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Abstract

We deal with the singularly perturbed Nagumo-type equation

ε2u′′ + u(1− u)(u− a(s)) = 0,

where ε > 0 is a real parameter and a : R → R is a piecewise constant function
satisfying 0 < a(s) < 1 for all s. For small ε, we prove the existence of chaotic,
homoclinic and heteroclinic solutions. We use a dynamical systems approach, based
on the Stretching Along Paths technique and on the Conley-Ważewski’s method.
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1 Introduction

In this paper, we deal with the singularly perturbed Nagumo-type equation

ε2u′′ + u(1− u)(u− a(s)) = 0, (1.1)
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where ε > 0 is a small parameter and a : R→ R is a locally integrable function satisfying

0 < a(s) < 1, for every s ∈ R.

Notice that equation (1.1) has the two constant solutions u ≡ 0 and u ≡ 1 which actually
behave like saddle points); we will be interested in the existence of solutions u satisfying
0 < u(s) < 1 for all s.

Our investigation is motivated by a classical paper by Angenent, Mallet-Paret and
Peletier [1], dealing with the Neumann boundary value problem associated with (1.1) in
the framework of steady-states solutions of the corresponding parabolic problem (which
arises in population genetics). On the lines of previous works [4, 16], in [1] it is proved
that, for ε small enough, the Neumann boundary value problem associated with (1.1) has
multiple solutions, whose shape and limit profile (for ε→ 0+) can be precisely described
in terms of the zeros of the function a− 1/2. This analysis suggests that the dynamics
of (1.1) could be quite rich provided the function a crosses the value 1/2.

The aim of the present paper is indeed to prove the existence of solutions to (1.1)
defined on the whole real line and exhibiting complex behavior, when a switches infinitely
many times between two values a−, a+ with

0 < a− <
1

2
< a+ < 1.

(see, however, Remark 4.5 for possible generalizations of the above assumption). More
precisely, we will provide solutions of essentially two types. On one hand, we find the
existence of globally defined solutions rotating (in the phase-plane) a certain number
of times around (a±, 0) in suitable intervals I±j (j ∈ Z) (solutions of this kind will be

called chaotic); the number of revolutions can be arbitrarily prescribed and ∪j∈ZI±j is
unbounded from below and from above, i.e., solutions oscillate infinitely many times on
the whole real line. In particular, if a is T -periodic for some T > 0, we find the existence
of subharmonic solutions to (1.1) with complex behavior; indeed, one could show that
the Poincaré map associated with (1.1) on a period is topologically semiconjugated to
the Bernoulli shift on a suitable number of symbols (as in [3], see also Remark 5.4).

On the other hand, we are able to produce homoclinic and heteroclinic solutions,
having the same nodal behavior as before on bounded intervals of arbitrarily large length
and converging monotonically to one of the equilibria (0, 0) and (1, 0) for t→ ±∞.

A similar nonlinearity is considered in the recent papers [6, 7, 32, 33]. However,
those papers deal with situations which can be considered in a certain sense dual to
ours, since they have a fixed central equilibrium (a center, in fact) while the two nearby
saddle points move according to a suitable piecewise constant weight function. Moreover,
we decided to focus on finding solutions that are obtained by exploiting quite different
configurations than those investigated in the mentioned papers, and to omit the details
in cases that are similar to those already treated (see Remark 4.6).
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For the proof of our results, we use the change of variable x(t) = u(εt), so that the
equivalent planar system associated with (1.1) is transformed into

x′ = y, y′ = x(x− 1)(x− a(εt)); (1.2)

hence, the smallness of ε > 0 reflects into the fact that the function aε(t) = a(εt) is
constant on intervals of large amplitude. As a consequence, (1.2) can be regarded as
a slowly varying perturbation of an autonomous system with two hyperbolic equilib-
rium points; in this setting, the arising of rich dynamics seems to be a quite common
phenomenon (see, among others, [8, 10] as well as the bibliography in [33]).

In order to detect such a complex behavior, we use a dynamical systems approach,
based on a careful analysis of the trajectories of the (piecewise autonomous) system
(1.2). More in detail, we first rely on a topological technique of path stretching (the
so-called SAP method) developed in [22, 23, 25, 27] to detect the presence of symbolic
dynamics (as well as of periodic points, when a is periodic) for suitable Poincaré maps
associated with (1.2). As a by-product, this approach also provides us planar paths
which can be used to connect the stable and unstable manifolds of the equilibria so as to
obtain heteroclinic and homoclinic solutions with a complex nodal behavior (see, among
others, [6, 9, 14, 17] and the references therein for related results in this direction).
It has to be noticed that, since the equation is non-autonomous, the existence of the
stable/unstable manifolds is not straightforward; we use indeed the classical Conley-
Ważewski’s method [5, 30] (see also [7, 21]) to prove that these sets actually exist and
can be suitably localized.

The plan of the paper is the following. In Section 2, we briefly discuss the autonomous
case. In Section 3, we prove some stretching properties, as well as the existence of stable
and unstable manifolds to the equilibria. In Section 4, we state and prove our main
results. Finally, some basic facts about SAP method are collected in a final Appendix.

2 The autonomous case

In this section we collect some basic results for the autonomous equation

x′′ + x(1− x)(x− a) = 0, (2.1)

where a is a real constant such that

0 < a < 1.

Precisely, we are going to perform a phase-plane analysis for the equivalent planar system{
x′ = y

y′ = x(x− 1)(x− a).
(2.2)
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We will always confine our attention to the dynamics in the vertical strip [0, 1]× R.

It is immediately seen that the points (0, 0), (a, 0) and (1, 0) are the only equilibrium
points of (2.2). To proceed further, we define the function

Ea(x, y) =
1

2
y2 + Fa(x), ∀ (x, y) ∈ R2,

where

Fa(x) = −1

4
x4 +

1 + a

3
x3 − a

2
x2, ∀ x ∈ R.

As well-known, system (2.2) is conservative and the function t 7→ Ea(x(t), y(t)) is con-
stant along solutions (x(t), y(t)) to (2.2). To describe the global dynamics of (2.2), we
can thus study the geometry of the level sets E−1

a (c) for different values of c ∈ R.

