z in (𝛽, 1),

z < 0 in (𝛽, 1),
z(𝛽) = z(1) = 0,

(2.27)

is solvable iff c ≥ c∗
𝛽,1, for some c∗

𝛽,1. Again, estimates for c∗
𝛽,1 are deduced by (2.17):

max
{
sup
(𝛽,1]

𝛿(𝑓, 𝛽),
.
𝑓 (𝛽) + 2

√
.

D(𝛽)g(𝛽)
}

≤ c∗
𝛽,1 ≤ sup

(𝛽,1]
𝛿(𝑓, 𝛽) + 2 sup

(𝛽,1]

√
Δ(Dg, 𝛽). (2.28)

This concludes the analysis of the restrictions of problem (2.15) to the four above intervals. Condition c1 ≤ c0 is the
requirement that there is a common admissible speed c for the above subproblems. In this case, c ∈ [c1, c0]. □

Remark 2.2. Since D and g vanish in the interior of none of the above subintervals, one finds 𝜑′ < 0 if 𝜑 ∈ (0, 1) ⧵
{𝛼, 𝛾, 𝛽} (see [18, Proposition 3.1(ii)]). Moreover, by [20, Theorem 2.9 (i)], we deduce that the profile never reaches the
value 1 for a finite value of 𝜉; the same result holds for the value 0, by exploiting again [20, Theorem 2.9 (i)] after the
change of variables that led to (2.18). At last, we have 𝜑′(𝛾) < 0 by the second part of the proof of Proposition 3.1(ii)
in [18]. As a consequence, the profile 𝜑 is strictly monotone.

Proof of Theorem 2.1. The proof follows an argument based on the reduction of (1.1)–(1.2) to (2.15); see [18].
First, assume c1 < c0. We argue separately in the four subintervals where Dg ≠ 0 and then we put together what

we found. Thus, let z be the solution of (2.15) associated to some c ∈ [c1, c0]. Define 𝜑1,𝛽 , 𝜑𝛽,𝛾 , 𝜑𝛾,𝛼 , and 𝜑𝛼,0 as the
solutions of

𝜑′ = z(𝜑)
D(𝜑)

, (2.29)

with the initial data (respectively)

𝜑1,𝛽(0) =
1 + 𝛽

2
, 𝜑𝛽,𝛾 =

𝛽 + 𝛾
2

, 𝜑𝛾,𝛼(0) =
𝛾 + 𝛼

2
, 𝜑𝛼,0(0) =

𝛼

2
.

Since the right-hand side of (2.29) is locally of class C1, then 𝜑1,𝛽 , 𝜑𝛽,𝛾 , 𝜑𝛾,𝛼 , and 𝜑𝛼,0 exist and are unique in their
respective maximal existence intervals.

We focus on the pasting of 𝜑1,𝛽 , 𝜑𝛽,𝛾 at 𝛽. Let 𝜑1,𝛽 , 𝜑𝛽,𝛾 be maximally defined in (𝜉1, 𝜉
1
𝛽
) ⊂ R, (𝜉2

𝛽
, 𝜉1
𝛾 ) ⊂ R, with

−∞ ≤ 𝜉1 < 0 < 𝜉1
𝛽
≤ ∞,−∞ ≤ 𝜉2

𝛽
< 0 < 𝜉1

𝛾 ≤ ∞,

and satisfying
lim
𝜉→𝜉+1

𝜑1,𝛽(𝜉) = 1, lim
𝜉→{𝜉1

𝛽
}−
𝜑1,𝛽(𝜉) = 𝛽, and lim

𝜉→
{
𝜉2
𝛽

}+
𝜑𝛽,𝛾 (𝜉) = 𝛽 lim

𝜉→{𝜉1
𝛾
}−
𝜑𝛽,𝛾 (𝜉) = 𝛾.

In order to glue together 𝜑1,𝛽 and 𝜑𝛽,𝛾 (after space shifts), we need to prove 𝜉1
𝛽
∈ R and 𝜉2

𝛽
∈ R. We have

lim
𝜉→

{
𝜉2
𝛽

}+
𝜑′
𝛽,𝛾
(𝜉) = lim

𝜉→
{
𝜉2
𝛽

}+

z
(
𝜑𝛽,𝛾 (𝜉)

)
D
(
𝜑𝛽,𝛾 (𝜉)

) = lim
s→𝛽−

z(s)
D(s)

= lim
t→𝛾+

w(t)
D3(t)

,

with w and D3 as in (2.25). The last limit is essentially discussed in the proof of [20, Theorem 2.5]; the only difference
is that the interval [0, 1] appearing there is now replaced by [𝛾, 𝛽]. Reasoning as there we obtain that

lim
t→𝛾+

w(t)
D3(t)

∈ [−∞, 0);

hence, 𝜉2
𝛽

is a real value. With a similar reasoning, this time directly applied to z(𝜑1,𝛽) and D(𝜑1,𝛽), we can prove that
also 𝜉2

𝛽
is a real value.
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BERTI ET AL. 9

The remaining pastings are exactly proved as in the proof of [18, Proposition 3.2], and we refer the reader to that
paper for details. To this aim, in particular, we need that z(𝛾) > 0, which is satisfied when c1 < c0 by Proposition 2.1.
The proof of the first statement is complete.

We now prove the second statement. Suppose that (1.1)–(1.2) admits a profile 𝜑 associated to some speed c ∈ R.
In particular, 𝜑 is decreasing and hence it can be decomposed into subprofiles 𝜑1,𝛽 , 𝜑𝛽,𝛾 , 𝜑𝛾,𝛼 , and 𝜑0,𝛽 connecting,
respectively, 𝛽 to 1, 𝛾 to 𝛽, and so on. By Remark 2.2, we have𝜑′ < 0 if𝜑 ∈ (0, 1)⧵{𝛼, 𝛾, 𝛽}. Therefore,𝜑1,𝛽 is invertible
for 𝜑1,𝛽 ∈ (𝛽, 1), 𝜑𝛽,𝛾 is invertible for 𝜑𝛽,𝛾 ∈ (𝛾, 𝛽), and so on. Let 𝜁 = 𝜁 (𝜑) ∶ (𝛽, 1) → R be the inverse function of 𝜑1,𝛽 ,
and set

z(𝜑) ∶= D(𝜑)𝜑′
1,𝛽 (𝜁 (𝜑)) , for 𝜑 ∈ (𝛽, 1).

By direct computations, the function z solves (2.15)1 in (𝛽, 1) (where z ∈ C1) and, by adapting [18, Lemma 3.1], it
can be extended to a function of class C0[𝛽, 1], still called z. Also, as in [18, Lemma 3.1], we have z(1) = 0. Arguing
similarly in the other sub-intervals, one finds that z ∈ C0[0, 1] is in C1 in (0, 𝛼) ∪ (𝛼, 𝛽) ∪ (𝛽, 1) and it satisfies (2.15).
For more details we refer to the similar case presented in the proof of [18, Proposition 3.1 (ii)], which applies because
g satisfies [18, (2.2)]. According to Proposition 2.1 we obtain c1 ≤ c0 and then also the second statement is proved.

Remark 2.3. We now provide a simple argument showing why wavefronts should exist for suitable concave 𝑓 , in the
case the drift

.
𝑓 is first positive and then negative. For 𝜆 > 0, let 𝑓 be defined by 𝜆u in (0, 𝛾) and −𝜆(u − 2𝛾) in (𝛾, 1),

so that 𝑓 is Lipschitz continuous with
.
𝑓 = 𝜆 in (0, 𝛾) and

.
𝑓 = −𝜆 in (𝛾, 1). In this case, the role of 𝜆 is to shift to the

right (of magnitude +𝜆) the estimates for c0, as (2.21) and (2.24) show, and to shift to the left (of −𝜆) the estimates for
c1 (see (2.26) and (2.28)). Hence, (2.2) holds true for 𝜆 large enough.

