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T-cell lymphoblastic lymphoma (T-LBL) and lymphoblastic leukemia (T-ALL) arise from the
transformation of precursor T-cells sharing common morphological and immunophenotypic
features. Despite this, T-LBL and T-ALL show different genomic/transcriptomic profiles and
whether they represent two distinct disease entities or variant manifestations of the same
disease is still a matter of debate. In this work, we performed a Reverse Phase Protein Array
studyonT-LBLandT-ALLsamplesanddemonstrated that theyarecharacterizedbyadifferent
phosphoproteomic profile. Indeed, T-LBLs showed the hyperactivation of FAK/ERK1/2 and
AKT/mTOR pathways, whereas JAK/STAT pathway was significantly hyperphosphorylated in
T-ALLs.Moreover, since theonlycriteria fordiscriminatingT-LBL fromT-ALL isblasts’ infiltration
below25% in thebonemarrowand lymphomapatientscanpresentwithapercentageofblasts
close to this cut-off, a biomarker that could help distinguishing the two diseases would be of
great help for the clinical diagnosis and treatment decision. Pursuing this aim, we identified a
proteomic signature of six proteinswhose expression/activationwas able to discriminate stage
IV T-LBL from T-ALL. Moreover, we demonstrated that AKT hyperphosphorylation alone was
able to distinguish stage IV T-LBL fromboth T-ALL and stage III T-LBL. Concluding, these data
demonstrate thatT-ALLandT-LBLbeardifferentphosphoproteomicprofiles, furthersustaining
the hypothesis of the twodisease as different entities andpaving theway for the identification of
newbiomarkersable todistinguishstage IVT-LBL fromT-ALLdisease,so farbasedonlyonBM
involvement criteria.

Keywords: T-LBL, T-ALL, phosphoproteomics analysis, AKT/mTOR, JAK/STAT (janus kinase/signal transducer and
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INTRODUCTION

T-cell lymphoblastic leukemia (T-ALL) and lymphoblastic
lymphoma (T-LBL) arise from the transformation of immature
precursor T-cells sharing common morphological and
immunophenotypic features (1). T-ALL comprises 10-15% of
pediatric ALL cases (2), whereas T-LBL accounts for 20-30%
of all non-Hodgkin lymphomas in children (3). Despite the
World Health Organization (WHO) and the International
Lymphoma Study Group classify T-ALL and T-LBL together as
T-lymphoblastic leukemia/lymphoma (4, 5), there is still an
ongoing discussion on whether they represent distinct disease
entities or variant manifestations of the same disease (6). Many
clinical trials use bone marrow blast infiltration as the
so le cr i t e r ion to d is t ingu ish T-ALL from T-LBL.
By convention, T-LBL is diagnosed when the neoplasm
presents with < 25% T-lymphoblasts in the bone marrow (BM)
and T-ALL if this percentage is higher (5, 7).

Over the last decade, the genetic profiles of these malignancies
have been investigated and there are now clear indications from
(epi)genetic and gene expression studies that T-ALL and T-LBL
may be biologically different in certain aspects (8–11). T-LBL
cells were shown to express increased levels of S1P1 and ICAM1
compared with T-ALL and these features were proved to account
for the lack of T-LBL cells dissemination (8). In line with those
findings, a previous study by our research group identified
a subset of differentially expressed genes in T-LBL compared to
T-ALL, which included genes involved in chemotactic responses
and angiogenesis and possibly playing a role in tumor
cell localization. In addition, genome-wide copy number
alteration analysis revealed that, although most aberrations
were found in both entities, several were selectively identified
in T-LBL or T-ALL (9). T-LBL-specific gene variants were also
identified by whole-exome sequencing, further supporting the
concept of distinct molecular mechanisms for T-LBL and T-ALL
disease onset and clinical behavior (10). More recently, DNA
methylation profiles were also investigated and several
differentially methylated CpG islands were identified between
T-LBL and T-ALL clinical samples, even though the functional
relevance of these methylation disparities still remains to be
elucidated (11).

To the best of our knowledge, no data are available regarding
comparison of T-ALL and T-LBL phospho-proteomic profiles. In the
present work, we applied the Reverse Phase Protein Array (RPPA)
technology on a series of pediatric T-ALL and T-LBL samples, to
identify signaling pathways that could be differentially activated in the
two diseases, in pursuit of additional classification criteria, potentially
useful to define the most appropriate treatment approach.
METHODS

Patients
Diagnostic tumor specimens from 22 T-LBL and bone marrow
(BM) aspirates at diagnosis from 57 T-ALL were analyzed in this
study. Samples were collected at the Pediatric Oncohematology
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Laboratory of the University of Padua (Padua, Italy) between
1999 and 2017. According to Helsinki’s Declaration, all patients’
samples were obtained after obtaining informed consent.