It turns out that the value of the constant a plays a significant role. We start by
analyzing the case

a =
1

2
, (2.3)

which indeed gives rise to the simplest picture. Precisely, the level set E−1
a (c) can here

be described as follows:

- for c = a−2
12 a

2, it is the point (a, 0);

- for a−2
12 a

2 < c < 0, it is a closed cycle around (a, 0);

- for c = 0, it is the union of the points (0, 0), (1, 0) and the heteroclinic orbits
joining them;

- for c > 0, it is the union of two curves, one in the half-plane {(x, y) ∈ R2 : y > 0},
one in the half-plane {(x, y) ∈ R2 : y < 0}, connecting two points of the form
(0, y1) and (1, y1) for some y1 ∈ R.

The phase-portrait is shown in Figure 1.
We now turn our attention to the case

0 < a <
1

2
; (2.4)

now, for the level set E−1
a (c) we have the following:

- for c = a−2
12 a

2, it is the point (a, 0);

- for a−2
12 a

2 < c < 0, it is a closed cycle around (a, 0);

- for c = 0, it is the union of the point (0, 0) and its homoclinic orbit H(a); for
further convenience, we denote by (za, 0) the point of intersection between H(a)
and the positive x-semiaxis;
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Figure 1: The phase-portrait of the autonomous system (2.2) for a = 1/2. The heteroclinic
orbits connecting the equilibria (0, 0) and (1, 0) are painted with a darker color. For graphical
reasons, a slightly different x and y scaling has been used.

- for 0 < c < 1−2a
12 , it is made by a curve lying between the homoclinic to (0, 0)

and the stable/unstable manifold H±(a) of (1, 0), connecting a point of the form
(0, y1) with a point of the form (0,−y1), for some y1 > 0;

- for c = 1−2a
12 , it is the union of the point (1, 0) and its stable/unstable manifolds;

- for c > 1−2a
12 , it is the union of two curves, one in the half-plane {(x, y) ∈ R2 : y >

0}, one in the half-plane {(x, y) ∈ R2 : y < 0}, connecting a point of the form
(0, y1) with a point of the form (1, y2), for some y1, y2 ∈ R.

Finally, for
1

2
< a < 1 (2.5)

the phase-portrait can be obtained from the previous one by a symmetry with respect
to the line x = 1

2 . The homoclinic orbit and the stable/unstable manifolds are defined
in an analogous way, by swapping (0, 0) and (1, 0), and will be again denoted by H(a)
and H±(a); moreover, (za, 0) will be the point of intersection between H(a) and the
positive x-semiaxis. Both the phase-portraits are shown in Figure 2.
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Figure 2: On the left, the phase-portrait of the autonomous system (2.2) for 0 < a < 1/2; on
the right, the phase-portrait of the autonomous system (2.2) for 1/2 < a < 1. The homoclinic
orbits, as well as the stable/unstable manifolds, are painted with a darker color. For graphical
reasons, a slightly different x and y scaling has been used.

Remark 2.1. From the above discussion, it appears that the phase-portrait of system
(2.2) is completely different in the case a = 1/2 and in the case a 6= 1/2. Indeed, the
heteroclinc orbit connecting (0, 0) and (1, 0) for a = 1/2 disappear as soon as a 6= 1/2,
splitting into orbits of different type. In terms of the potential Fa(x), we have indeed
Fa(0) = Fa(1) if and only if a = 1/2; in this case, the potential is said to be balanced. In
this context, (4.1) can be framed in the setting of equations with unbalanced potentials
(compare with the introduction in [20]).

3 Topological lemmas

In this section we collect the preliminary technical lemmas which will be used in the
proof of our main results.

3.1 Stretching properties

In this section, we fix two real constants a−, a+ satisfying

0 < a− <
1

2
< a+ < 1.

Our goal is to prove some results for the dynamics of the autonomous system (2.2) for
a = a− and a = a+ on suitable sets which will be constructed below. Throughout this
section, we always refer to the definitions given in the Appendix. Also, to simplify the
notation, from now on we denote by S(a−) (resp., S(a+)) the planar system (2.2) for
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a = a− (resp., a = a+); moreover, let Θ(a, z) be the orbit of (2.2) passing through the
point z ∈ R2.

For T > 0 we finally define the maps ΨT
− and ΨT

+ as the restriction to the vertical strip
[0, 1]× R of the Poincaré maps associated with systems S(a−) and S(a+), respectively,
on the interval [0, T ], i.e.

ΨT
±(x0, y0) = (x(T ;x0, y0), y(T ;x0, y0)), ∀ (x0, y0) ∈ [0, 1]× R,

where (x(·;x0, y0), y(·;x0, y0)) is the unique solution to S(a±) satisfying the initial con-
dition (x(0), y(0)) = (x0, y0). Since we will be interested in the dynamics on the strip
[0, 1]×R only, we can assume that such maps are globally defined just by suitably mod-
ifying the nonlinearity fa(x) = x(1 − x)(x − a) for x /∈ [0, 1] (for instance, by setting
fa(x) = 0 for x /∈ [0, 1]).

Let us fix p− and p+ such that

1

2
< max

{
za− , a+

}
< p− < 1 and 0 < p+ < min

{
a−, za+

}
<

1

2
, (3.1)

where the points za− and za+ have been defined in the discussions after (2.4) and (2.5),
respectively. Let R1 and R3 be the two connected components of the intersection of the
following two strips:

- the strip S− between the stable manifold H+(a−) and the orbit Θ(a−, (p−, 0)) of
S(a−),

- the strip S+ between the unstable manifold H+(a+) and the orbit Θ(a−, (p+, 0))
of S(a+).

Notice that, since p+ < za+ and za− < p−, the above defined orbits passing through
(p±, 0) lie between the homoclinics and the stable/unstable manifolds of the correspond-
ing systems S(a±). Therefore, the defined regions R1 and R3 are topological rectangles,
and we name R1 (resp., R3) the one contained in the upper (resp., lower) half-plane.

In what follows we also need to provide an orientation for the above constructed
rectangles; to this aim, we denote by R±1 the components of the boundary of R1 lying
on orbits of system S(a±) and by R±3 the components of the boundary of R1 lying on
orbits of system S(a∓).