We denote by s0,𝛼 , s𝛼,𝛾 , s𝛾,𝛽 , and s𝛽,1 the lower bounds in (2.21), (2.24), (2.26), and (2.28), respectively, and with Σ0,𝛼 , Σ𝛼,𝛾 ,
Σ𝛾,𝛽 , and Σ𝛽,1 the corresponding upper bounds. In other words, we rewrite (2.21), (2.24), (2.26), and (2.28) as

s0,𝛼 ≤ c∗0,𝛼 ≤ Σ0,𝛼, s𝛼,𝛾 ≤ c∗𝛼,𝛾 ≤ Σ𝛼,𝛾 , s𝛾,𝛽 ≤ c∗
𝛾,𝛽

≤ Σ𝛾,𝛽 , s𝛽,1 ≤ c∗
𝛽,1 ≤ Σ𝛽,1. (2.30)

Define moreover

s0,𝛾 ∶= inf
[0,𝛾]

𝛿(𝑓, 𝛼) − 2 sup
[0,𝛾]

√
Δ(Dg, 𝛼) and Σ𝛾,1 ∶= sup

[𝛾,1]
𝛿(𝑓, 𝛽) + 2 sup

[𝛾,1]

√
Δ(Dg, 𝛽).

Here above, the arguments of the inf and of the sup's are apparently not defined at 𝛼 and 𝛽, respectively; however, as we
wrote below (2.3) and (2.4), since 𝑓,D, g ∈ C1, in those cases we understand them as −

.
𝑓 (𝛼),

.
D(𝛼)g(𝛼),

.
𝑓 (𝛽), and

.
D(𝛽)g(𝛽),

respectively. Under this notation, we immediately deduce the following result.

Lemma 2.2. If Σ𝛾,1 < s0,𝛾 , then condition (2.2) is satisfied.

Proof. According to the right-hand sides of the estimates (2.26) and (2.28), we have c1 ≤ max{Σ𝛾,𝛽 , Σ𝛽,1} ≤ Σ𝛾,1. By
the assumption Σ𝛾,1 < s0,𝛾 , we obtain

c1 ≤ Σ𝛾,1 < s0,𝛾 ≤ min{s0,𝛼, s𝛼,𝛾}.

Because of (2.21) and (2.24), we deduce c1 < min{s0,𝛼, s𝛼,𝛾} ≤ min{c∗0,𝛼, c
∗
𝛼,𝛾} = c0. □

Proof of Corollary 2.1. If a wavefront exists, then necessarily c1 ≤ c0 because of Theorem 2.1. Then, by (2.1) and (2.30),
it follows

max
{
sup
[𝛾,1]

𝛿(𝑓, 𝛽),
.
𝑓 (𝛽) + 2

√
.

D(𝛽)g(𝛽)
}

=

max{s𝛾,𝛽 , s𝛽,1} ≤ c1 ≤ c0 ≤ min{Σ0,𝛼, Σ𝛼,𝛾} =

min
{
inf
[0,𝛾]

𝛿(𝑓, 𝛼),
.
𝑓 (𝛼) − 2

√
.

D(𝛼)g(𝛼)
}
,

(2.31)

which is (2.6).

Proof of Corollary 2.2. First, notice that (2.11) is exactly Σ𝛾,1 < s0,𝛾 after trivial manipulations. As a consequence,
Theorem 2.1 and Lemma 2.2. imply the existence of wavefronts.
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10 BERTI ET AL.

To obtain (2.12), we impose max{s𝛾,𝛽 , s𝛽,1} > 0 in (2.31), which in turn implies that c1 > 0; notice that the left-hand
side in (2.31) is precisely the left-hand side of (2.12). Analogously, to obtain (2.13), we impose min{Σ0,𝛼, Σ𝛼,𝛾} < 0.
This implies c0 < 0.
Proof of Corollary 2.3. Assume that J ≠ ∅; then, according to Theorem 2.1, we have J ∩ (0,∞) ≠ ∅ if and only if
c0 > 0. By (2.21) and (2.24), we have

c0 = min{c∗0,𝛼, c
∗
𝛼,𝛾}

≥ min
{
inf
[0,𝛼)

𝛿(𝑓, 𝛼) − 2 sup
[0,𝛼)

√
Δ(Dg, 𝛼), inf

(𝛼,𝛾]
𝛿(𝑓, 𝛼) − 2 sup

(𝛼,𝛾]

√
Δ(Dg, 𝛼)

}
≥ inf

[0,𝛾]
𝛿(𝑓, 𝛼) − 2 sup

[0,𝛾]

√
Δ(Dg, 𝛼) = s0,𝛾 .

If condition (2.14) is satisfied, then c0 > 0.

3 A BIOLOGICAL MODEL WITH BIASED MOVEMENTS

In this section, we first summarize a model for the movement of organisms recently presented in [1] for populations
constituted by two groups of individuals. Then we show how a convective term can appear in the equation because of a
biased movement.

The population is divided into isolated and grouped organisms. Both groups can move, reproduce and die, with possibly
different rates. The organisms occupy the sites 𝑗l, for 𝑗 = 0,±1,±2, … and l > 0; we denote by c𝑗 the probability of
occupancy of the 𝑗-th site. Let Pi

m and Pg
m be the movement transitional probabilities for isolated and grouped individuals,

respectively; we use the notation Pi,g
m to indicate the two sets of parameters together. Analogously, the corresponding

probabilities for birth and death are Pi,g
b and Pi,g

d .
Differently from [1], we also introduce the parameters ai, bi ≥ 0 and ag, bg ≥ 0, which characterize a (linearly) biased

movement for the isolated and grouped individuals (see Figure 3). For the isolated individuals the bias is toward the left
if ai − bi > 0 and toward the right if ai − bi < 0; for the grouped individuals, the same occurs when either ag − bg > 0 or
ag − bg < 0, respectively. In the case of [1], one has ai = bi = ag = bg = 1 and then ai,g − bi,g = 0.

Then, the variation 𝛿c𝑗 of c𝑗 during a time-step 𝜏 > 0 is given by

𝛿c𝑗 =
Pi

m

2
[
aic𝑗−1(1 − c𝑗)(1 − c𝑗−2) + bic𝑗+1(1 − c𝑗)(1 − c𝑗+2) −(ai + bi)c𝑗(1 − c𝑗−1)(1 − c𝑗+1)

]
+

Pg
m

2
[
agc𝑗−1(1 − c𝑗) + bgc𝑗+1(1 − c𝑗) − agc𝑗(1 − c𝑗+1) − bgc𝑗(1 − c𝑗−1)

]
−

Pg
m

2
[
agc𝑗−1(1 − c𝑗)(1 − c𝑗−2) + bgc𝑗+1(1 − c𝑗)(1 − c𝑗+2)

− (ag + bg)c𝑗(1 − c𝑗−1)(1 − c𝑗+1)
]
+ reaction terms, (3.1)

where

reaction terms =
Pi

b

2
[
c𝑗−1(1 − c𝑗)(1 − c𝑗−2) + c𝑗+1(1 − c𝑗)(1 − c𝑗+2)

]
+

Pg
b

2
[
c𝑗−1(1 − c𝑗) + c𝑗+1(1 − c𝑗)

]
−

Pg
b

2
[
c𝑗−1(1 − c𝑗)(1 − c𝑗−2) + c𝑗+1(1 − c𝑗)(1 − c𝑗+2)

]
−

Pi
d

2
[
c𝑗(1 − c𝑗−1)(1 − c𝑗+1)

]
−

Pg
d

2
[
c𝑗
]
+

Pi
d

2
[
c𝑗(1 − c𝑗−1)(1 − c𝑗+1)

]
.

