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Abstract6

Stroh’s sextic formalism represents the equilibrium equations of anisotropic elas-

ticity in a particularly attractive form, that is most suitable for studying lay-

ered and composite materials and time harmonic problems. Taking advantage

of the fact that the Stroh formalism really amounts to the canonical form of the

equations in the Hamiltonian sense, the case of Biot’s reversible (i.e. no fluid

dissipation) poroelasticity is here addressed, in the absence of a fluid pressure

gradient. This framework is the same as thermoelasticity of perfect conductors.

Two Hamiltonian formulations are developed: the first describes both the solid

and the fluid phases and it exhibits, besides energy conservation, momentum

conservation, as a result of pressure uniformity. The second is restricted to the

solid skeleton and parallels anisotropic elasticity, although with Stroh matrices

that account for fluid coupling. The case of weak fluid-solid coupling is also

considered and it produces a perturbation from anisotropic elasticity with the

same structure as incompressibility, although in an "opposing" manner. This

comparison suggests that the incompressibility limit introduced by Biot should

be revised. The energy conservation integral and the edge impedance matrix

are also illustrated.
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1. Introduction9

The foundation of Stroh sextic formalism is laid out in a pair of celebrated pa-10

pers concerning dislocations (Stroh, 1958) and harmonic motion (Stroh, 1962) in11

generally anisotropic materials (in plane strain). This framework provides a sub-12

stantial improvement over the already established Eshelby-Reid-Shockley form13

of the equations of elastostatics (Ting, 1996). Indeed, although both methods14

share the fact that mechanical features are interpreted and described under the15

unifying lens of linear algebra, Stroh’s approach exhibits very distinctive features16

for the involved matrices. In fact, solutions are built in terms of eigenvalues and17

eigenvectors of a block matrix, the so-called Stroh fundamental elastic matrix,18

endowed with many striking properties (Barnett, 2000). Since then, the method19

has been extensively applied to composite materials, harmonic wave propaga-20

tion, crack and dislocations, instability and many more topics (Ting, 1996).21

Given its success, it is little wonder that extensions of the method have been22

proposed outside its original domain, to address, for example, constrained ma-23

terials (Chadwick and Smith, 1977), anisotropic plates (Fu, 2007) and internally24

constrained micro-polar solids (Nobili and Radi, 2022). In general, the success25

of the procedure hangs on the careful choice of the unknown variables, which26

can be rather tricky unless somehow guided. In fact, many contributions ex-27

ist in the literature where a trial-and-error approach was used (see Fu (2007)).28

As an illustration, Hwu (2003) analyses coupled stretching-bending modes in29

anisotropic laminates through a modification of the Lekhnitskii formalism (for30

details on which see Ting (1996)) in an attempt to recover the properties specific31

to the Stroh form. Recently, Fu (2003) developed a Stroh-like formulation for32

determining the dispersion relation of edge waves in generally anisotropic plates33

under the sole restriction that the mid-plane is a plane of material symmetry.34

In that work, Fu capitalized on the observation that the Stroh formalism is re-35

ally an Hamiltonian formulation where a space variable is treated in time-like36

fashion, already available in the literature (Barnett, 2000), to develop a guid-37

ing principle for the right choice of the unknown pairs, namely the principle of38
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energy conjugation. Successively, this approach was used in (Fu and Brookes,39

2006) to study edge waves in asymmetrically laminated plates, for which in-40

plane and out-of-plane deformations are coupled by anisotropy. By the same41

method, Fu (2007) studies incompressible anisotropic materials and anisotropic42

plates, and results are later extended by Edmondson and Fu (2009) to generally43

constrained and pre-stressed anisotropic materials. The procedure paves the44

way for the application of the surface-impedance matrix for studying localized45

waves (Fu, 2005).46

Thus far, a classical Stroh formalism could be retrieved, by which a right47

eigenvalue problem is finally obtained (as presently explained). Yet, the Hamil-48

tonization of any mechanical model may be carried out by the same principles49

and the outcome, in general, may not correspond to a classical Stroh-like struc-50

ture. As a case in point, Fu and Kaplunov (2012) study waves localized at the51

edge of isotropic thin cylindrical shells and find that the fundamental elastic52