Now, let R2 be the intersection of the following regions:

- the strip S− defined above,

- the annular region between the homoclinicH(a+) and the closed orbit Θ(a+, (q+, 0))
of S(a+), for some q+ such that

p− < q+ < 1, (3.2)
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- the upper half-plane.

Straightforward computations show that the homoclinic H(a+) is contained in the region
bounded by the stable and unstable manifolds H±(a−). Moreover, since a+ < p− < q+

(recall both (3.1) and (3.2)) the closed orbit Θ(a+, (q+, 0)) winds around the point
(p−, 0), as well. These facts together guarantee that R2 is a topological rectangle.

In a similar way, we can define the rectangle R4 as the intersection of the following
regions:

- the strip S+ defined above,

- the annular region between the homoclinicH(a−) and the closed orbit Θ(a−, (q−, 0))
of S(a−), for some q− such that

0 < q− < p+, (3.3)

- the lower half-plane.

Notice that the rectangles R2 and R4 depend also on the choice of the numbers q±
satisfying (3.2) and (3.3) which is not arbitrary and will be specified in Proposition 3.1.

We can again orientate the above constructed rectangles, denoting by R−2 the com-
ponents of the boundary of R2 lying on orbits of the systems S(a+) and by R+

2 the
remaining components; finally, R−4 are the components of the boundary of R4 lying on
orbits of the systems S(a−) and R+

4 are the remaining components.

We illustrate the whole construction of the rectangles Ri, for i = 1, . . . , 4 in Figure
3.

We are now in position to prove our crucial result on the stretching (referring again
to the Appendix for definitions and symbols).

Proposition 3.1. The following stretching properties hold true.

1. There exists T ∗1 > 0 such that, for every T1 > T ∗1 , we have

ΨT1
− : (R1,R−1 ) m−→ (R2,R−2 ), ΨT1

− : (R2,R+
2 ) m−→ (R3,R−3 ),

ΨT1
+ : (R3,R−3 ) m−→ (R4,R−4 ), ΨT1

+ : (R4,R+
4 ) m−→ (R1,R−1 ),

for a suitable choice of q+ and q− (close enough to 1 and to 0, respectively).

2. For any N ∈ N, there exists T ∗2 (N) > 0 such that, for every T2 > T ∗2 (N), we have

ΨT2
+ : (R2,R−2 ) m−→N (R2,R+

2 ), ΨT2
− : (R4,R−4 ) m−→N (R4,R+

4 ).
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Figure 3: The construction of the topological rectangles Ri, for i = 1, . . . , 4; in particular,
we comment in detail the construction of R1 and R2. Consider the stable manifold (to (1, 0))
H+(a−) (in red), as well as the homoclinic (to (0, 0)) H(a−) (in pink) and recall that such an
orbit intersects the positive x-semiaxis at the point (za− , 0). The condition p− > za− (see (3.1))
then guarantees that the piece of orbit of Θ(a−, (p−, 0)) (also in red) in the upper half-plane lies
between H(a−) and H+(a−). With an analogous construction for the system S(a+), and taking
into account that p+ < 1/2 < p− (see (3.1) again) we can thus determine the rectangle R1 (in
orange) in the upper-half plane (as well as the rectangle R3 (in purple) in the lower half-plane.
Now, consider the homoclinic (to (1, 0)) H(a+) (in black), intersecting the positive x-semiaxis
at the point (za+

, 0). It is easy to check that this orbit is contained in the region bounded
the stable and unstable manifold H±(a−); moreover, the condition za+ < a+ < p− (see (3.2))
implies that it intersects the orbit Θ(a−, (p−, 0)). Finally, focus on the orbit Θ(a+, (q+, 0)) (also
in black). Since a+ < p− < q+ (see both (3.1) and (3.2)), such an orbit intersects Θ(a−, (p−, 0))
as well (that is, the closed orbit Θ(a+, (q+, 0)) winds around the point (p−, 0)). This determines
the rectangle R2 (in green). An analogous construction gives R4 (in grey). Recall that, for the
validity of the stretching properties in Proposition 3.1, q± cannot be arbitrary numbers satisfying
(3.2) and (3.3), but they have to fulfill further conditions (see the proof).
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Proof. 1. We give the details for the stretching property

ΨT1
− : (R1,R−1 ) m−→ (R2,R−2 ),

the other three statements of the first group being analogous. We first observe that
the time needed to cover the piece of the orbit Θ(a−, (p−, 0)) contained in the right
half-plane is given by

√
2

∫ p−

0

dx√
Fa−(p−)− Fa−(x)

;

similarly, the time needed to cover the piece of the orbit Θ(a+, (p+, 0)) contained in the
right half-plane is given by

√
2

∫ 1

p+

dx√
Fa+(p+)− Fa+(x)

.

Now, let

T ∗1 =
√

2 max

{∫ p−

0

dx√
Fa−(p−)− Fa−(x)

,

∫ 1

p+

dx√
Fa+(p+)− Fa+(x)

}

and fix T1 > T ∗1 . Moreover, we define

q+ = sup
{
x ∈ [p−, 1] : (ΨT1

− )−1(x, 0) ∈ R1

}
.

Let us observe that the above set is non-empty since, in view of the choice of T1,
x 7→ (ΨT1

− )−1(x, 0) (x ∈ [p−, 1]) parameterizes a curve joining a point in the second
quadrant with the point (1, 0), whose intersection in the first quadrant is contained in
S−. By a continuity argument, moreover, we can easily prove that p− < q+ < 1. In this
manner, (3.2) is satisfied and this completely determines the rectangle R2. This choice
of q+ helps in controlling the behavior of the solutions which move according to system
S(a−) on a time interval of length T1 and either start from R1 or arrive on R3. In fact,
such solutions evolve inside the strip S− and, by the choice of q+, they can cross the
positive x axis only at a point lying between (p−, 0) and (q+, 0). Similarly, we define

q− = inf
{
x ∈ [0, p+] : (ΨT1

+ )−1(x, 0) ∈ R3

}
.

in order to complete the definition of R4.