FIGURE 3 Sketch of the meaning of the parameters ai,g and bi,g.
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BERTI ET AL. 11

By noticing that every bracket is divided by 2, we deduce

ai + bi = ag + bg = 2, (3.2)

since in the deduction of (3.1) a bias ai,g implies a converse bias bi,g = 2 − ai,g.
The continuum model is obtained by replacing c𝑗 with a smooth function c = c(x, t) and expanding c around x = 𝑗l at

second order. Then, we divide (3.1) by 𝜏 and pass to the limit for l, 𝜏 → 0 while keeping l2∕𝜏 constant; for simplicity, we
assume l2∕𝜏 = 1. To perform this step, one makes the following assumptions on the reactive–diffusive terms [1]:

Pi,g
m l2

2𝜏
∼ Di,g,

Pi,g
b

2𝜏
∼ 𝜆i,g,

Pi,g
d

2𝜏
∼ ki,g, Pi,g

b ,P
i,g
d = O(𝜏), for l → 0, 𝜏 → 0. (3.3)

The above limits define the diffusivity parameters Di,g, the birth rates 𝜆i,g, and the death rates ki,g; all these parameters are
non-negative. About the convection terms, we require

ai,g(𝜏) ∼ 1, bi,g(𝜏) ∼ 1 and ai,g(𝜏) − bi,g(𝜏) ∼ Ci,g
√
𝜏 for 𝜏 → 0, (3.4)

for some Ci,g ∈ R. We stress that the parameters Ci,g can be either positive or negative according to the values of the bias
coefficients ai,g and bi,g; in particular, if Ci > 0, then we have a bias toward the left of the isolated individuals, and toward
the right if Ci < 0; the analogous bias for the grouped individuals corresponds to either Cg > 0 (left) or Cg < 0 (right). If
Ci,g = 0, then the corresponding bias is too weak to pass to Equation (3.5); with a slight abuse of terminology, we say that
the corresponding group has no convective movement. At last, assumption (3.4)1 is compatible with (3.2); assumption
(3.4)2 is analogous to (3.3)4.

In conclusion, we obtain the equation
ut + 𝑓 (u)x = (D(u)ux)x + g(u), (3.5)

with
𝑓 (u) = −

(
CiDi + CgDg

)
u(1 − u)2 − CgDgu(1 − u), (3.6)

D(u) = Di
(
1 − 4u + 3u2) + Dg

(
4u − 3u2) , (3.7)

g(u) = 𝜆gu(1 − u) +
[
𝜆i − 𝜆g −

(
ki − kg

)]
u(1 − u)2 − kgu. (3.8)

The model (3.5) depends on the eight parameters Ci,g, Di,g, ki,g, and 𝜆i,g. Equation (3.5) coincides with (1.1), but we agree
that when we refer to (3.5) we understand 𝑓 , D, and g as in (3.6)–(3.8). We point out that 𝑓 (0) = 𝑓 (1) = 0; that is,
the convective flow vanishes when the density is either zero or maximum, as physically it should be. When Ci = 0, the
isolated individuals have no convective movement and the function 𝑓 is convex in [0, 1] if Cg > 0 and concave otherwise.
Instead, when Cg = 0, the grouped individuals have no convective movements and 𝑓 changes its concavity for u = 2∕3.
The diffusion and reaction terms (3.7)–(3.8) coincide with those in [1, (2)], while 𝑓 is missing there.

4 PRELIMINARY RESULTS ON THE MODEL

About the model introduced in Section 3, the case we are interested in is when conditions (D) and (g) are satisfied; the
corresponding assumptions on the parameters have already been given in [1, 10].

Lemma 4.1. The diffusivity D in (3.7) satisfies (D) if and only if Di > 4Dg > 0. In this case, we have

𝛼 = 2
3
− 𝜔

3
and 𝛽 = 2

3
+ 𝜔

3
, for 𝜔 ∶=

√
Di − 4Dg

Di − Dg
. (4.1)

The reaction term g in (3.8) satisfies (g) if and only if kg = 0, 𝜆g > 0 and ri ∶= ki − 𝜆i > 0. In this case,

𝛾 = ri

ri + 𝜆g
, (4.2)
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12 BERTI ET AL.

and 𝛾 ∈ (𝛼, 𝛽) if and only if
1 − 𝜔
2 + 𝜔

<
𝜆g

ri
<

1 + 𝜔
2 − 𝜔

.

Proof. The function D in (3.7) is a parabola with D(0) = Di and D(1) = Dg. We have
.

D(u) = −(Di −Dg)(4− 6u), which
vanishes iff u = 2

3
, and D

(
2
3

)
= 1

3
(−Di + 4Dg). Then D is positive–negative–positive if and only if Di > 4Dg; the case

Dg = 0 is excluded because then D changes sign only once in (0, 1). Then the two zeros 𝛼 and 𝛽 of D satisfy (4.1)1,2.
Moreover, g(0) = 0 and g(1) = 0 if and only if kg = 0; under this assumption, g also vanishes at 𝛾 defined in (4.2).
Hence g satisfies condition (g) if and only if kg = 0, 𝜆g > 0 and ri > 0. The condition 𝛾 ∈ (𝛼, 𝛽) is then equivalent to
the last condition in the statement. □

Notice that 𝜔 ∈ (0, 1), 𝛽 − 𝛼 = 2𝜔∕3 and 𝛼 + 𝛽 = 4∕3. The condition kg = 0 clearly has no biological sense, and is
interpreted in the sense that the life expectancy of grouped individuals is much larger than that of isolated individuals;
the condition ri > 0 means that the death rate of isolated individuals is larger than their birth rate. All in all, the scenario
favors much more grouped than isolated individuals. We point out that this case was already considered in [1, 10]. Above,
𝛾 is the Allee parameter [1, 10].

In the following proofs, we often make use of the notation

p ∶= CiDi + CgDg and q ∶= CgDg. (4.3)

We now rewrite formulas (3.6)–(3.8) by exploiting (4.1), (4.2), and (4.3):

𝑓 (u) = −pu(1 − u)2 − qu(1 − u), (4.4)

D(u) = 3(Di − Dg)(u − 𝛼)(u − 𝛽), (4.5)

g(u) = (ri + 𝜆g) · u(1 − u)(u − 𝛾). (4.6)

Remark 4.1. We point out that
.
𝑓 (0) = −(p + q) and

.
𝑓 (1) = q; these quantities can be understood as the drift at very

low and maximum concentrations, respectively.

Remark 4.2. The movement velocity v = v(u) is defined by 𝑓 (u) =∶ uv(u). Then v(u) = −pu2 + (2p + q)u − (p + q) =
(1 − u) (pu − (p + q)), and then v vanishes at the maximum density 1; it can also possibly vanish at u0 = p+q

p
(i.e., if

u0 ∈ [0, 1)). This is analogous to similar models in collective movements [21, §3.1].
Assuming q < 0 (see Proposition 4.1), it is easy to see that only the following cases may occur (for simplicity we do

not include the case p + q = 0, when u0 = 0, or p = 0, when u0 is missing, for which slightly different results hold):

1. q < 0 < p + q. Then v is concave, it is first negative, then positive; 𝑓 is convex-concave.
2. p + q < 0 < p. Then v is positive and concave; 𝑓 is concave or convex-concave.
3. p < 0, q < 0. Then v is positive and convex; 𝑓 is concave or concave-convex.

