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a b s t r a c t 

Selenium is a trace element found in many chemical forms. Selenium and its species have 

nutritional and toxicologic properties, some of which may play a role in the etiology of neu- 

rological disease. We hypothesized that adherence to the Mediterranean-Dietary Approach 

to Stop Hypertension Intervention for Neurodegenerative Delay (MIND) diet could influence 

intake and endogenous concentrations of selenium and selenium species, thus contribut- 

ing to the beneficial effects of this dietary pattern. We carried out a cross-sectional study of 

137 non-smoking blood donors (75 females and 62 males) from the Reggio Emilia province, 

Northern Italy. We assessed MIND diet adherence using a semiquantitative food frequency 

questionnaire. We assessed selenium exposure through dietary intake and measurement of 

urinary and serum concentrations, including speciation of selenium compound in serum. 

We fitted non-linear spline-based regression models to investigate the association between 

MIND diet adherence and selenium exposure concentrations. Adherence to the MIND diet 

Abbreviations: BMI, body mass index; CI, confidence interval; DASH, Mediterranean-Dietary Approach to Stop Hypertension; DRC, dy- 
namic reaction cell; ICP-MS, inductively coupled plasma-mass spectrometry; MIND, Mediterranean-DASH Intervention for Neurodegen- 
erative Delay; RCT, randomized controlled trial; Se-Cys, selenocystine-bound selenium; Se-GPX, glutathione-peroxidase-bound selenium; 
Se-HSA, human serum albumin-bound selenium; Se-Met, selenomethionine-bound selenium; Se-SELENOP, selenoprotein P-bound sele- 
nium; Se- TXNRD, thioredoxin reductase-bound selenium.
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was positively associated with dietary selenium intake and urinary selenium excretion, 

whereas it was inversely associated with serum concentrations of overall selenium and 

organic selenium, including serum selenoprotein P-bound selenium, the most abundant 

circulating chemical form of the metalloid. MIND diet adherence also showed an inverted 

U-shaped relation with inorganic selenium and particularly with its hexavalent form, sele- 

nate. Our results suggest that greater adherence to the MIND diet is non-linearly associated 

with lower circulating concentrations of selenium and of 2 potentially neurotoxic species of 

this element, selenoprotein P and selenate. This may explain why adherence to the MIND 

dietary pattern may reduce cognitive decline. 

© 2023 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The Mediterranean-Dietary Approach to Stop Hypertension
(DASH) Intervention for Neurodegenerative Delay (MIND) diet
is a dietary pattern that has been shown in several studies
to reduce the risk dementia and cognitive decline [1–5] . It is
mainly based on dietary components from the DASH and the
Mediterranean diets, which each showed protective effects
on cognitive decline in nonexperimental and experimental
human studies, including randomized controlled trials (RCT)
[ 6 ,7 ]. MIND diet entails high consumption of natural plant-
based foods and low rations of foods with elevated intake of
animal and high saturated fat, such as butter or margarine,
instead favoring a high consumption of foods associated with
slower cognitive decline, such as berries and green leafy veg-
etables [ 8 ,9 ]. The main source of fat in the MIND diet is olive oil,
and consumption of 1 glass per day of wine is not discouraged
[10] . 

Selenium is a metalloid generally present in trace amounts
in the environment and foods as well as tobacco smoke. The
role of selenium in human health has been highly debated
because it has both toxic and essential nutritional proper-
ties, depending on dose and chemical species [11–14] . Sele-
nium is a component of several enzymes with functions re-
lated to antioxidant defense, redox signaling, and homeosta-
sis [15] . Selenium’s role in neurodegenerative diseases and
cognitive impairment has been investigated in a handful of
epidemiological studies, often leading to inconsistent or con-
flicting results [16–21] , with little evidence of beneficial effects
from an experimental study [22] and with some indicating
adverse effects in an observational cohort study, with refer-
ence to inorganic hexavalent selenium and to selenoprotein P
[ 18 ,23 ]. RCTs have documented adverse effects of selenium at
lower doses than previously believed to be harmful [ 24 ,25 ], and
the tolerable upper intake level of this trace element was re-
cently reduced by the European Food Safety Authority in 2023
[26] . 