We now pass to the verification of the stretching property, according to Definition 5.1.
Let γ : [0, 1] → R1 be a path such that γ(0) and γ(1) lies on different components of
R−1 and, just to fix the ideas, suppose that γ(1) lies on the stable manifold H+(a−).
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We observe that ΨT1
− (γ(1)) remains on H+(a−) in the first quadrant while, by the choice

of T1, ΨT1
− (γ(0)) lies in the third quadrant; hence, by the positive invariance of the strip

S− for the flow of S(a−), we have

ΨT1
− (γ([0, 1])) ∩R2 6= ∅.

On the other hand, by the choices of q+ and T1, ΨT1
− (γ([0, 1])) cannot intersect the

boundary of R2 on the x-axis. As a consequence, it intersects the two components of
R−2 , say R−2,u and R−2,d (d means “down” and u means “up”, with obvious meaning).
Now, let

t−γ = sup
{
t ∈ [0, 1] : ΨT1

− (γ(t)) ∈ R−2,d
}

and
t+γ = inf

{
t > t−γ : ΨT1

− (γ(t)) ∈ R−2,u
}
.

By construction, the sub-path γ1 = ΨT1
− ◦γ|[t−γ ,t+γ ] has image contained in R2 and crosses

it from R−2,d to R−2,u, as desired.

2. We now turn our attention to the second group of statements, proving that

ΨT2
+ : (R2,R−2 ) m−→N (R2,R+

2 )

(the other one being analogous); we observe that here R2 appears with different orien-
tations when considered as the domain or the target space of ΨT2

+ . We introduce the
polar coordinate system, centered at (a+, 0),

x = a+ + r cos θ, y = −r sin θ;

then, for any z ∈ R2, we denote by θ(·; z) the (unique) continuous angular function
associated to the solution of S(a+) starting from z at the time t = 0, and such that
θ(0; z) ∈ [−π, 0]. Moreover, we recall that the time needed by any solution to system
S(a+) starting from a point onR−2,d to perform one turn around (a+, 0) can be computed
as

√
2

∫ q+

η+

dx√
Fa+(q+)− Fa+(x)

,

where η+ ∈ (0, q+) is the only number such that Fa+(η+) = Fa+(q+).

Given the natural number N ≥ 1, we define

T ∗2 (N) = (N + 1)
√

2

∫ q+

η+

dx√
Fa+(q+)− Fa+(x)
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and let T2 > T ∗2 . For any j = 1, . . . , N we set

Hj = {z ∈ R2 : θ(T2, z) ∈ [(2j − 1)π, 2jπ]};

let us observe that the sets H1, . . . ,HN are compact and disjoint.

Now, let γ : [0, 1] → R2 a path such that γ(0) and γ(1) lie on different components of
R−2 and, to fix the ideas, assume that γ(1) lies on R−2,u (that is, on the stable manifold
to (1, 0)). Hence, θ(T2, γ(1)) < 0 while, in view of the choice of T2, θ(T2, γ(0)) > 2Nπ.
As a consequence, we can find N -disjoint subintervals I1, . . . , IN ⊂ [0, 1] such that
γ(s) ∈ Hj for any s ∈ Ij and ΨT2

+ ◦ γ|Ij crosses R2 from one component of R+
2 to the

other component of R+
2 .

Remark 3.2. We observe that the stretching relationships proved in point 2 of Propo-
sition 3.1 naturally provide information about some nodal properties of the solutions
of the systems S(a±). In particular, the (clockwise) winding number around the point
(a+, 0) of solutions of S(a+) starting in Hj (for some j = 1, . . . , N), in a time interval of
length T2, lies in the interval (j − 1/2, j + 1/2) and, more precisely, the first derivative
of those solutions vanishes exactly 2j times. Similar considerations hold of course for
solutions to S(a−) around the point (a−, 0). With a slight abuse of terminology, in our
main results we will say that, in this case, solutions make j turns around (a±, 0).

Remark 3.3. We observe that the construction of the rectangles Ri (i = 1, . . . , 4)
given in this section is independent from the fact that the homoclinics H(a−) or H(a+)
intersect, that is, we are not assuming that za+ ≤ za− (see Figure 4). However, it is
worth noticing that when the strict inequality

za+ < za− (3.4)

holds true, one can easily construct two further rectangles satisfying stretching condi-
tions. This is indeed a well-known geometrical configuration, related to the concept
Linked Twist Map, which has been extensively discussed in [18]. We refer again to
Figure 4. With elementary computations, it is possible to show that condition (3.4) is
satisfied when a± are not too far from the value 1/2.

3.2 Stable and unstable manifolds

In this section we prove the existence of stable and unstable manifolds to the equilibria
of a nonautonomous planar system. Our result will be given in a slightly more general
setting than needed; more precisely, we deal with the planar system{

x′ = y

y′ = x(x− 1)(x− q(t)),
(3.5)
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Figure 4: On the left, the construction of the rectangles when a− = 0.4 and a+ = 0.6, so
that the homoclinics intersect (this is indeed the same picture as in Figure 3). On the right,
the construction of the rectangles in a situation in which the homoclinics do not intersect; here
a− = 0.3 and a+ = 0.7. One can immediately realize that nothing changes. However, on the
left again, it is shown how the linking between the homoclinics provides two further topological
rectangles, painted in yellow. It is well-known that such rectangles verify stretching properties,
within a Linked Twist Maps framework (see [18]).

with q : R → R a locally integrable function. We use the notation z(t; p, t0) for the
(unique) solution to (3.5) satisfying the condition z(t0) = p.

Proposition 3.4. The following statements hold true.

1. Assume that

0 < a− ≤ q(t) ≤ a+ < 1, for a.e. t ∈ (−∞, t0],

for some t0 ∈ R. Then there exist two continua (i.e., connected compact sets)
Γ0
−∞,Γ

1
−∞ ⊂ R2, lying between the unstable manifolds to (0, 0) and (1, 0) of the

systems S(a−) and S(a+) respectively, and such that, for any p ∈ Γi−∞, it holds
that

lim
t→−∞

z(t; p, t0)→ (i, 0), for i = 0, 1.