Under this notation, for 𝜑,𝜑0 ∈ (0, 1) we have (see (2.3))

𝛿(𝑓, 𝜑)(𝜑0) = −(p + q) + (2p + q)(𝜑 + 𝜑0) − p
(
𝜑2 + 𝜑𝜑0 + 𝜑2

0
)
. (4.7)

Here follows a simple necessary condition for the existence of wavefronts.

Proposition 4.1. If (3.5) admits wavefronts satisfying condition (1.2), then Cg < 0.

Proof. We apply condition (2.7). Since
.
𝑓 (u) = −p(3u2 − 4u + 1) + q(2u − 1), then (2.7) applies if −p(3𝛼2 − 4𝛼 + 1) +

q(2𝛼 − 1) > −p(3𝛽2 − 4𝛽 + 1) + q(2𝛽 − 1), that is,

−p
(
3(𝛼2 − 𝛽2) − 4(𝛼 − 𝛽)

)
+ 2q(𝛼 − 𝛽) > 0. (4.8)
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BERTI ET AL. 13

By (4.1), we obtain that (4.8) is equivalent to 2q(𝛼 − 𝛽) = − 4q
3
𝜔 > 0, that is, q < 0. Hence, we deduce Cg < 0 since

Dg > 0 by Lemma 4.1. □

Notice that the assumption Cg < 0 becomes q < 0 under the notation in (4.3). It is easy to see that a necessary condition
to have wavefronts satisfying conditions 𝜑(−∞) = 0 and 𝜑(∞) = 1, instead of (1.2), is Cg > 0.

We now summarize the restrictions required on the parameters:

Cg < 0, Di > 4Dg > 0, (4.9)

ri ∶= ki − 𝜆i > 0, kg = 0, 𝜆g > 0, (4.10)

1 − 𝜔
2 + 𝜔

<
𝜆g

ri
<

1 + 𝜔
2 − 𝜔

, (4.11)

with 𝜔 defined in (4.1). We always assume conditions (4.9)–(4.11) in the following, without any further mention.
The results below are preferably stated by referring to the following dimensionless quotients and by lumping the

parameters referring to the grouped population into a single dimensionless parameter as follows:

s ∶= Ci|Cg| , d ∶= Di

Dg
> 4, 𝜇 ∶= ri

𝜆g
= ki − 𝜆i

𝜆g
, Eg ∶= |Cg|√Dg

𝜆g
. (4.12)

Under this notation, we have

𝜔 =
√

d − 4
d − 1

. (4.13)

Notice that Eg gathers the parameters concerning convection, diffusion and reaction of the grouped individuals; the
parameter 𝜇 is the ratio between the net increasing rate of the isolated and grouped individuals. Notice that condi-
tion (4.11) is equivalent to

2 − 𝜔
1 + 𝜔

< 𝜇 <
2 + 𝜔
1 − 𝜔

. (4.14)

A sufficient condition for the existence of wavefronts to Equation (3.5) is (2.11). The following result provides an upper
estimate of the right-hand side of (2.11).

Lemma 4.2. We have

2 sup
[0,𝛾]

√
Δ(Dg, 𝛼) + 2 sup

[𝛾,1]

√
Δ(Dg, 𝛽) ≤

√
Dg

𝜆g

√
d − 1

(√
𝜇(2 + 𝜔) +

√
1 + 𝜔

)
.

Proof. By (4.5), we have D(𝜑)g(𝜑)= 3(Di −Dg)(ri + 𝜆g)𝜑(𝜑− 𝛼)(𝜑− 𝛾)(𝜑− 𝛽)(1−𝜑). Then, for 𝜑 ∈ [0, 𝛾], we obtain

D(𝜑)g(𝜑)
𝜑 − 𝛼

≤ 3
4
(Di − Dg)(ri + 𝜆g)(𝜑 − 𝛾)(𝜑 − 𝛽) ≤ 3

4
(Di − Dg)(ri + 𝜆g)𝛾𝛽

= 1
4

ri(Di − Dg)(2 + 𝜔). (4.15)

By (2.5) and (4.15), we deduce
2 sup
[0,𝛾]

√
Δ(Dg, 𝛼) ≤ √

Dg
√

ri(d − 1)(2 + 𝜔). (4.16)

With a similar reasoning, we have that

2 sup
[𝛾,1]

√
Δ(Dg, 𝛽) ≤ √

Dg

√
𝜆g(d − 1)(1 + 𝜔), (4.17)
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14 BERTI ET AL.

since we have (𝜑 − 𝛾)(𝜑 − 𝛼) ≤ (1 − 𝛾)(1 − 𝛼), for 𝜑 ∈ [𝛾, 1], because (ri + 𝜆g)(1 − 𝛾) = 𝜆g. We complete the proof by
combining (4.16) and (4.17). □

The convective term 𝑓 can change convexity at most once; then, it can be either concave or convex, or else
convex–concave or concave–convex. In the following sections, we examine each of these cases; in all of them, we empha-
size that s is always multiplied by d. Since the parameter s does not depend on d, we can understand sd as a variable
independent from d, which lumps the ratios of the coefficients related to the movement. In this way we shall often deal
with the couple (𝜔, sd) of parameters, where 𝜔 depends on d.

5 THE CONCAVE CASE AND THE CONVEX CASE

In the following sections, we investigate the presence of wavefronts to the biased model (3.5) and prove their main
qualitative properties. We make use of the results provided in Section 2 for a general reaction–diffusion–convection
process.

The following result characterizes the strict concavity of the function 𝑓 ; see Figure 4.

Lemma 5.1. The function 𝑓 in (3.6) is strictly concave if and only if

0 ≤ sd ≤ 3
2
. (5.1)

Proof. By (4.4), we compute 𝑓 (u) = −6pu + 4p + 2q; therefore, 𝑓 < 0 in (0, 1) if and only if

−3pu + 2p + q < 0, for anyu ∈ (0, 1). (5.2)

The line −3pu + 2p + q = 0 connects the points (0, 2p + q) and (1,−p + q). We remark that 2p + q = −p + q = 0 is not
possible since q < 0 by conditions (4.9)–(4.11) and (4.3). Hence, (5.2) holds if and only if{

2p + q ≤ 0,
−p + q ≤ 0. (5.3)

Conditions (5.3) hold if and only if q ≤ p ≤ −q∕2, which is equivalent to (5.1). □

Remark 5.1. From the proof of Lemma 5.1, we deduce that 𝑓 is strictly convex iff

−
CgDg

2
≤ CiDi + CgDg ≤ CgDg. (5.4)

The case when 𝑓 is convex is then quickly treated in the following theorem: The convexity of 𝑓 in [𝛼, 𝛽] prevents
the existence of wavefronts.

Theorem 5.1. If 𝑓 is convex in the interval [𝛼, 𝛽], then Equation (3.5) admits no wavefronts satisfying condition (1.2).

Proof. The function 𝑓 is strictly convex iff (5.4) is satisfied (see Remark 5.1); however, this condition does not
match with the assumption Cg < 0, which is necessary to have wavefronts to Equation (3.5) satisfying (1.2) by
Proposition 4.1.

FIGURE 4 Plots of the functions D (dashed line), g (dashdotted line), and 𝑓 (solid line) in the case 𝑓 is strictly concave.
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BERTI ET AL. 15

Indeed, the bare convexity of 𝑓 in [𝛼, 𝛽], as is required in the statement, is sufficient to hinder the existence of such
wavefronts, because the right-hand side of (2.7) is strictly positive when D and g are as in (4.5) and (4.6). □

The left-hand side of (2.11) takes a simple form when 𝑓 is strictly concave (see Remark 2.1). Below, we consider this case.

5.1 Existence of wavefronts
Theorem 5.2. If 𝑓 is strictly concave and

d − 1√
d − 4

√
𝜇(2 + 𝜔) +

√
1 + 𝜔

2𝜇 + 5 + sd(𝜇 − 2)
(𝜇 + 1) < 2

9
Eg (5.5)

holds, then Equation (3.5) admits wavefronts satisfying condition (1.2).