matrix is in fact wavenumber dependent. This result, which is typical of dis-53

persive systems, is also retrieved by Nobili and Radi (2022) in the context of54

the indeterminate couple-stress theory of elasticity. The structure of the Stroh55

formalism is now supplemented by a right hand side that is proportional to56

the unknowns (i.e. the problem is still linear). Therefore, the very form of57

the Stroh-like canonical system already reveals important informations on the58

problem under scrutiny.59

Biot’s poroelasticity is a very successful phenomenological theory with enor-60

mous practical implications in the fields of seismology and seismic exploration,61

geology and geotechnical structures, soil testing and characterization, to name62

only a few Dullien (2012). The literature on this topic is very extensive and63

moves in many directions, for example, concerning wave propagation in porous64

media, see the review paper by Corapcioglu and Tuncay (1996). Efforts in the65

direction of connecting this theory to the theory of mixtures or to microme-66

chanical theories have been long going, with mixed success, see, among many,67

Lopatnikov and Cheng (2004). Extensions of the theory have been proposed68

in the many directions, for example introducing double (Berryman and Wang,69
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2000) or multi- porosities (Pramanik et al., 2024), finite elastic deformations70

(Norris and Grinfeld, 1995) or even piezoelectric effects (Sharma, 2010). Still,71

no Stroh-like formalism may be traced in the literature, possibly on the grounds72

that multi-field theories may prove impervious to this framework.73

In this paper, we Hamiltonize the equations of Biot’s poroelasticity in the74

absence of dissipation, i.e. in the context of reversible processes (thermostatics)75

and in the absence of a fluid pressure gradient (Biot, 1955, 1956a). This same76

framework may be applied to thermoelastostatics of perfect conductors, where in77

fact temperature plays the role of the fluid pressure (Biot, 1956b). Inertia effects78

are only considered inasmuch as they may be incorporated into the material79

properties in the form of time-harmonic contributions. Focus is set on the80

determination of the canonical formalism and on the properties it reveals.81

2. Reversible poroelasticity82

Let u and U denote the displacement in the solid and in the fluid phase,83

respectively. Besides, the fluid-to-solid displacement per unit volume of the84

poroelastic medium reads85

w = f(U − u), (1)

where f is the effective porosity, generally not uniform, that represents the86

interconnected pore space. In particular, the porosity is defined as the ratio87

between the volume of interconnected pores, Vp, over the bulk volume Vb, the88

latter being obtained by Vb = Vp + Vs, i.e. summing the pore volume to the89

volume occupied by the solid skeleton, see (Biot, 1955). Following Biot (1962),90

in this theory closed porosity is assumed to be part of the solid skeleton. Also,91

we let92

e = divu, ζ = −divw, (2)

that provide the volume increment for the solid and the fluid phase, respectively93

(indeed the fluid increment is obtained by the inflow of w). In particular, we94

have the connection95

− ζ = (U − u) · grad f + f(ε− e), (3)
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where we have let ε = divU . In the case of uniform porosity, we retrieve the96

result given in Biot (1962)97

ε = e− f−1ζ. (4)

Let the rank-2 tensor T denote the total stress, that is obtained summing

the stress in the solid phase σ with the stress in the fluid phase σf = −fpf1,

where, here and after, 1 is the rank-3 identity tensor and pf is the fluid pressure

(positive when compressive) per unit area of the fluid phase. Sometimes, to

refer pressure to the unit bulk area, the shorthand σf = −fpf is introduced.

Let (O, x1, x2, x3) denote an orthogonal reference frame and n be the unit vector

normal to any relevant directed surface S. Alongside the axis (x1, x2, x3), we

introduce an orthonormal set of basis vectors, e1, e2 and e3, such that ei ·ej =

δij , with the usual understanding that twice repeated subscripts are summed

over in the set {1, 2, 3}. Here, δij is zero for i 6= j and 1 for i = j. We define

the fundamental force vectors in a generally anisotropic medium with elastic

constants cijkl

t1 = Te1 = Qu,1 + Ru,2 − rζe1, (5a)

t2 = Te2 = RTu,1 + Tu,2 − rζe2, (5b)