Moreover, there exist two constants a0
− ∈ (0, a−) and a1

+ ∈ (a+, 1) such that

Γ0
−∞ ∩

(
[0, a0

−]× R
)

= {(x, y0
−∞(x)) : x ∈ [0, a0

−]}

and
Γ1
−∞ ∩

(
[a1

+, 1]× R
)

= {(x, y1
−∞(x)) : x ∈ [a1

+, 1]},
for suitable continuous functions y0

−∞ : [0, a0
−]→ R+ and y1

−∞ : [a1
+, 1]→ R−.
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2. Assume that

0 < a− ≤ q(t) ≤ a+ < 1, for a.e. t ∈ [t0,+∞),

for some t0 ∈ R. Then there exist two continua (i.e., connected compact sets)
Γ0

+∞,Γ
1
+∞ ⊂ R2, lying between the stable manifolds to (0, 0) and (1, 0) of the

systems S(a−) and S(a+) respectively, and such that, for any p ∈ Γi+∞, it holds
that

lim
t→+∞

z(t; p, t0)→ (i, 0), for i = 0, 1.

Moreover, there exist two constants a0
− ∈ (0, a−) and a1

+ ∈ (a+, 1) (the same ones
as in the previous statement) such that

Γ0
+∞ ∩

(
[0, a0

−]× R
)

= {(x, y0
+∞(x)) : x ∈ [0, a0

−]}

and
Γ1

+∞ ∩
(
[a1

+, 1]× R
)

= {(x, y1
+∞(x)) : x ∈ [a1

+, 1]},

for suitable continuous functions y0
+∞ : [0, a0

−]→ R− and y1
+∞ : [a1

+, 1]→ R+.

Proof. We observe that Statement 2 is a consequence of Statement 1 and the symmetry
enjoyed by the vector field in (3.5) with respect to the axis y = 0. Hence we have that
Γi+∞ = {(x, y) : (x,−y) ∈ Γi−∞} and yi+∞ ≡ −yi−∞ for i = 0, 1. Concerning the proof
of Statement 1, we give only the details about the continuum Γ0

−∞, since the existence
and the properties of Γ1

−∞ can be deduced in an analogous way.
Let us fix ε > 0 such that

0 < a− − ε < a+ + ε < 1

and define Σε ⊂ R2 as the compact triangular region of the first quadrant of the phase-
plane bounded by the unstable manifolds to (0, 0) for the systems S(a−−ε) and S(a++ε)
and the vertical line x = a− − ε.
We first prove that any solution z(t) = (x(t), y(t)) which remains in Σε for every t ≤ t0
has to satisfy

lim
t→−∞

z(t) = (0, 0).

Indeed, for such a solution we have that, for t ≤ t0,

x(t) ∈ (0, a− − ε] , x′(t) > 0, x′′(t) > 0,

and, hence, there exist

lim
t→−∞

x(t) = L < a− and lim
t→−∞

x′(t) = 0.
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Finally, L must be zero; otherwise:

lim inf
t→−∞

x′′(t) = lim inf
t→−∞

{x(t)[1− x(t)][a(t)− x(t)]} ≥ L(1− a−)ε > 0

and, thus, we would have limt→−∞ x
′(t) 6= 0.

Now we write system (3.5) as an autonomous system in R3:
x′ = y

y′ = x(x− 1)(x− q(t))
t′ = 1

(3.6)

and let π(·; s0, P ) be the unique solution to (3.6) starting from P ∈ R3 at s = s0. We
set

W = Σε × (−∞, t0], U = (γ− \ {(0, 0)})× (−∞, t0], V = (γ+ \ {(0, 0)})× (−∞, t0],

where γ− and γ+ are the portions of the boundary of Σε lying on the unstable manifolds
to (0, 0) for the systems S(a− − ε) and S(a+ + ε) respectively.

Let us study the behavior of the vector field associated with system (3.6) at any point
P = (x1, y1, t1) ∈ ∂W . First, if (x1, y1) = (0, 0), it is clear that π(s; t1, P ) = (0, 0, s)
for all s. Next, if P ∈ U ∪ V , the vector field points strictly inwards W ; therefore,
π(s; t1, P ) /∈W for all s in a left neighborhood of t1. Finally, if either

(x1, y1) ∈ ∂Σε \ (γ− ∪ γ+ ∪ {(0, 0)})

or
(x1, y1) ∈ Σε \ (γ− ∪ γ+ ∪ {(0, 0)}) and t1 = 0

then π(s; t1, P ) ∈ W for all s in a left neighborhood of t1, since in those points the
vector field of (3.6) points strictly outwards W .

Now, we consider the set D ⊂W given by

D = {P = (x1, y1, t1) ∈W : ∃s < t1 s.t.π(s; t1, P ) /∈W}

and the map
Φ : D → ∂W

such that Φ(P ) is the first backward exit point from W for the solution of (3.6) starting
from the point P , namely Φ(P ) = π(s∗; t1, P ) where

s∗ = sup{s < t1 : π(s; t1, P ) 6∈ D}.

15



It is proved in [5] that Φ is continuous on D; moreover, by the previous discussion,
Φ(D) = U ∪ V is not connected and U and V are its connected components.

Let γ : [0, 1] → Σε be a continuous path such that γ(0) ∈ γ− \ {(0, 0)} and γ(1) ∈
γ+ \ {(0, 0)}. Then we have that Φ(γ(0)) ∈ U , Φ(γ(1)) ∈ V . Since [0, 1] is connected,
there must be τ ∈ (0, 1) such that γ(τ) /∈ D. By the topological lemma [28, Corollary
6] there exists a continuum Γ0

−∞ ⊂ Σε \D such that

(0, 0) ∈ Γ0
−∞ and Γ0

−∞ ∩ ({a− − ε} × R) 6= ∅.

Letting ε → 0+, it is actually possible to show that Γ0
−∞ ⊂ Σ0 (that is, it lies between

the unstable manifolds to (0, 0) and (1, 0) of the systems S(a−) and S(a+) respectively)
and reaches the vertical line x = a− (see [15, Theorem 6, §47, II, p.171]).

The fact that, in a suitable vertical strip, Γ0
−∞ can be written as the graph of a continuous

function can be proved as in [29, Lemma 2.4], taking into account the fact that, for

f(t, x) = x(1− x)(x− q(t)) and a0
− =

1 + a− −
√
a2
− − a− + 1

3
,

it holds ∂xf(t, x) ≥ 0 for a.e. t ≤ t0 and x ∈ [0, a0
−].