Proof. In order to apply (2.11), we exploit Remark 2.1. Then, by exploiting (4.7), we compute

𝛿(𝑓, 𝛼)(𝛾) − 𝛿(𝑓, 𝛽)(𝛾) = (2p + q)(𝛼 − 𝛽) − p(𝛼2 + (𝛼 − 𝛽)𝛾 − 𝛽2)
= (𝛽 − 𝛼) (p(𝛼 + 𝛽 − 2 + 𝛾) − q) ,

whence, from 𝛽 − 𝛼 = 2
3
𝜔 and 𝛼 + 𝛽 = 4

3
, we get

inf
[0,𝛾]

𝛿(𝑓, 𝛼) − sup
[𝛾,1]

𝛿(𝑓, 𝛽) = 2
3
𝜔

[
p
(
𝛾 − 2

3

)
− q

]
. (5.6)

By (4.3) and (4.2), we can write

p
(
𝛾 − 2

3

)
− q = CgDg

(
ri

ri + 𝜆g
− 5

3

)
+ CiDi

(
ri

ri + 𝜆g
− 2

3

)
= 1

3(ri + 𝜆g)
(

CgDg(−2ri − 5𝜆g) + CiDi(ri − 2𝜆g)
)
.

Therefore, when 𝑓 is strictly concave, we have

inf
[0,𝛾]

𝛿(𝑓, 𝛼) − sup
[𝛾,1]

𝛿(𝑓, 𝛽) = 2𝜔
9(ri + 𝜆g)

(
CgDg(−2ri − 5𝜆g) + CiDi(ri − 2𝜆g)

)
.

By the above formula, Lemma 4.2, and (4.13), condition (5.5) implies (2.11). □

Corollary 5.1. Under (5.1), condition (5.5) is satisfied if

√
𝜇(2 + 𝜔) + (1 + 𝜔) d − 1√

d − 4
<

4
9
√

2
Eg. (5.7)

Proof. By (5.1), we have 2𝜇 + 5 + sd(𝜇 − 2) = (2 + sd)𝜇 + (5 − 2sd) ≥ 2(𝜇 + 1); so, condition (5.5) holds if(√
𝜇(2 + 𝜔) +

√
1 + 𝜔

) d − 1√
d − 4

<
4
9

Eg.

In turn, this condition is satisfied if (5.7) holds. □

Notice that condition (5.7) can be written as

ri(2 + 𝜔) + 𝜆g(1 + 𝜔) <
8C2

g Dg

81
d − 4

(d − 1)2 . (5.8)
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16 BERTI ET AL.

FIGURE 5 On the left: the triangle Tg(d) is the intersection of three half-planes. Here, |Cg|√Dg = 6; dashed lines refer to d = 5, solid lines
to d = 8. On the right: The conditions in (4.14) prescribe that 𝜇 must lie between the red (which lies below) and the blue (above) line.
Condition (5.7) further prescribes that 𝜇 > 0 must belong to the region below the black line: the dashed curve refers to Eg = 40, the
dash-dotted curve to Eg = 60. [Colour figure can be viewed at wileyonlinelibrary.com]

Condition (5.8) contains several parameters; therefore, there are many ways of discussing the results, depending on
which parameters are set and which are held constant; in the following remark we focus on two different choices.

Remark 5.2. We consider Equation (5.8) and first focus on the parameters ri and 𝜆g. For fixed Cg,Dg, condition (5.8)
identifies the triangle (see Figure 5 on the left)

Tg(d) ∶=
{
(ri, 𝜆g) ∈ R

+ × R
+ ∶ (4.11) and (5.8) hold

}
. (5.9)

Therefore, under (5.1), if (ri, 𝜆g) ∈ Tg(d), then the assumptions of Theorem 5.2 are satisfied and Equation (3.5) admits
wavefronts satisfying (1.2).

Now, we focus instead on the parameters d and 𝜇. Notice that, assuming again (5.1), we can interpret (4.11) and (5.7)
(i.e., (5.8)) as relationships between d and 𝜇 for fixed Eg; see Figure 5 on the right and Corollary 5.1. In this framework,
profiles exist for every couple (d, 𝜇) lying in the region between the red and blue lines and below the black line.

5.2 Sign of the speed of wavefronts
We now investigate the sign of the speed of wavefronts; this issue is important in the biological framework. We find below
conditions in order that wavefronts with positive speed exist and conditions assuring that every wavefront has negative
speed.

About the case of positive speeds, by (4.2), (4.3), (4.7), and (4.11), we obtain

inf
[0,𝛾]

𝛿(𝑓, 𝛼) = 𝑓 (𝛾) − 𝑓 (𝛼)
𝛾 − 𝛼

= −(p + q) + (2p + q)(𝛼 + 𝛾) − p(𝛼2 + 𝛼𝛾 + 𝛾2)

= CgDg

(
−4

9
− 5

9
𝜔 − 𝜔2

9
+ 7 + 𝜔

3
𝛾 − 𝛾2

)
+ CiDi

(
−1

9
− 2

9
𝜔 − 𝜔2

9
+ 4 + 𝜔

3
𝛾 − 𝛾2

)
=

|Cg|Dg

9
(
(1 − sd)(𝜔2 + 9𝛾2 − 3𝜔𝛾) + (5 − 2sd)𝜔 − 3(7 − 4sd)𝛾 + 4 − sd

)
=∶

|Cg|Dg

9
𝜏(𝜔, 𝛾, sd). (5.10)

Denote

R ∶=

{
(𝜔, 𝛾) ∶

√
3 − 1 < 𝜔 < 1 and 2 − 𝜔

3
< 𝛾 < 1 − 1√

3

}
. (5.11)

Lemma 5.2. We have 𝜏(𝜔, 𝛾, sd) > 0 for every (𝜔, 𝛾) ∈ R and 0 ≤ sd ≤ 3∕2.
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BERTI ET AL. 17

FIGURE 6 The triangles T and R.

Proof. First, it is easy to show that the function 𝜕sd𝜏(𝜔, 𝛾, sd) = −𝜔2 − 9𝛾2 + 3𝜔𝛾 − 2𝜔+ 12𝛾 − 1 has no critical points
in the triangle

T ∶=
{
(𝜔, 𝛾) ∈ R

2 ∶ 0 < 𝜔 < 1 and 2 − 𝜔
3

< 𝛾 <
2 + 𝜔

3

}
,

which contains the set R; see Figure 6. Moreover, on 𝜕T, we have 𝜕sd𝜏 > 0 and then

𝜕sd𝜏(𝜔, 𝛾, sd) > 0 for (𝜔, 𝛾) ∈ T. (5.12)

Then, by the monotonicity property proved in (5.12), it is sufficient to prove that 𝜏(𝜔, 𝛾, 0) > 0 for every (𝜔, 𝛾) ∈ R.
We have

𝜏(𝜔, 𝛾, 0) = 𝜔2 + 9𝛾2 − 3𝜔𝛾 + 5𝜔 − 21𝛾 + 4 =
(
𝜔 − 3

2
𝛾 + 5

2

)2
+ 27

4
(1 − 𝛾)2 − 9.

This quantity is positive if, in particular,

𝜔 − 3
2
𝛾 + 5

2
>

3
√

3
2

and 1 − 𝛾 > 1√
3
.