T-LBL patients were enrolled in AIEOP LNH-97 (12) or
EuroLB-02 (13) treatment protocols. The diagnosis of T-LBL was
established according to the WHO guidelines (5) and centrally
reviewed in all the cases. The median age was 10.1 years (range
2.2–18.5). All the patients were diagnosed with stage III or IV
disease, according to the St Jude’s classification (14). Mutational
analysis of PTEN and PIK3CA hot-spot exons was performed as
previously reported (15, 16)

T-ALL pediatric patients were enrolled in the AIEOP-BFM
ALL2000/ALL2009 protocols (17, 18). The median age was 8.7
years (range 1.8–17.83). The classification of the T-ALL subtypes
followed European Group for the Immunologic Characterization
of Leukemias (EGIL) and World Health Organization (WHO)
2016 criteria (5, 19). The study was approved by the ethical
committee board of the Comitato Etico per la Sperimentazione
Clinica della Provincia di Padova and the Italian Association of
Pediatric Onco-Hematology (AIEOP). The main clinical
characteristics of the study cohort are reported in Table 1.

Reverse Phase Protein Array
RPPA technique was performed as previously reported (20, 21).
Shortly, mononuclear cells from T-ALL BM samples were
isolated using the Ficoll-Hypaque technique (Pharmacia,
Sigma-Aldrich, St. Louis, MO). T-LBL tumor samples were
either lymph node biopsies (18/22) or pleural effusions (4/22).
Mononuclear cells from T-ALL BM samples and dried cell pellets
from T-LBL pleural effusions were lysed in T-PER™ Tissue
Protein Extraction Reagent (Thermo Scientific™, Waltham,
MA) plus protease and phosphatase inhibitors (Sigma-Aldrich,
St. Louis, MO). The same lysis buffer with an additional
disintegration step by a manual pestle has been used for
protein extractions from lymph node biopsies. All lysates were
printed in a 4-point dilution curve in quadruplicate on
nitrocellulose-coated glass slides (ONCYTE® Nitrocellulose
Film Slides, Grace BioLabs, Bend, OR), using the 2470 Arrayer
(AushonBioSystems, Billerica, MA). The slides were
automatically stained with 53 primary antibodies already
validated by Western Blot (WB) for single band specificity
(Supplementary Table S1), by using an automated slide
stainer (DakoAutostainer Plus, Dako-Cytomation, Santa Clara,
CA). Signal amplification was performed employing the TSA
PLUS BIOTIN system (AKOYA Biosciences, Marlborough, MA)
and then the signal was revealed using diaminobenzidine/
hydrogen peroxide (Dako-Cytomation, Santa Clara, CA) as a
chromogen substrate after 5 minutes incubation. Microvigene
software (VigeneTech Inc, Carlisle, MA) was used to extract
absolute numeric intensity protein values from the array TIF
images of each antibody and total protein.

Western Blotting
SDS–polyacrylamide gel electrophoresis was performed using 4–20%
Criterion TGX Stain-Free Protein Gel (Bio-Rad, Hercules, CA), and
proteins were transferred to poly-vinylidene difluoride (PVDF)
Immobilon-p membrane (Merck-Millipore, Billerica, MA) by wet/
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tank Bio-Rad blotting system (Bio-Rad). Membranes were blocked in
2% I-Block blocking buffer (Thermo Fisher Scientific) and incubated
overnight at 4°Cwith primary antibodies. After twowashes with PBS-
T, blots were incubated with the HRP-conjugated secondary antibody
(1:25000, PerkinElmer, Waltham, MA). Bands were detected using
the iBright imaging system (Thermo Fisher Scientific). The following
primary antibodies were used: AKT S473 (abcam, ab78403), AKT
TOT (R&D,MAB1775), S6 RB S235/236 (Cell Signaling Technology,
#2211) and GAPDH (Genetex, GTX 8627408).