Remark 3.5. We observe that the mere existence of the stable and unstable manifolds
follows from the Stable Manifold Theorem (see[13]), since (0, 0) and (1, 0) are hyperbolic
equilibrium points of system (3.5). Here, we have used Conley-Ważewski’s method in
order to provide, for such sets, a precise localization, which is indeed needed in our
arguments (see the recent paper [31] in which a general method is proposed and applied
in order to localize invariant sets). Notice that in this way we cannot directly claim
that stable/unstable manifolds are curves (indeed, Conley-Ważewski’s method applies in
more general cases in which this is not true); however, we can recover such an information
in an elementary way, using the sign of the nonlinearity as in [29].

4 Main results

Let us consider the equation
ε2u′′ + f(s, u) = 0 (4.1)

where

f(s, u) =

{
u(1− u)(u− a(s)) if u ∈ [0, 1],

0 if u /∈ [0, 1],
(4.2)

with a : R→ R a locally integrable function satisfying

0 < a(s) < 1, for every s ∈ R.
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Remark 4.1. We observe that, in view of the boundedness of f , any solution to (4.1)
is globally defined. Moreover, if a solution u satisfies u(s∗) /∈ (0, 1) for some s∗ ∈ R,
then u(s) /∈ (0, 1) either for all s ≤ s∗ or for all s ≥ s∗.

From now on, we assume

a(s) =

{
a− if s2k ≤ s < s2k+1

a+ if s2k+1 ≤ s < s2k+2 ,
(4.3)

where a−, a+ are real constants with

0 < a− <
1

2
< a+ < 1 (4.4)

and (sk)k∈Z ⊂ R is a sequence such that:

0 < δ ≤ inf
k∈Z

(sk+1 − sk) (4.5)

and, thus, sk < sk+1 for every k ∈ Z and limk→±∞ sk = ±∞. For every j ∈ Z let us set

Ij = [s6(j−1), s6j ], I+
j = [s6j−5, s6j−4], I−j = [s6j−2, s6j−1].

In this setting, we will prove the following results.

The first one, Theorem 4.2, deals with chaotic solutions.

Theorem 4.2. For any integer M ≥ 1, there exists ε∗ = ε∗(M) > 0, such that, for any
ε ∈ (0, ε∗) and for any double infinite sequence n = {(n+

j , n
−
j )}j∈Z, with n±j ∈ {1, . . . ,M}

for all j ∈ Z, there exists a globally defined solution u of (4.1), with 0 < u(s) < 1 for
all s ∈ R, such that its trajectory (u, u′) makes n±j turns around (a±, 0) in the interval

I±j , for all j ∈ Z. Moreover, if the sequence (sk − sk−1) is 6-periodic and the sequence
n is `-periodic for some ` ∈ N, then this solution u is `(s6 − s0)-periodic.

Notice that the sentence “n±j turns around (a±, 0)” in the above statement has to
be meant according to Remark 3.2; the same terminology will be used in Theorems 4.3
and 4.4 below, dealing with heteroclinic and homoclinic solutions, respectively.

Theorem 4.3. For any integer M ≥ 1, there exists ε∗ = ε∗(M) > 0, such that, for any
ε ∈ (0, ε∗), for any integer K ≥ 0 and for any n = {(n+

j , n
−
j )}j=1,...,K (this K-uple is

considered to be empty if K = 0) with n±j ∈ {1, . . . ,M} for all j = 1, . . . , k, there exists
a globally defined solution u of (4.1), with 0 < u(s) < 1 for all s ∈ R, such that:

1. (u(−∞), u′(−∞)) = (0, 0),

2. (u(+∞), u′(+∞)) = (1, 0),
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3. the trajectory (u, u′) makes n±j turns around (a±, 0) in the interval I±j , for all
j = 1, . . . ,K,

4. u is monotone in (−∞, s0] and in [s6K ,+∞).

Theorem 4.4. For any integer M ≥ 1, there exists ε∗ = ε∗(M) > 0, such that, for any
ε ∈ (0, ε∗), for any integer K ≥ 0 and for any n = {(n+

j , n
−
j )}j=1,...,K (this K-uple is

considered to be empty if K = 0) with n±j ∈ {1, . . . ,M} for all j = 1, . . . , k, there exists
a globally defined solution u of (4.1), with 0 < u(s) < 1 for all s ∈ R, such that:

1. (u(−∞), u′(−∞)) = (0, 0),

2. (u(+∞), u′(+∞)) = (0, 0),

3. the trajectory (u, u′) makes n±j turns around (a±, 0) in the interval I±j , for all
j = 1, . . . ,K,

4. u is monotone in (−∞, s0] and in [s6K+1,+∞) and u′ vanishes exactly once in
(s6K , s6K+1).

4.1 Proof of the main results

In order to prove the above theorems, we perform the change of variable

x(t) = u(εt), t ∈ R,

converting the equation (4.1) into

x′′ + f(εt, x) = 0,

with

f(εt, x) =


x(1− x)(x− a−) if x ∈ [0, 1] and t ∈ [t2k, t2k+1) , k ∈ Z
x(1− x)(x− a+) if x ∈ [0, 1] and t ∈ [t2k+1, t2k+2) , k ∈ Z
0 if x 6∈ [0, 1]

where we have set
tk =

sk
ε
, for every k ∈ Z.

Notice that, in view of (4.5), we now have

0 <
δ

ε
≤ inf

k∈Z
(tk+1 − tk).
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Let us define, for any k ∈ Z

Dk = Pk = R1 and P̃k = (R1,R−1 )

and

φk = Ψ
t6k+6−t6k+5
+ ◦Ψ

t6k+5−t6k+4
− ◦Ψ

t6k+4−t6k+3
+ ◦Ψ

t6k+3−t6k+2
− ◦

◦Ψ
t6k+2−t6k+1
+ ◦Ψ

t6k+1−t6k
− .

In other words, φk(p) = (x(t6k+6), x′(t6k+6)) where x is the solution of x′′+ f(εt, x) = 0
with (x(t6k), x

′(t6k)) = p.