where Qij = ci1j1, Rij = ci1j2, Tij = ci2j2 are the usual Stroh matrices. In98

particular, Q and T are symmetric, i.e. Q = QT and T = TT , and positive def-99

inite, provided the strain energy is a positive function (Ting, 1996, §6.1). Here,100

r denotes the cross coupling term between volume changes in the solid and in101

the fluid (denoted by C in (Biot, 1962, Eq.(3.5)), and by Q/f in (Corapcioglu102

and Tuncay, 1996, Eq.(2.16))). In this paper, we assume that cross coupling oc-103

curs in isotropic fashion, for transverse anisotropy see, for example, Biot (1955,104

Eq.(3.2)). Besides, it is assumed that dependent variables are independent from105

x3, i.e. ∂/∂x3() = 0. In a steady-state motion with velocity v in the x1-106

direction, the matrix Q is simply replaced by Q − ρv2I, where ρ is the density107

of the solid skeleton and I is the identity matrix. Besides, for an isotropic solid,108

it is cijkl = 2µδikδjl + λcδklδij, where µ and λc are the Lamé moduli (Nobili109

and Radi, 2022).110
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For a compressible fluid, it is111

pf = −re+mζ, (6)

wherem is the compressibility modulus for the fluid, defined as the fluid pressure112

required to force a unit volume of fluid into the pore structure while keeping the113

solid volume unchanged, i.e. e = 0. As pointed out by Biot and Willis (1957),114

the reversibility assumption, by which a stored elastic potential is admitted,115

identifies the coupling coefficient in the last term in (5) with that in (6). Also,116

following Biot and Willis (1957), it is117

f ≤ α = r/m < 1. (7)

Biot (1956b) showed that this framework parallels that of thermo-elasticity, with118

the pressure pf playing the same role as temperature.119

We are now in the position to write the potential elastic energy minus the120

work done by the applied external forces over the body B (i.e. the total energy121

in the sense of Eshelby)122

L =

∫
B

WdV −
∫
∂B

(t0 · u− pf0n ·w) dS, (8)

where we have let the stored potential energy density123

W = 1
2 (T · gradu+ pfζ) . (9)

Here, t0 and pf0 are the prescribed surface force and fluid pressure over the124

body boundary ∂B with unit normal n. For the sake of simplicity, no body125

force is considered. With a little abuse of notation yet in favour of tidiness, an126

interposed dot denotes the scalar product between both tensor and vector pairs,127

i.e. in components A · B = AijBij and a · b = aibi, respectively. By strong128

ellipticity, Q and T are positive definite and m > 0.129

In a reversible process (i.e. thermostatics), the imposed boundary pressure130

should not trigger movement of the fluid phase and, therefore, pf0 is constant131

on the surface ∂B and pf is equally constant throughout the body (Biot, 1962).132

This pressure distribution holds also in steady state motion of the solid provided133

6



that we take no account of dissipation. The mins sign associated with the fluid134

pressure pf0 is a consequence of it being positive in compression. In Eq.(8), we135

have let the shorthand136

T · gradu = t1 · u,1 + t2 · u,2,

where it is understood that gradu = u,1⊗e1 +u,2⊗e2 and a subscript comma137

denotes differentiation, e.g. u,1 = ∂u/∂x1. Here, we have used the vector138

dyadic that, for any pair of vectors a and b, yields the rank-2 tensor a⊗ b such139

that, for any vector c, (a⊗ b)c = (b · c)a.140

The equilibrium equations read

t1,1 + t2,2 = o, (10a)

grad pf = o, (10b)

where the last is the equilibrium version of Darcy’s law1, see Biot (1962, Eq.(7.2)).141

Without loss of generality, we assume that the boundary conditions are only ex-142

pressed in terms of forces143

Tn = t0 and pf = pf0, for x ∈ ∂B, (11)

where ∂B is the frontier of the body B. By the divergence theorem , one can144

rewrite the total energy in terms of a single volume integral145

L = −
∫
B

LdV,

where we have introduced the Lagrangian density L146

L(u,1,u,2,divw) = 1
2T · gradu+ 1

2pfζ. (12)