Statistical Analyses
To identify statistically significant differentially activated or
expressed proteins between T-LBL and T-ALL patients, we
applied the nonparametric Wilcoxon test. Multiplicity corrections
were conducted following the false discovery rate (FDR) method
(Benjamini-Hochberg procedure). Proteins were considered
significantly differentially expressed/activated for a result with a
corrected FDR ≤ 0.05. Hierarchical clustering has been conducted
by using a multiple testing procedure to control the family-wise
error rate (inheritance procedure) (22). The differential activation
status between T-LBL and T-ALL patients was globally evaluated
for all considered proteins, through a locally most powerful test
(Global Test) (23). The classification performance based on a set of
proteins for prediction of stage IV T-LBL was studied by a
Breiman’s random forest algorithm for classification, with a cross-
validation fold of 5 (24). These analyses were performed with the
statistical software R (www.r-project.org).
RESULTS

From RPPA analysis we identified 24/47 proteins (51%)
significantly differentially expressed between T-ALL and T-LBL
Frontiers in Oncology | www.frontiersin.org 3
patients, with a corrected FDR ≤ 0.05 (Supplementary Figure S1
and Supplementary Table S2). This result was further
investigated by a hierarchical clustering tree analysis, to also
account for a possible correlation between proteins and
simultaneously correcting for multiple testing. From this
procedure, we identified a subgroup of 5 proteins with a
significantly positive association with T-LBL and a subgroup of
7 proteins positively associated with T-ALL (Figure 1A, bold
lines). Figure 1B shows these twelve most differentially
expressed proteins between T-LBL (brown) and T-ALL
(orange) patients. We then reconstructed the activation status
of specific pathways linked to the most differentially expressed
proteins through a locally most powerful test. Interestingly, the
FAK/ERK1/2 pathway, which is known to be crucial for tumor
growth, angiogenesis and vascular permeability in solid tumors
(25, 26), was among the most significantly activated pathways in
T-LBL compared to T-ALL patients (p<0.001). In line with this
finding, gene set enrichment analysis (GSEA) using the MSigDB
geneset Hallmark and Canonical pathways C2, KEGG subset
(http://www.broad.mit.edu/gsea/) on our previously published
gene expression (GEP) dataset (9) showed a positive enrichment
for genes involved in angiogenesis and focal adhesion in T-LBL
compared to T-ALL samples (Supplementary Figures S2A, B).
Similarly, the AKT/mTOR pathway resulted significantly
hyperactivated in T-LBL compared to T-ALL (p<0.001).

Conversely, a higher phosphorylation level of the JAK1/2-STATs
pathway, except for STAT3 Y705 and S727, characterized T-ALL
compared to T-LBL (p=0.002). In line with this, gene sets associated
with IL6-JAK-STAT3 signaling were significantly upregulated in T-
LBL compared to T-ALL patients (Supplementary Figure S2C)

Finally, proteins belonging to cell cycle, such as Cyclin B and p21,
resulted differentially regulated between the two groups (p=0.002)
(Supplementary Figure S1 and Supplementary Table S3). Taken
TABLE 1 | Main clinical characteristic of T-ALL and T-LBL patients included in the study.

T-ALL patients (N= 57) T-LBL patients (n=22)

Gender (n, %) Gender (n, %)
Male 44 (77%) Male 18 (82%)
Female 13 (23%) Female 4 (18%)
Age, years (n,%) Age, years (n, %)
> 8.7 27 (47%) > 10.1 11 (50%)
≤ 8.7 30 (53%) ≤ 10.1 11 (50%)
Immunophenotype (n, %) Stage (n, %)
Early T (T-I and T-II) 6 (12%) III 13* (60%)
Intermediate T (T-III or cortical) 43 (75%) IV 9# (40%)
Mature T (T-IV) 6 (10%) BM involvement (n, %)
NA 2 (3%) yes 7 (32%)
Response to Prednisone (n, %) no 15 (68%)
Good 28 (50%) CNS involvement (n, %)
Poor 20 (35%) yes 1 (5%)
NA 9 (15%) no 21 (95%)
Follow-up (n, %) Follow-up (n, %)
Complete remission NA Complete remission 15 (68%)
Relapse 4 (7%) Relapse 3 (13.5%)

Progression 3 (13.5%)
Resistance 1 (5%)
July 2022 | Volume 12 | Artic
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together, these results suggest that T-ALL and T-LBL in pediatric age
are characterized by a different phosphoproteomic profile.