Proof of Theorem 4.2. Given M ≥ 1, let us define ε∗(M) > 0 as

ε∗(M) =
δ

max{T ∗1 , T ∗2 (M)}
, (4.6)

where T ∗1 , T
∗
2 (M) are given by Proposition 3.1. Now we take ε ∈ (0, ε∗); notice that we

have
tk+1 − tk > max{T ∗1 , T ∗2 (M)}, for every k ∈ Z.

In view of Propositions 3.1 and 5.2, we have

φk : P̃k m−→N2 P̃k.

The conclusion thus follows from Theorem 5.3 in the Appendix. We finally notice that
x(t6k) ∈ (0, 1) for all k ∈ Z, so that, in view of Remark 4.1, x(t) ∈ (0, 1) for all t ∈ R.

Proof of Theorem 4.3. We begin by applying Proposition 3.4 on the intervals (−∞, t−1]
and [t6k+1,+∞) in order to find the continuous functions y0

−∞ : [0, a0
−] → R+ and

y1
+∞ : [a1

+, 1] → R+ such that (x, y0
−∞(x)) ∈ Γ0

−∞ and (x, y1
+∞(x)) ∈ Γ1

+∞ for all
suitable x. We denote by x∗ the abscissa of the intersection point in the first quadrant
between the homoclinic to (0, 0) for the system S(a−) and the orbit Θ(a+, (p+, 0)) of
system S(a+). Let

x1 = min{x∗, a0
−}.

The time needed by a solution of system S(a+) to run along Θ(a+, (p+, 0)) from x = x1

to x = 1 is given by

τ =
1√
2

∫ 1

x1

dx√
Fa+(p+)− Fa+(x)

.

In a similar way, we take x∗∗ as the abscissa of the intersection point in the first quadrant
between the homoclinic to (1, 0) for the system S(a+) and the orbit Θ(a−, (p

−, 0)) of
system S(a−). Let

x2 = max{x∗∗, a1
+}.
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The time needed by a solution of system S(a−) to go on Θ(a−, (p
−, 0)) from x = 0 to

x = x2 is given by

τ ′ =
1√
2

∫ x2

0

dx√
Fa−(p−)− Fa−(x)

.

For any integer M ≥ 1, we can thus define

ε∗(M) =
δ

max{T ∗1 , T ∗2 (M), τ, τ ′}
, (4.7)

where again T ∗1 and T ∗2 (M) are given by Proposition 3.1. With these positions, we have
that

Ψ
t0−t−1
+ (Γ0

−∞ ∩ ([0, x1]× R))

is a path which crosses R1 connecting the two components of R−1 .

Indeed, this is a consequence of the fact that (0, 0) is a fixed point for Ψ
t0−t−1
+ and that

the point (x1, y1) ∈ Γ0
−∞ is mapped by Ψ

t0−t−1
+ in the half-plane {x ≥ 1} which follows

from the choice of τ and the monotonicity of the map

c 7→
∫ 1

x1

dx√
c− Fa+(x)

.

Analogously (by the choice of τ ′)

(Ψ
t6k+1−t6k
− )−1(Γ1

+∞ ∩ ([0, x1]× R))

is a path which crosses R1 connecting the two components of R+
1 .

Now, corresponding to the choice of n = {(n+
j , n

−
j )}j=1,...,K with n±j ∈ {1, . . . ,M},

there exists a sub-path γ of Ψ
t0−t−1
+ (Γ0

−∞) which is stretched across (R1,R−1 ) by the
map φk ◦ φk−1 ◦ . . . ◦ φ1.

By the topological lemma [19, Lemma 3] the intersection

(φk ◦ φk−1 ◦ . . . ◦ φ1)(γ) ∩ (Ψ
t6k+1−t6k
− )−1(Γ1

+∞)

is not empty and any point in this intersection gives rise to the required solution.

Proof of Theorem 4.4. One can argue in a similar way as in the proof of Theorem 4.3,
using here the curves Γ0

−∞ and Γ0
+∞ given in Lemma 3.4.

Remark 4.5. We notice that the statements of our results can be modified (in some
cases) to cover also more general equations ε2u′′ + u(1 − u)(u − ã(t)) = 0 with ã close
to a stepwise function. For instance, in the setting of Theorems 4.3 and 4.4 and given
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integers M,K and ε ∈ (0, ε∗(M)), the existence result still holds for all functions ã with
L1-norm on [0, s6K ] smaller than a constant δ = δ(M,K, ε) (compare with [18, Remark
4.1] for more details on the stability of the stretching technique, and recall that Lemma
3.4 about the existence of stable/unstable manifolds is indeed proved for a more general,
non-stepwise, function). We also observe that the value ε∗(M) is an explicit constant
(see (4.6) and (4.7)).

Remark 4.6. We collect here some hints for possible variants and generalizations of
our results.

• The role of the equilibria (0, 0) and (1, 0) may be switched in Theorems 4.3 and
4.4. More precisely, we can provide also solutions homoclinic to (1, 0) as well as
heteroclinic solutions converging to (1, 0) for t → −∞ and to (0, 0) for t → +∞.
Moreover, the arguments used in the proof of Theorem 4.3 can be easily modified in
order to find multiple solutions for Sturm-Liouville like boundary values problems
(e.g., Dirichlet and Neumann ones).

• According to the discussion in Remark 3.3, it is possible to produce a further
family of chaotic solutions when condition (3.4) is satisfied.

• In our main results we have considered functions of the form (4.3) with a− and
a+ satisfying condition (4.4), suggested by the investigation in [1]. When either
a+ < 1/2 or a− > 1/2, the superposition of the phase-portraits of the systems
S(a+) and S(a−) gives rise to a different configuration (see Figure 5) analogous
to the one considered in the paper [33], where a Schrödinger equation is studied.
As a consequence, by combining the arguments therein together with Lemma 3.4,
it is possible to obtain the existence of chaotic dynamics and homoclinic orbits.

5 Appendix: SAP method

In this appendix we collect the definitions and results on the Stretching Along Paths
method which are needed in our paper. We refer to [2, 24] for a comprehensive presen-
tation of the theory and further references.