In light of Eqs.(5) and (6), this may be rewritten as

L(u,1,u,2,w,1,w,2) = 1
2u,1 ·Qu,1 + u,1 · Ru,2 + 1

2u,2 · Tu,2

− 1
2rζ(e1 · u,1 + e2 · u,2) + 1

2 (−re+mζ)ζ, (13)

1Darcy’s law emerges from considering an irreversible process and the attached dissipation
function, that is a quadratic form in ∂w/∂t
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where u,1 · e1 +u,2 · e2 = divu = e. Clearly, this formulation admits the Stroh

formalism because, unlike internally constraints solids (Nobili and Radi, 2022),

both displacement vectors, u and w, appear only in differentiated form. The

Lagrangian density becomes

L(u,1,u,2,w,1,w,2) = 1
2u,1 ·Qu,1 + u,1 · Ru,2 + 1

2u,2 · Tu,2

+ r(e1 ·w,1 + e2 ·w,2)(e1 · u,1 + e2 · u,2) + 1
2m(e1 ·w,1 + e2 ·w,2)2, (14)

whence the Euler-Lagrange equations read

d

dx1

∂L

∂u,1
+

d

dx2

∂L

∂u,2
= 0, (15a)

d

dx1

∂L

∂w,1
+

d

dx2

∂L

∂w,2
= 0, (15b)

which is clearly in the Stroh form once we settle for either coordinate to act as147

a time-like variable, say x2 as in Fu (2007). Eq.(15a) gives148

(Qu,1 + Ru,2 − rζe1),1 + (RTu,1 + Tu,2 − rζe2),2 = o, (16)

that corresponds to the equilibrium equation (10a), provided that we account149

for (5). Similarly, Eq.(15b) lends150

(re−mζ),1e1 + (re−mζ),2e2 = o, (17)

that indeed amounts to Eq.(10b), once acknowledging for (6).151

3. Hamiltonian formalism152

We now introduce the Hamiltonian formalism by treating x2 as a time-like153

variable (Fu, 2007). Consequently, differentiation with respect to x2 will be154

denoted by a superscript dot. For reasons that shall be presently apparent, we155

let156

Q̄ = Q− r2

m
e1 ⊗ e1, R̄ = R− r2

m
e1 ⊗ e2, T̄ = T− r2

m
e2 ⊗ e2, (18)

whence we may rewrite (5) as

t1 = Q̄u,1 + R̄u̇− r pf
m
e1, (19a)

t2 = R̄Tu,1 + T̄u̇− r pf
m
e2. (19b)
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Eq.(14) becomes

L(u,1, u̇,w,1, ẇ) = 1
2u,1 · Q̄u,1 + u,1 · R̄u̇+ 1

2 u̇ · T̄u̇

+ 1
2m

−1 [r (e1 · u,1 + e2 · u̇) +m(e1 ·w,1 + e2 · ẇ)]
2
. (20)

from which conjugate momenta are immediately obtained

p1 =
∂L

∂u̇
= t2, (21a)

p2 =
∂L

∂ẇ
= (re−mζ)e2 = −pfe2. (21b)

Solving Eq.(21b) for ζ gives157

ζ = m−1 (pf + re) , (22)

while solving Eq.(19b) for u̇ gives158

u̇ = T̄−1
(
t2 − R̄Tu,1 +

r

m
pfe2

)
. (23)

Scalar multiplication of (23) throughout by e2 lends159

u̇ · e2 = ζ1T̄−1t̄2 · e2, (24)

where we have let the shorthand160

t̄2 = t2 − R̄Tu,1 + r
(
ζ − r

m
u,1 · e1

)
e2,

and, as in Fu (2007, Eq.(3.12)), it is161

ζ−1
1 = 1 +

r2

m
e2 · T̄−1e2 > 1, (25)

whose last term is always positive by virtue of strong ellipticity (see the Ap-162

pendix). Hence, plugging (24) into (23), it is finally163

u̇ = T̄−1Pt̄2, (26)

having let the projector (we have used the symmetry of T̄)164

P = 1− r2

m
ζ1e2 ⊗ T̄−1e2. (27)
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We note that165