Another important question to be addressed was about T-LBL
patients classified as stage IV. This clinical group, despite being
diagnosed as T-LBL, can be characterized by a percentage of blasts
in the BM close to the cut-off of 25% used to define T-ALL. Thus, an
early biomarker that can successfully identify these patients at
diagnosis would be of great help in the clinical decision. In light
of this, we performed a global analysis of all the proteins comparing
the phosphorylation profile of stage IV T-LBL samples with both T-
Frontiers in Oncology | www.frontiersin.org 4
ALL and stage III T-LBL tumors. Interestingly, we found that 17/47
proteins (36%) were significantly differentially expressed between
stage IV T-LBL and T-ALL (Supplementary Table S4), with
seven proteins positively associated with stage IV T-LBL
compared to T-ALL, whereas ten proteins were positively
associated with T-ALL (Figure 2A). Figure 2B shows the ten
most differentially expressed proteins between stage IV T-LBL
(brown) and T-ALL (orange), which included proteins belonging
to the JAK/STATs, AKT/mTOR, FAK/ERK1/2 and cell cycle
pathways. When focusing on GEP data from stage IV T-LBL and
A B

C

FIGURE 2 | Differentially expressed proteins between stage IV T-LBL and T-ALL samples. (A) Hierarchical clustering graph (HCG) of all proteins, where black bold
lines highlight those proteins being significantly most strongly associated with stage IV T-LBL or T-ALL. Positive association with stage IV T-LBL (or T-ALL) refers to
hyperactivated proteins in stage IV T-LBL (or in T-ALL). (B) Heatmap of the ten most differentially expressed proteins between stage IV T-LBL and T-ALL samples.
(C) ROC curve of the predicted probabilities of being classified as a T-ALL or stage IV T-LBL for data in the testing set, together with the estimated area under the
ROC curve (AUC).
A B

FIGURE 1 | Differentially expressed proteins between T-LBL and T-ALL samples. (A) Hierarchical clustering graph (HCG) of all proteins, where black bold lines
highlight those proteins being most significantly associated with T-LBL or T-ALL. Proteins are ordered by following the HCG, where the clustering method is the
average linkage and the distance measure used for the graph is the absolute correlation distance. Positive association with T-LBL (or T-ALL) refers to hyperactivated
proteins in T-LBL (or in T-ALL). (B) Heatmap of the ten most differentially expressed proteins between T-LBL and T-ALL samples.
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T-ALL samples (9), gene sets associated with angiogenesis, focal
adhesion and IL6-JAK-STAT3 signaling resulted significantly
upregulated in stage IV T-LBL compared to T-ALL patients
(Supplementary Figures S2D-F).

Within this group, the classification tree highlighted six
proteins (bold lines), classified in three groups: ERK1/2 T202/
Y204, AKT S473/tot, mTOR S2448/tot; FAK Y397, P21; BAX.
Thus, only for these six proteins, we investigated their global
performance in correctly classifying stage IV T-LBL vs T-ALL.
To this aim, we split the data into a 60% training set and a 40%
test set, we then trained a random forest classification model with
5-fold cross-validation. Finally, based on the resulting trained
model, we predicted the probability of being classified as T-ALL
or stage IV T-LBL on the test set, plotting a ROC curve of these
predictions (Figure 2C). The area under the ROC curve (AUC)
revealed that, taken together, ERK1/2 T202/Y204, AKT S473/tot,
mTOR S2448/tot, FAK Y397, P21 and BAX provide a very high
prediction accuracy in classifying patients as stage IV T-LBL or
T-ALL (AUC = 0.986; p = 0.0043, CI 95%: 0.945-1), with a high
sensitivity (99.9%) and specificity (95.6%) selected on the
optimal cut-off point provided by the Youden Index. When
comparing stage III and stage IV T-LBL in a global test on all
proteins, a significant result was not reached. However, AKT
S473/tot, S6RP S235/236 showed a stronger positive association
with stage IV T-LBL (non-corrected p-values p=0.016 and
p=0.029 from single tests), and LKB1 S428/tot with stage III T-
LBL (non-corrected p-values p=0.070), as compared to the other
proteins (Figure 3A). These three most differentially expressed
proteins between stage IV (brown) and stage III T-LBL (orange)
Frontiers in Oncology | www.frontiersin.org 5
belonged to the AKT/mTOR pathway (Figure 3B). Noteworthy,
this result was consistent with the significantly positive
enrichment for genes involved in PI3K-AKT-mTOR signaling
in stage IV compared to stage III T-LBL samples from our
previously published dataset (9) (Supplementary Figure S2G)
and with Western Blot results related to the AKT pathway
activation in stage IV T-LBL compared to stage III and T-ALL
samples (Supplementary Figure S3).