By a path γ in R2 we mean a continuous mapping γ : [0, 1] → R2, while by a sub-
path σ of γ we just mean the restriction of γ to a compact subinterval of [0, 1]. By an
oriented rectangle we mean a pair

R̃ = (R,R−),

being R ⊂ R2 homeomorphic to [0, 1]2 (namely, a topological rectangle) and

R− = R−1 ∪R
−
2

21



Figure 5: The superposition of the phase-portraits of the systems S(a−) and S(a+), with
a− = 0.3 and a+ = 0.4. Orbits of the system S(a−) are painted in pink, orbits of the system
S(a+) are painted in blue, topological rectangles verifying stretching properties are painted in
orange. Compare with Figure 2 in [33].

the disjoint union of two compact arcs (by definition, a compact arc is a homeomorphic
image of [0, 1]) R−1 ,R

−
2 ⊂ ∂R.

With these preliminaries, we can give the following definition.

Definition 5.1. Let Ã = (A,A−), B̃ = (B,B−) be oriented rectangles and let Ψ : DΨ ⊂
R2 → R2 be a continuous map.

- We say that (H,Ψ) stretches Ã to B̃ along the paths and write

(H,Ψ) : Ã m−→B̃

if H ⊂ A ∩ DΨ is a compact subset and for every path γ : [0, 1] → A such
that γ(0) ∈ A−1 and γ(1) ∈ A−2 (or γ(0) ∈ A−2 and γ(1) ∈ A−1 ), there exists a
subinterval [t′, t′′] ⊂ [0, 1] such that for every t ∈ [t′, t′′]

γ(t) ∈ H, Ψ(γ(t)) ∈ B,

and, moreover, Ψ(γ(t′)) and Ψ(γ(t′′)) belong to different components of B−.
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- We say that Ψ stretches Ã to B̃ along the paths with crossing number M ≥ 1 and
write

Ψ : Ã m−→M B̃

if there exist M pairwise disjoint compact sets H1, . . . ,HM ⊂ A ∩ DΨ such that
(Hi,Ψ) : Ã m−→B̃ for i = 1, . . . ,M .

As an easy consequence of the definition, we have that the stretching property has
a good behavior with respect to compositions of maps.

Proposition 5.2. Assume that Ψ stretches Ã to B̃ with crossing number M and Φ
stretches B̃ to C̃ with crossing number N . Then, the composition Φ ◦Ψ stretches Ã to C̃
with crossing number M ×N .

We finally state the result which is employed in our paper.

Theorem 5.3. Assume that there are double sequences of oriented rectangles
(
P̃k
)
k∈Z

and maps (φk)k∈Z such that φk stretches P̃k to P̃k+1 with crossing number Mk ≥ 1, for
all k ∈ Z. Let Hk,j ⊂ Pk, with j = 1, . . . ,Mk, be the compact sets according to the
definition of multiple stretching. Then, the following conclusion hold:

• for every sequence (sk)k∈Z, with sk ∈ {1, . . . ,Mk}, there exists a sequence (wk)k∈Z
with wk ∈ Hk,sk and φk(wk) = wk+1 for all k ∈ Z;

• if there exists h, k ∈ Z with h < k such that P̃h = P̃k, then there is a finite sequence
(wi)h≤i≤k with wi ∈ Hi,si, φi(wi) = wi+1 for i = h, . . . , k − 1 and wh = wk, that
is, wh is a fixed point of φk−1 ◦ . . . ◦ φh.

Proof. By assumption, we have that

(Hk,sk , φk) : P̃k m−→P̃k+1, for every k ∈ Z.

The conclusion follows then from [23, Theorem 2.2].

Remark 5.4. In the setting of Theorem 5.3, when P̃k = P̃, φk = φ and Mk = M for
all k ∈ Z, it is possible to prove that there is a compact invariant set Λ ⊂ P such that
the map φ|Λ is topologically semiconjugate to the Bernoulli shift on M symbols (see [24,
Lemma 2.3]).

Remark 5.5. The SAP method is closely related to the results obtained by Zgliczyński,
Gidea and collaborators in several papers (see for instance [34, 35, 12, 11]). In fact, the
definition of an oriented rectangle agrees with that of a (1, 1)-window which is considered
in [35, 12, 11]. However, in those papers the Authors are able to deal with systems
also in more than 2 dimensions. A more detailed comparison between those and other
techniques can be found in the papers [25, 26].
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[21] D. Papini and F. Zanolin, A topological approach to superlinear indefinite boundary value problems,
Topol. Methods Nonlinear Anal. 15 (2000), 203–233.

[22] D. Papini and F. Zanolin, Fixed points, periodic points, and coin-tossing sequences for mappings
defined on two-dimensional cells, Fixed Point Theory Appl. 2004, 113–134.

[23] D. Papini and F. Zanolin, On the periodic boundary value problem and chaotic-like dynamics for
nonlinear Hill’s equations, Adv. Nonlinear Stud. 4 (2004), 71–91.

[24] A. Pascoletti, M. Pireddu and F. Zanolin, Multiple periodic solutions and complex dynamics for
second order ODEs via linked twist maps, The 8th Colloquium on the Qualitative Theory of
Differential Equations, No. 14, 32 pp., Proc. Colloq. Qual. Theory Differ. Equ., 8, Electron. J.
Qual. Theory Differ. Equ., Szeged, 2008.

[25] M. Pireddu and F. Zanolin, Fixed points for dissipative-repulsive systems and topological dynamics
of mappings defined on N-dimensional cells, Adv. Nonlinear Stud. 5 (2005), 411–440.

[26] M. Pireddu and F. Zanolin, Some Remarks on Fixed Points for Maps which are Expansive along
one Direction, Rend. Istit. Mat. Univ. Trieste 37 (2005), 245–274.

[27] M. Pireddu and F. Zanolin, Cutting surfaces and applications to periodic points and chaotic-like
dynamics, Topol. Methods Nonlinear Anal. 30 (2007), 279–319.

[28] C. Rebelo and F. Zanolin, On the existence and multiplicity of branches of nodal solutions for a
class of parameter-dependent Sturm-Liouville problems via the shooting map, Differential Integral
Equations 13 (2000), 1473–1502.

[29] A.J. Ureña, Invariant manifolds around equilibria of Newtonian equations: some pathological ex-
amples, J. Differential Equations 249 (2010), 366–391.
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