Pe2 = ζ1e2, and T̄−1P ∈ Sym , (28)

whence Eq.(26) may be rewritten as166

u̇ = T̄−1P
(
t2 − R̄Tu,1

)
+ rζ1

(
ζ − r

m
u,1 · e1

)
T̄−1e2. (29)

Indeed, scalar multiplication by e2, in view of the properties (28), immediately167

lends (24).168

In similar fashion, in light of Eqs.(2,24), Eq.(22) yields169

−ẇ ·e2 = w,1 ·e1 +
pf
m

+
r

m
u,1 ·e1 +

r

m
T̄−1

(
t2 − R̄Tu,1 +

r

m
pfe2

)
·e2. (30)

We introduce the Hamiltonian density

H = t2 · u̇+ p2 · ẇ − L

= t2 · u̇− pfe2 · ẇ − 1
2u,1 · Q̄u,1 − u,1 · R̄u̇− 1

2 u̇ · T̄u̇−
1
2m

−1p2
f ,

whence

H = 1
2

(
t2 − R̄Tu,1 +

r

m
pfe2

)
· T̄−1

(
t2 − R̄Tu,1 +

r

m
pfe2

)
+ pf

(
w,1 · e1 +

pf
m

+
r

m
u,1 · e1

)
− 1

2u,1 · Q̄u,1 − 1
2m

−1p2
f ,

and finally

H = 1
2

(
t2 − R̄Tu,1 +

r

m
pfe2

)
· T̄−1

(
t2 − R̄Tu,1 +

r

m
pfe2

)
+ pf

(
w,1 +

r

m
u,1

)
· e1 − 1

2u,1 · Q̄u,1 + 1
2

p2
f

m
. (31)

As well known, the canonical equations may be grouped in two sets, described170

by the vector canonical equations171

q̇ =
∂H

∂p
, and ṗ = −∂H

∂q
. (32)

In the first group we have172

u̇ =
∂H

∂t2
= T̄−1

(
t2 − R̄Tu,1 +

r

m
pfe2

)
, (33)
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and173

ẇ·e2 = − ∂H
∂pf

= −w,1 ·e1−
pf
m
− r

m
u,1 ·e1−

r

m
e2 ·T̄−1

(
t2 − R̄Tu,1 +

r

m
pfe2

)
,

(34)

that correspond to Eq.(23) and to (30), respectively. The second group provides174

the equilibrium equations. Indeed, one gets175

ṫ2 = −∂H
∂u

= −
[
R̄T̄−1

(
t2 − R̄Tu,1 +

r

m
pfe2

)
+ Q̄u,1 −

r

m
pfe1

]
,1

(35)

that, accounting for (23), whereby T̄−1 times the term in round brackets gives176

u̇, and in light of the first of (5), amounts to (10a). By the same token,177

− ṗfe2 = −∂H
∂w

= (pfe1),1 (36)

that is immediately (10b). Incorporating the dissipation function into this for-178

mulation, may provide the starting point for addressing the general case of179

irreversible poroelasticity.180

3.1. Reduced Hamiltonian181

Looking at Eq.(21b) and recalling that pf is constant throughout the body,182

as a result of the equilibrium equation (10b), one realises that, besides energy183

conservation, another motion invariant is available. Indeed, this formulation184

possesses translational invariance with respect to ẇ. This is an outcome of the185

fact that, unlike u, w appears in the Lagrangian only through its divergence186

ζ, and therefore one may assume w = gradϕ without loss of generality, the187

solenoidal contribution to w being irrelevant to the present purposes, see (Biot,188

1962, Eq.(7.13)). This feature is specific to reversible poroelasticity and it is189

lost when encompassing for dissipation. Consequently, w,1 · e1 and ẇ · e2190

are not (globally) independent from one another. To avoid dealing with this191

constraint, a more convenient approach consists of replacing ζ in (20) through192

the connection (22) to get193

L̂(u,1, u̇) = 1
2u,1 · Q̄u,1 + u,1 · R̄u̇+ 1

2 u̇ · T̄u̇, (37)

having dispensed with the irrelevant constant term 1
2p

2
f/m. In this form, the194

system matches anisotropic elasticity, provided that the Stroh matrices (18) are195
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used. It is also emphasized that, in this reduced formulation (37), only the solid196

skeleton is represented. The Euler-Lagrange equation reads197

t̂1,1 + ˙̂t2 = 0, (38)

having let the force vectors198

t̂1 = Q̄u,1 + R̄u̇, t̂2 = R̄Tu,1 + T̄u̇. (39)