Overall, these results suggest that the AKT/mTOR pathway is
hyperactivated in stage IV T-LBL compared to both T-ALL and
stage III T-LBL. Accordingly, we found that stage IV T-LBL is
characterized by a significantly increased expression of AKT
S473/tot compared to both stage III T-LBL and T-ALL
(Figure 3C and Supplementary Figure S3). Noteworthy, none
of T-LBL patients was mutated on PIK3CA hot-spot exons and
only 2/22 were mutated on PTEN exon 7, thus demonstrating the
importance of phosphoproteomics in unraveling pathway
activations that genomics alone cannot predict.
DISCUSSION

Despite evidence accumulating on a distinct genomic and
transcriptomic profile between pediatric T-ALL and T-LBL, the
distinction between these clinical entities and their treatment is
still arbitrarily based on the percentage of blasts in the BM (6).

In the present study, we investigated the phosphoproteomic
profile of pediatric T-ALL and T-LBL tumor cells, revealing that
these diseases are also characterized by a different phosphoproteomic
A B

C

FIGURE 3 | Differentially expressed proteins between stage IV and stage III T-LBL samples. (A) Hierarchical clustering graph (HCG) of all proteins, and a set of proteins
being positively associated with stage IV or stage III T-LBL, with different intensities (height of columns is equal to p-values of single tests). Positive association with stage IV
T-LBL (or T-ALL) refers to hyperactivated proteins in stage IV T-LBL (or in T-ALL). (B) Heatmap of the three significantly differentially expressed proteins between stage IV
and stage III T-LBL samples (based on non-corrected p-values from single tests). (C) AKT S473/tot phosphorylation levels measured by RPPA analysis were significantly
upregulated in stage IV T-LBL samples (n=8) compared to both T-ALL (n=57) and stage III T-LBL (n=14).*p < 0.05; ***p < 0.001.
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profile. In particular, we found that the FAK/ERK1/2 and AKT/
mTORpathway aremore active in T-LBL compared to T-ALL tumor
cells. Of note, these two pathways can interact since FAK affects the
mTOR pathway through PI3K-AKT signaling activation, as
demonstrated in a recent study on a breast cancer model, in which
FAK inhibition was shown to reduce mTOR activation (27).
Moreover, an increased activation of FAK/ERK1/2 in T-LBL
compared to T-ALL is in agreement with the fundamental role that
FAK/ERK1/2 pathway plays in sustaining and regulating the growth,
angiogenesis and vascular permeability of solid tumors (28).
Conversely, the JAK/STAT signaling pathway was globally more
activated in T-ALL compared with T-LBL. The role of JAK/STAT
pathway in normal lymphoid precursor cell proliferation, survival and
differentiation has been widely described (29), as well as its pivotal
role in hematological malignancies (30). In pediatric T-ALL,
activating mutations of JAK1 and JAK3 and other genes involved
in JAK/STAT signaling, such as EP300, STAT5B, IL7R and PTPN11,
have been associated with an increased JAK/STAT signaling (31, 32)
and, in the presence of IL7R mutations, with an increased resistance
to steroid therapy (33). Similarly, also in T-LBL pediatric patients the
hyperactivation of JAK/STAT pathway has been associated with the
presence of TEL-JAK2 activating translocation and JAK2 missense
mutations (34). The reason why the JAK/STAT pathway is generally
more active in T-ALL compared to T-LBL remains to be investigated.

Finally, with the aim of identifying a proteomic signature that
can help in differentiating stage IV T-LBL from T-ALL patients,
we successfully identified six proteins, namely ERK1/2 T202/
Y204, AKT S473/TOT, mTOR S2448/tot, FAK Y397, P21 and
BAX whose expression/activation was able to distinguish stage
IV T-LBL from T-ALL. This finding, if confirmed in a larger
validation cohort, could represent a diagnostic tool that can help
discriminating between stage IV T-LBL and T-ALL. Intriguingly,
AKT hyperphosphorylation alone was able to distinguish stage
IV T-LBL from both T-ALL and stage III T-LBL.

Overall, these results could represent a starting point for the
investigation of novel biomarkers that could discriminate stage
IV T-LBL from T-ALL disease, so far based only on BM
involvement criteria, paving the way for the identification of
new therapeutic targets for highly aggressive stage IV T-LBL.
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