The second inequality implies the first one when 𝜔 >
√

3 − 1, and then 𝜏(𝜔, 𝛾, 0) > 0 for every (𝜔, 𝛾) ∈ R. □

Remark 5.3. We easily see that (𝜔, 𝛾) ∈ R iff (ri, 𝜆g) ∈ R̃(d) and
√

3 − 1 < 𝜔 < 1, where

R̃(d) =

{
(ri, 𝜆g) ∈ R

+ × R
+ ∶ 1√

3 − 1
<
𝜆g

ri
<

1 + 𝜔
2 − 𝜔

}
.

We are now in the position to apply (2.14).

Theorem 5.3. Assume 𝑓 is strictly concave, (ri, 𝜆g) ∈ R̃(d) and
√

3 − 1 < 𝜔 < 1. If

18
√
𝜇(d − 1)

𝜏(𝜔, 𝛾, sd)
< Eg (5.13)

is satisfied, then either J = ∅ or J ∩ (0,∞) ≠ ∅.

Proof. By Remark 5.3, Lemma 5.2 applies and then 𝜏(𝜔, 𝛾, sd) > 0 if (ri, 𝜆g) ∈ R̃(d),
√

3 − 1 < 𝜔 < 1 and 0 ≤ sd ≤ 3
2
.

Now, notice that by (4.16), it follows

sup
[0,𝛾]

√
Δ(Dg, 𝛼) ≤

√
riDg(d − 1). (5.14)

Then, condition (5.13) implies (2.14) by (5.10) and (5.14). □
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18 BERTI ET AL.

FIGURE 7 The triangle Tg(d) (thick black lines) and the cone R̃(d), which is bounded from below by the red line and from above by a
black line. Here, |Cg|√Dg = 6 and d = 10. [Colour figure can be viewed at wileyonlinelibrary.com]

Remark 5.4. We now show that there is a nonempty intersection between the cone R̃(d) in Remark 5.3 and the set of
parameters described by Remark 5.2, for

√
3 − 1 < 𝜔 < 1, that is, for d > 4 + 2

√
3 ∼ 7.46. In fact, notice that

1√
3 − 1

>
1 − 𝜔
2 + 𝜔

for every 0 < 𝜔 < 1.

Then it follows that R̃(d) ∩ Tg(d) ≠ ∅ for d > 4 + 2
√

3; see Figure 7. The set Tg(d) was introduced in (5.9). As
a consequence, if

√
3 − 1 < 𝜔 < 1, (ri, 𝜆g) ∈ R̃(d) ∩ Tg(d) and (5.13) are satisfied, then there are wavefronts to

Equation (3.5) satisfying (1.2) having positive speeds.

About the case of negative speeds, we have the following result, where (2.13) comes into play.

Theorem 5.4. Assume 𝑓 is strictly concave and

√
(d − 1)𝜔(1 + 𝜔)(2 − 𝜔) ((1 + 𝜔)𝜇 − (2 − 𝜔))

(1 + 𝜔)2 + sd(1 − 𝜔2) − 3
> Eg. (5.15)

Then either J ⊂ (−∞, 0) or J = ∅.

Proof. First, we point out that the term (1+𝜔)ri−(2−𝜔)𝜆g under the square root in (5.15) is positive because of (4.11).
By (3.6), we compute

.
𝑓 (𝛼) = −CgDg

(
3(𝛼 − 1)2 − 1

)
+ CiDi(1 − 𝛼)(3𝛼 − 1)

=
CgDg

(
3 − (1 + 𝜔)2) + CiDi(1 − 𝜔2)

3
.

By (4.5) and (4.6), we deduce
.

D(𝛼) = 3(𝛼 − 𝛽)(Di − Dg) = −2𝜔(Di − Dg), and, by (4.2),

g(𝛼) = (ri + 𝜆g)𝛼(1 − 𝛼)(𝛼 − 𝛾)

=
(ri + 𝜆g)(2 − 𝜔)(𝜔 + 1)(2 − 𝜔 − 3𝛾)

27

=
(2 − 𝜔)(𝜔 + 1)

(
−(𝜔 + 1)ri + (2 − 𝜔)𝜆g

)
27

.

Therefore, we have
.

D(𝛼)g(𝛼) = 2
27

(Di − Dg)𝜔(2 − 𝜔)(𝜔 + 1)
(
(1 + 𝜔)ri − (2 − 𝜔)𝜆g

)
.

The proof is concluded by applying (2.13) and noticing that 2
√

2∕3 ∈ (1, 2). □
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BERTI ET AL. 19

FIGURE 8 Thresholds leading to wavefronts with positive or negative speeds when 𝑓 is strictly concave. The figure is to be interpreted as
follows: if d > 4 + 2

√
3 ∼ 7.46, then there exist wavefronts with positive speed, while, if 4 < d <

(
5 + 2

√
3
)
∕2 ∼ 4.23, then every wavefront

has negative speed under the assumptions of Theorem 5.4.

Corollary 5.2. Under (5.1), condition (5.15) is satisfied if d <
(

5 + 2
√

3
)
∕2.

Proof. For A(𝜔) ∶= 𝜔(1 + 𝜔)(2 − 𝜔) and B(𝜔) ∶= (1 + 𝜔)𝜇 − (2 − 𝜔), condition (5.15) is√
d − 1
Eg

√
A(𝜔)B(𝜔) > (1 + 𝜔)2 + sd(1 − 𝜔2) − 3 =∶ E(𝜔, sd). (5.16)

Condition (5.15) is satisfied if the right-hand side of (5.16) is negative. If Ci = s = 0, then this happens if 𝜔 <
√

3 − 1.
In the general case, we notice that

E(𝜔, sd) ≤ E
(
𝜔,

3
2

)
= −1

2
𝜔2 + 2𝜔 − 1

2
∶= 𝜑(𝜔).

We have 𝜑(0) = − 1
2
, 𝜑(1) = 1, 𝜑 is an increasing function when 𝜔 ∈ (0, 1), and 𝜑(𝜔) = 0 for 𝜔 ∈ (0, 1) iff 𝜔 = 2 −

√
3.

Then condition (5.15) is satisfied if 𝜔 < 2 −
√

3, i.e., for d <
(

5 + 2
√

3
)
∕2 ∼ 4.23. □

Remark 5.5. Let us fix Cg,Dg. By Remark 5.2, for every s > 0 and d > 4 satisfying (5.1) the existence of wavefronts
to (3.5) satisfying (1.2) holds for (ri, 𝜆g) in the triangle Tg(d). For d ∈

(
4,
(

5 + 2
√

3
)
∕2

)
, every pair (ri, 𝜆g) ∈ Tg(d)

provides profiles, and all of them have negative speeds.

Remark 5.6. We now briefly resume the results we obtained about the sign of the propagation speed. For (ri, 𝜆g) ∈
Tg(d), we have (see Figure 8):

• if d > 4+2
√

3 and (5.13) is satisfied, then (3.5) admits wavefronts satisfying (1.2) with positive speeds (see Remark
5.4);

• if d ∈
(

4,
(

5 + 2
√

3
)
∕2

)
, then every pair (ri, 𝜆g) ∈ Tg(d) provides profiles and all of them have negative speeds

(see Remark 5.5).

Remark 5.7. When 𝛾 → 𝛼, that is, when 𝛾 → (2 − 𝜔)∕3, we get 𝜏(𝜔, sd, 𝛾) → 3E(𝜔, sd), for E as in (5.16). Hence, if
𝛾 ∼ 𝛼, the condition 𝜏 < 0 implies that only wavefronts with negative speeds can agree with (3.5)–(1.2) (from (5.16)).
This implies that the model only supports extinction.

6 THE CASE WHEN 𝑓 CHANGES CONVEXITY

We now consider a convective term 𝑓 as in (3.6) (see also (4.4)), which changes its concavity in [0, 1] and show that also in
this case the model (3.5) can support wavefronts satisfying condition (1.2). Due to the definition of 𝑓 , a concavity change
occurs iff p ≠ 0, and in this case only once, namely, at 2

3
+ q

3p
. Moreover, when this occurs, then concavity and convexity

are strict.