This amounts to defining the new stress tensor T̂ , which differs from the total199

stress T by the constant hydrostatic pressure r
mpf1, and corresponds to Biot’s200

effective stress σij , that is the force in excess to pressure applied to the solid per201

unit surface of the bulk material, see (Biot, 1956a, Eq.(3.2)) and (Biot, 1962,202

Eq.(3.9)). The corresponding momentum immediately follows203

p̂ =
∂L

∂u̇
= t̂2, (40)

and it can be solved for the conjugate coordinate u̇ giving again (23), yet as-204

suming that pf = 0, i.e.205

u̇ = T̄−1
(
t̂2 − R̄Tu,1

)
. (41)

The possibility to invert T̄ is granted by strong ellipticity, as discussed in the Ap-206

pendix. The corresponding Hamiltonian is similarly obtained from (31) letting207

pf = 0,208

Ĥ = p̂ · u̇− L̂ = 1
2

(
t̂2 − R̄Tu,1

)
· T̄−1

(
t̂2 − R̄Tu,1

)
− 1

2u,1 · Q̄u,1. (42)

The canonical equations are209

u̇ =
∂Ĥ

∂t̂2
, (43)

that indeed gives (41), and210

˙̂t2 = −∂Ĥ
∂u

= −
[
R̄T̄−1

(
t̂2 − R̄Tu,1

)
− Q̄u,1

]
,1
, (44)

that corresponds to (38).211
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For a homogeneous material, letting the stress potential φ̂ =
∫
t̂2dx1 and212

the vector of unknowns213

ξ =

u
φ̂

 , (45)

we can write the Stroh formalism214

∂

∂x2
ξ = N

∂

∂x1
ξ, (46)

where N is the fundamental elasticity block-matrix (Ting, 1996, §6)215

N =

N1 N2

N3 N1
T

 , (47)

and we have let the 3 by 3 block-matrices216

N1 = −T̄−1R̄T , N2 = T̄−1, N3 = R̄T̄−1R̄T − Q̄. (48)

We observe that ξ has mixed dimensions, namely length and force over length217

for the first and for the second vector component, respectively. Consequently,218

N1 is dimensionless, while N3 and N2 have dimension of stress and inverse of219

stress (compliance), respectively.220

Letting the 6 by 6 constant matrix (Ting, 1996, Eq.(5.5-7))221

Î =

O I

I O

 , (49)

and in view of the symmetry of N2 and N3, one retrieves the fundamental222

symmetric matrix223

ÎN =

N3 N1
T

N1 N2

 = (̂IN)T . (50)

Following Ting (1996, §5.5), N2 is positive definite and −N3 is positive semidef-224

inite. When looking for travelling solutions of the form ξ = Ξf(x1 + px2), a225

right eigenvalue problem is retrieved226

NΞ = pΞ, (51)
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The Hamiltonian density (42) may be rewritten as the quadratic form asso-227

ciated with the fundamental matrix228

Ĥ = 1
2ξ · ÎNξ, (52)

whence the first integral associated with energy conservation (given that the229

Lagrangian is x2-independent) reads230 ∫
Σ

ξ · ÎNξdx1dx3 = const, (53)

in the assumption that we may decompose the domain as B = Σ × I, where I231

is an interval in the x2 coordinate. Finally, we may define the edge impedance232

matrix M as233

φ̂ = ıMu, (54)

and in light of (45,46), we may write234

˙̂
φ = ıMu̇ = (ıMN1 −MN1M)u,1 =

(
N3 + ıN1

T M
)
u,1,

whence M satisfies the matrix equation (Fu, 2007, Eq.(4.40))235

N3 + ıN1
T M− ıMN1 + MN1M = O. (55)

This matrix provides a very simple procedure to determine localized waves, for236

which t2 ≡ o on the body surface x2 = 0. Indeed, the dispersion relation is237

simply obtained by admitting non-trivial solutions to the system238

Mu = o,

hence the major obstacle lying in the way is the determination of the impedance239

matrix through the connection (55). This result is most simply achieved through240

the integral representation originally introduced by Barnett and Lothe (1974).241

4. Weak reversible poroelasticity and the incompressible limit242

We shall now consider the limit where the coupling effect is weaker than the243

elastic response. For this, we let τ0 = ‖T‖ be the norm of the matrix T, and we244
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assume that τ−1
0 r2/m = ε� 1 is small. We name this condition weak reversible245

poroelasticity. In this case,246

T̄−1 =
(
1 + ετ0T−1e2 ⊗ e2

)
T−1 + O(ε2), (56)

and247

ζ1 = 1− ετ0ζ−1
0 +O(ε)2, ζ0 = 1/(e2 · T−1e2),

whence ζ1 ≈ 1. Then, expanding to first order terms in ε, one gets (collecting

dimensionality terms)

N1 = −T−1RT + ετ0T−1e2 ⊗ eT (57a)

N2 = T−1
(
I + ετ0e2 ⊗ T−1e2

)
, (57b)

N3 = R
(
T−1 + ετ0R−1eT ⊗ R−1eT

)
RT −Q, (57c)

with eT = e1−RT−1e2. It is pointed out that Eqs.(57) are indeed valid asymp-248

totic expansions inasmuch as τ−1
0 ‖R‖ = O(1) and τ−1

0 ‖Q‖ = O(1) or bigger.249

Physically, this amounts to requiring that all elastic constants are of the same250

order, i.e. contrast is excluded. Formally, Eqs.(57) match the corresponding ma-251

trices in incompressible anisotropic elasticity (Fu, 2007, Eqs.(3.14-16)), provided252

that ετ0 is replaced by ζ0 and the opposite sign is taken in the incompressibility253

contributions, that are given by the correction term in each of Eqs.(57). Indeed,254

a similar expansion of Eq.(41) yields255

u̇ = T−1
(
t̂2 − RTu,1 − p0e2

)
(58)

with256

p0 = ετ0
{
−T−1

(
t̂2 − RTu,1

)
· e2 − u,1 · e1

}
. (59)

Providing again that ετ0 = ζ0 and p0 is sign reversed, such equations are for-257

mally equivalent to (3.7) and (3.11) of Fu (2007), respectively giving u̇ and the258

Lagrange multiplier enforcing incompressibility for incompressible anisotropic259

solids. This analysis reveals that the weak poroelastic limit is similar to incom-260

pressible anisotropic elasticity, with yet two important differences. First, given261

that τ0 ∼ ζ0, the condition ετ0 = ζ0 can only be achieved in a correction sense262
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and therefore incompressibility is to be intended as a perturbation from the263

unconstrained leading solution. Second, the sign reversal of p0 reveals that this264

perturbation is taken in the opposite direction, i.e. the role of the fluid phase265

in the weak limit is opposite to that of the incompressibility constraint. At any266

rate, incompressibility cannot be achieved for the solid skeleton in the general267

sense.268

Biot, on heuristic grounds, claims that the incompressible limit is obtained269

letting m → +∞ and α = r/m = 1, see for example Biot (1962). Although,270

just looking at (6), it is manifest that the former condition is sufficient for fluid271

incompressibility, the latter needs some revision. Indeed, the condition α = 1272

merely demands that the fluid response is the same under fluid and solid vol-273

umetric changes, and therefore one may deduce that, for a given pressure pf ,274

it must be ζ − e = − div(u + w) = pf/m. When the fluid phase becomes in-275

compressible, i.e. m → +∞, one needs to specify how the pressure pf behaves276

compared to m. If pf/m→ 0, then zero net flow of both fluid and solid out of277

the control volume is approached and this limit amounts to an isochoric trans-278

formation. This line of reasoning led Biot to the concept of incompressible limit,279

as in Biot (1955). However, while the fluid may behave as incompressible, the280

foregoing analysis shows that the solid does not. In fact, the solid behaves just281