Lemma 6.1. Assume that 𝑓 has an inflection point in (0, 1). Then:

(i) 𝑓 is first convex and then concave if and only if sd > 3
2

.
(ii) 𝑓 is first concave and then convex if and only if s < 0.
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20 BERTI ET AL.

FIGURE 9 Plots of the functions D (dashed line), g (dashdotted line), and 𝑓 (solid line) in the case 𝑓 is convex–concave (on the left) and
concave–convex (on the right), with 𝛾 as inflection point of 𝑓 .

Proof. We argue as in the proof of Lemma 5.1. About (i), the statement is equivalent to 2p + q > 0 and −p + q < 0,
that is, −2p < q < p; hence, p > 0, and we conclude by (4.3) and (4.9)1.

About (ii), the statement is equivalent to 2p + q < 0 and −p + q > 0, that is, p < q < −2p; hence, p < 0 and s < 0
by (4.9)1. □

To simplify calculations, in the following we only consider the case when 𝛾 , which is the inner zero of g and is given by (4.2),
coincides with the inflection point of 𝑓 ; that is, we assume in the current section (without further mention)

𝛾 = 2
3
+

CgDg

3(CgDg + CiDi)
= 3 − 2sd

3(1 − sd)
. (6.17)

Notice that the assumptions p ≠ 0 and ri ≠ 0 are equivalent to sd ≠ 1 (because of (4.9)1) and sd ≠ 3
2
, respectively. Then

ri =
(

2 − 3
s

d
)
𝜆g. (6.18)

We now briefly comment on the biological meaning of assumption (6.17). Recall that 𝛾 represents the Allee parameter
[1], which describes the threshold separating a decrease of concentration (if u < 𝛾) from an increase of concentration (if
u > 𝛾). The assumption that 𝑓 has an inflection point at 𝛾 means that the maximum drift

.
𝑓 (if 𝑓 is convex-concave) or

the minimum drift (if 𝑓 is concave-convex) is precisely reached at 𝛾 . We refer to Figure 9 for an illustration of both cases.

6.1 The convex–concave case
We consider a function 𝑓 that is first convex and then concave, with 𝛾 as inflection point; see Figure 9 on the left.

We recall that we are assuming 𝛾 ∈ (𝛼, 𝛽); see (4.11). We now check the implications of this condition on sd, because 𝛾
also satisfies (6.17). By Lemma 6.1(i) and (4.9)1, we obtain CiDi + CgDg > 0 and hence 𝛾 < 2

3
< 𝛽 by (6.17). On the other

hand, the condition 𝛾 > 𝛼 is equivalent to sd > 1 + 1
𝜔
> 2 because of (4.1) and (6.17), which strengthens the previous

requirement sd >
3
2
. Summing up, under the assumptions of the current case, the parameters sd and 𝛾 must satisfy the

conditions
sd > 1 + 1

𝜔
and 𝛾 ∈

(1
3
,

2
3

)
. (6.19)

We now consider the issue of the existence of profiles. By making use of (4.7), the left-hand side of (2.11) becomes

inf
[0,𝛾]

𝛿(𝑓, 𝛼) − sup
[𝛾,1]

𝛿(𝑓, 𝛽) = 𝑓 (𝛼)
𝛼

− 𝑓 (𝛾) − 𝑓 (𝛽)
𝛾 − 𝛽

= (2p + q)(𝛼 − 𝛽 − 𝛾) + p(𝛽2 − 𝛼2 + 𝛾𝛽 + 𝛾2)
= CgDgH1(𝜔, 𝛾) + CiDiH2(𝜔, 𝛾)
= |Cg|Dg (H1(𝜔, 𝛾) + sdH2(𝜔, 𝛾)) , (6.20)

where
H1(𝜔, 𝛾) ∶= −𝛾2 − 𝛾

(
𝜔 − 7

3

)
+ 10

9
𝜔 and H2(𝜔, 𝛾) ∶= 𝛾2 + 𝛾

(
𝜔 − 4

3

)
− 4

9
𝜔.

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.9667 by C

ochraneItalia, W
iley O

nline L
ibrary on [20/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BERTI ET AL. 21

FIGURE 10 The set S is the plane region bounded from above by the blue curve and from below by the red curve. [Colour figure can be
viewed at wileyonlinelibrary.com]

We now investigate the sign of (6.20): its positivity is necessary for (2.11) to hold. First, we introduce the set (see Figure 10)

S ∶=
{
(𝜔, sd) ∶ 1 + 1

𝜔
< sd < 12(2 + 3𝜔)

(4 + 𝜔)2

}
. (6.21)

Proposition 6.1. The quantity in (6.20) is positive for every (𝜔, sd) ∈ S.

Proof. We know that 𝛾 , provided by (6.17), is entirely determined by sd and that it varies in
(

1
3
,

2
3

)
by (6.19). However,

to simplify computations, we treat 𝛾 in the current proof as an independent variable ranging in
(

1
3
,

2
3

)
.

First, we claim that for 𝜔 ∈ (0, 1) and 𝛾 ∈
(

1
3
,

2
3

)
, we have

H1(𝜔, 𝛾) >
2
3
+ 𝜔 and H2(𝜔, 𝛾) > −

(4 + 𝜔
6

)2
. (6.22)

In fact, estimate (6.22)1 follows because the function 𝛾 → H1(𝜔, 𝛾) is increasing for 𝛾 ∈
(

1
3
,

2
3

)
. Concerning (6.22)2,

we have min
𝛾∈

(
1
3
,

2
3

)H2(𝜔, 𝛾) = H2

(
𝜔,

4−𝜔
6

)
= −

(
4+𝜔

6

)2
.

Next, according to (6.22) and since sd > 0, we have, for all 𝛾 ∈
(

1
3
,

2
3

)
,

H1(𝜔, 𝛾) + sdH2(𝜔, 𝛾) >
2 + 3𝜔

3
− sd

(4 + 𝜔
6

)2
. (6.23)

The latter quantity is positive iff sd < 12(2+3𝜔)
(4+𝜔)2

. By (6.19)1, we need 12(2+3𝜔)
(4+𝜔)2

> 1 + 1
𝜔

, and this is equivalent to require
𝜔 > 𝜔0, where 𝜔0 ∼ 0.78 is the only root of 𝜔3 − 27𝜔2 + 16 in the interval (0, 1). □

Theorem 6.1. Assume that 𝑓 is convex in [0, 𝛾], concave in [𝛾, 1], and (𝜔, sd) ∈ S. If

√
(d − 1)

H1 (𝜔, 𝛾) + sdH2 (𝜔, 𝛾)
<

Eg

4
(6.24)

holds, then Equation (3.5) has wavefronts satisfying condition (1.2).
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22 BERTI ET AL.

FIGURE 11 The set S̃ is the plane region bounded from above by the blue curve and from below by the red curve. [Colour figure can be
viewed at wileyonlinelibrary.com]

Proof. According to (6.18), Lemma 4.2 and the fact that sd > 0, we have

2 sup
[0,𝛾]

√
Δ(Dg, 𝛼) + 2 sup

[𝛾,1]

√
Δ(Dg, 𝛽) ≤ √

Dg

√
d − 1

(√
ri(2 + 𝜔) +

√
𝜆g(1 + 𝜔)

)
=
√

Dg

√
𝜆g(d − 1)

(√(
2 − 3

s
d
)
(2 + 𝜔) +

√
1 + 𝜔

)

≤ √
Dg

√
𝜆g(d − 1)

(√(
6 − 9

s
d
)
+
√

2

)
≤ 4

√
Dg

√
𝜆g(d − 1). (6.25)

Now, we assumed (𝜔, sd) ∈ S and then H1(𝜔, 𝛾) + sdH2(𝜔, 𝛾) > 0 by Proposition 6.1. Hence, if (6.24) is satisfied, then
condition (2.11) holds true by (6.20) and then (3.5) has wavefronts satisfying (1.2). □

6.2 The concave–convex case
We now assume that 𝑓 is concave in [0, 𝛾] and convex in [𝛾, 1], with 𝛾 as inflection point; see Figure 9. Again, we show
that (3.5) admits wavefronts satisfying (1.2) under some conditions.