like an anisotropic elastic solid whose Stroh matrices (46) become unbounded282

as r ∼ m → +∞. Besides, to support strong ellipticity (A.2), the elastic con-283

stants must also become unbounded, hence it is concluded that this limit is284

questionable. In fact, the actual physical regime is determined by the ratio τ0ε285

of the poroelastic effect to the elastic effect. In general, when τ0ε = O(1), the286

solid behaves like an ordinary anisotropic solid whose material properties are287

affected by the fluid phase. Instead, in the weak limit τ0ε� 1, the fluid acts as288

a perturbation to the anisotropic solid and this perturbation operates similarly289

to incompressibility, yet in opposing fashion, i.e. a positive pressure accompa-290

nies positive volumetric changes. Finally, when τ0ε� 1, the solid behaves like a291

perturbation of an ideal liquid with small viscosity O(τ0ε)
−1 given by the elastic292

phase.293
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5. Conclusions294

When deriving the Stroh-like formulation of a mechanical system, one is295

confronted with the crucial step of designating the right variable pairs, which296

unlock the full potential of the formalism. Recently, Fu (2007) pointed out that297

energy conjugation is really the guiding tool which drives such designation, thus298

getting away from guess-working and problem intuition, which may not suffice in299

complex situations. Indeed, the Stroh formalism is really a canonical formalism300

in the Hamiltonian sense, where a coordinate is treated in time-like fashion. In301

this paper, we adopt this viewpoint to deal with Biot’s reversible poroelasticity,302

that dispenses with dissipation and occurs in the absence of a fluid pressure303

gradient. This is the same framework as thermoelasticity of perfect conductors,304

the pressure playing the role of temperature. Although this framework is insuf-305

ficient to deal with any poroelastic problem, it may well provide the starting306

point for the general formulation. Also, it investigates the most useful setting for307

specimen testing. Spotlight is here set on emphasizing the canonical approach308

and the features it brings out. Two formulations are derived: the first accounts309

for both the solid and the fluid and it possesses, besides energy conservation,310

translational invariance with respect to the fluid velocity. This feature, that is311

a result of the absence of a pressure gradient, reveals constraints on the con-312

jugate variables. To avoid dealing with such constraints, a second approach is313

developed that is restricted to the solid skeleton only. The corresponding Stroh314

formulation matches anisotropic elasticity where, however, the Stroh matrices315

incorporate fluid coupling. Besides, strong ellipticity warrants their positive def-316

inite character. Energy conservation and the impedance matrix follow naturally.317

The special case of weak poroelasticity, whereby fluid-solid coupling is weaker318

than the elastic response, is also investigates and shows remarkable similarities319

with incompressible anisotropic elasticity with yet two important differences,320

namely incompressibility acts as a small perturbation with opposite sign. This321

analysis leads to reconsider the incompressible limit originally introduced by322

Biot, that seems to show some inconsistencies.323
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Appendix: Strong ellipticity in reversible poroelasticity338

We now discuss the role of strong ellipticity in poroelasticity in the absence339

of dissipation. For a reversible process, we have a uniform pressure distribution340

pf and the motion equation for the solid skeleton is given by Eq.(10a) where we341

write inertia explicitly (i.e. it is not hidden inside the Stroh matrices)342

cijkluk,lj − rζ,jδij = ρüi. (A.1)

As well known (Edmondson and Fu, 2009), strong ellipticity may be equally

retrieved demanding that the speed v of any amplitude propagating body wave

in any direction is real (and positive, without loss of generality). To this aim,

let’s assume u = αeı(β·x−vt), whence

e = αkβke
ı(β·x−vt), ζ = m−1

(
pf + rαkβke

ı(β·x−vt)
)
.

18



Then, Eq.(A.1) becomes

cijklαkβlβj −
r2

m
δijαkβkβj = ρv2αi,

which, multiplied through by αi and summed over i, gives(
cijkl −

r2

m
δijδkl

)
αiαkβlβj = ρv2αiαi > 0,

for any α,β different from zero. This is a variant of the incompressibility343

constraint. In particular, letting β = e2, one gets that344

T̄ = T− r2

m
e2 ⊗ e2 is positive definite, (A.2)

and therefore Eq.(40) may be solved.345
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