We argue as in the convex–concave case. Lemma 6.1(ii) implies 𝛾 ∈ (2∕3, 1). Moreover, the condition 𝛾 < 𝛽 is equivalent
to sd < 1 − 1

𝜔
< 0 by (4.1) and (6.17). Summing up, the parameters sd and 𝛾 must now satisfy the conditions

sd < 1 − 1
𝜔

and 𝛾 ∈
(2

3
, 1
)
. (6.26)

We now compute the left-hand side of (2.11). According to (4.7), we have

inf
[0,𝛾]

𝛿(𝑓, 𝛼) − sup
[𝛾,1]

𝛿(𝑓, 𝛽) = 𝑓 (𝛾) − 𝑓 (𝛼)
𝛾 − 𝛼

− 𝑓 (1) − 𝑓 (𝛽)
1 − 𝛽

= (2p + q)(𝛼 − 𝛽 + 𝛾 − 1) + p(𝛽2 − 𝛼2 − 𝛼𝛾 − 𝛾2 + 𝛽 + 1),
= CgDgH̃1(𝜔, 𝛾) + CiDiH̃2(𝜔, 𝛾)
= |Cg|Dg

(
H̃1(𝜔, 𝛾) + sdH̃2(𝜔, 𝛾)

)
, (6.27)

for
H̃1(𝜔, 𝛾) ∶= 𝛾2 − 𝛾

(
𝜔 + 7

3

)
+ 7

9
𝜔 + 4

3
and H̃2(𝜔, 𝛾) ∶= −𝛾2 + 𝛾

(
𝜔 + 4

3

)
− 𝜔

9
− 1

3
.

We now discuss the sign of (6.27); to this aim, we define the set (see Figure 11)

S̃ ∶=
{
(𝜔, sd) ∶ − 16𝜔

(𝜔 + 2)2 < sd < 1 − 1
𝜔

}
. (6.28)

If (𝜔, sd) ∈ S̃ and estimate (6.31) holds, then Equation (3.5) has wavefronts satisfying condition (1.2).

Proposition 6.2. The quantity in (6.27) is positive for (𝜔, sd) ∈ S̃.
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Proof. Notice that, according to (6.17), 𝛾 depends on sd; however, as in the proof of Proposition 6.1, we treat 𝛾 as an
independent variable ranging in (0, 1).

First, we claim that for all 𝜔, 𝛾 ∈ (0, 1), we have

H̃1(𝜔, 𝛾) >
4
9
𝜔 and H̃2(𝜔, 𝛾) <

(
𝜔 + 2

6

)2
. (6.29)

About (6.29)1, since H̃1(𝜔, 𝛾) is a decreasing function for 𝛾 ∈
(
−∞, 𝜔+7

6

)
and 𝜔+7

6
> 1, we obtain H̃1(𝜔, 𝛾) >

H̃1(𝜔, 1) = 4
9
𝜔 for 𝛾 ≤ 1. About (6.29)2, we have max𝛾∈RH̃2(𝜔, 𝛾) = H̃2

(
𝜔,

𝜔+4
6

)
=
(
𝜔+2

6

)2
.

Next, according to (6.29) and since sd < 0, we have

H̃1(𝛾) + sdH̃2(𝛾) >
4
9
𝜔 + sd

(
𝜔 + 2

6

)2
, (6.30)

which is positive when sd > −16𝜔∕(𝜔 + 2)2. Since we have sd < 1 − 1
𝜔

, we need that

1 − 1
𝜔
> − 16𝜔

(𝜔 + 2)2 ,

which is true when 𝜔 > �̃�0, where �̃�0 ∼ 0.45 is the only root of 𝜔3 + 19𝜔2 − 4 in (0, 1). This completes the proof. □

Theorem 6.2. Assume that 𝑓 is concave in [0, 𝛾], convex in [𝛾, 1] and (𝜔, sd) ∈ S̃. If

5
√

d − 1
(1 − 𝜔)

(
H̃1(𝜔, 𝛾) + sdH̃2(𝜔, 𝛾)

) < Eg (6.31)

holds, then Equation (3.5) has wavefronts satisfying (1.2).

Proof. As in the proof of Theorem 6.1, by taking sd < 1 − 1
𝜔

into account, we have

2 sup
[0,𝛾]

√
Δ(Dg, 𝛼) + 2 sup

[𝛾,1]

√
Δ(Dg, 𝛽) ≤ √

𝜆gDg

√
d − 1

(√(
6 − 9

s
d
)
+
√

2

)

≤ √
𝜆gDg

√
d − 1

(√
6 + 3𝜔
1 − 𝜔

+
√

2

)
≤ √

𝜆gDg

√
d − 1

(
3√

1 − 𝜔
+
√

2

)

≤ √
𝜆gDg

√
d − 1

3 +
√

2√
1 − 𝜔

≤ 5
√
𝜆g(d − 1)

√
Dg

1 − 𝜔
. (6.32)

Since we assumed (𝜔, sd) ∈ S̃, then, by (6.27), conditions (6.31) and (6.32) imply (2.11); according to Corollary 2.2,
the model (3.5) has wavefronts satisfying (1.2). □

7 CONCLUSIONS

We investigate a model for the movement of biological organisms that includes a convective term 𝑓 . The population is
split into isolated and grouped individuals. We focus on the existence of decreasing wavefront solutions. This model is
inspired by [1], where it was first proposed in the case 𝑓 = 0. We consider a diffusivity D, which makes the equation
of forward–backward–forward type and assume that the reaction term g has the strong Allee effect with its inner zero
between the two inner zeros of the diffusivity. In this case, there are no wavefronts if 𝑓 = 0.

The convection 𝑓 has four possibilities: It can be either concave, or convex, or convex–concave, or else concave–convex.
A key role in our discussion is played by the adimensional term Eg = |Cg|√Dg∕𝜆g, which only depends on behavior of the
grouped population and lumps all their significative parameters.
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• When 𝑓 is convex, wavefronts do not exist.
• When 𝑓 is concave, wavefronts exists if condition (5.5) is satisfied; this is an inequality, whose left-hand side depends

on the mutual behavior of grouped and isolated individuals and involves many parameters. In Remark 5.2, we vary
pairs of them while fixing the others and show plane regions where (5.5) holds. Its right-hand side is just Eg. As a
consequence, (5.5) is certainly satisfied when Eg is large, that is, if either the convective and diffusivity coefficients of
the grouped population are sufficiently large or else its birth rate is small.

Assume now wavefronts exist. If condition (5.13) holds, then some of them have positive speed; this suggests the
persistence of the species in the long period. On the contrary, when (5.15) holds, all the wavefronts have negative
speed suggesting the extinction of this species in the long term. Again, both conditions are inequalities with Eg on the
right-hand side; in particular, (5.13) is satisfied if Eg is large, while (5.15) is valid if Eg is small. A detailed discussion
appears in Remark 5.6.

• When 𝑓 changes convexity, we focus for simplicity on the case its inflection point coincides with the inner zero of g.
In both the convex–concave and concave–convex cases, we give sufficient conditions for the existence of wavefronts:
They exist if Eg is large enough.
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