In this cross-sectional study, we investigated the extent to
which adherence to the MIND diet in a healthy non-smoking
population may be associated with selenium exposure ascer-
tained in diet, urine, and serum. We also assessed how the
MIND diet could influence concentrations of selected organic
and inorganic selenium species in serum. 
2. Methods and materials 

2.1. Study population 

Subjects composing the present study population were se-
lected at the Transfusion Medicine Center of AUSL-IRCCS of
Reggio Emilia [27–29] , following the approval of the study pro-
tocol by the relevant Ethics Committee (AVEN Ethics Commit-
tee approval no. 2016/0022799]. A study flowchart is presented
in Fig. S1. Overall, 148 healthy blood donors were consecutively
contacted for participating in the study during their blood
donation, provided they were aged ≥18 years, unaffected by
chronic disease including cancer, and non-smokers. A total
of 137 subjects were eventually enrolled. All participants pro-
vided written informed consent. Personal and medical history
data were collected using a questionnaire administered by a
clinician at the time of blood donation. Participants also pro-
vided fasting blood glucose and urinary samples. 

2.2. Dietary assessment 

Participants completed a validated semiquantitative food fre-
quency questionnaire derived from that used in the Euro-
pean Prospective Investigation into Cancer and Nutrition, af-
ter specific validation in a Northern Italian population [30–32] .
The food frequency questionnaire included questions on fre-
quency and quantity of consumption of 188 food items over
the previous year, as previously described [ 33 ,34 ]. Adherence
to the MIND diet was calculated using a formula developed
by Morris et al. using 10 brain-healthy and 5 brain-unhealthy
food groups derived from literature on nutrition and cogni-
tive decline [1] . Intake of foods was estimated using a tailored
Stata software routine [35] . After summing the frequency of
consumption of each food portion, we assigned a concor-
dance score of 0, 0.5, or 1 (Table S1). Thus, higher consump-
tion of foods associated with a healthy brain (green leafy veg-
etables, other vegetables, berries, nuts, whole grains, fish not
fried, beans, and poultry not fried) and lower consumption of
red and processed meat, butter and margarine, cheese, fast
food, and sweets (e.g., pastries, baked goods) generated higher
scores. For wine intake, a score of 1 was assigned if consump-
tion was of 1 unit per day. Otherwise, the score was 0 for no
consumption or consumption of more than 1 glass per day;

http://creativecommons.org/licenses/by/4.0/
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the score was 0.5 if consumption was less than 1 glass per
day. Other types of alcohol were not considered. For olive oil,
a score of 1 was assigned if it was the primary cooking fat,
otherwise the score was 0. The total score was extrapolated
by summing that assigned to each food component, ranging
from 0 to 15. 

We assessed dietary selenium intake by multiplying trace
element concentrations in foods with the pattern of average
consumption, based on the dietary assessment [33] . Briefly,
vegetables had a low content of selenium, except for cabbage,
onion, mushrooms, and garlic. Meat (red or processed), milk
and dairy products, eggs, fish, and seafood were the greatest
contributors to total daily selenium intake [33] . 

2.3. Analytical determination of selenium in urine and 

serum 

2.3.1. Urinary selenium 

Urine samples were collected in polypropylene tubes stored at
−20 °C. For analysis, urine samples were thawed at room tem-
perature for 2 hours. To dissolve the sediment for the anal-
ysis, samples were mixed and heated for 30 minutes at 37
°C. An aliquot of 600 μL was transferred into a polyethylene
tube, added to an aqueous solution of nitric acid 0.05% v/v
prepared by diluting ultrapure nitric acid (69% TraceSelect,
Fluka, France), containing 7.5 μg/L of Scandium-45), Yttrium-
89, and Indium-111 (Inorganic Ventures, Inc., Lakewood, NJ,
USA) as internal standards. Samples were analyzed by in-
ductively coupled plasma-mass spectrometry (ICP-MS) (X Se-
ries II, Thermo Electron Corporation, Rodano, Italy). The in-
strument was operated in collision cell mode (CCT-Ked), with
3.7 mL/minutes of helium used to reduce interference. Sam-
ples were run in triplicate. The calibration curve was pre-
pared in the range of 0.2 to 70 μg/L and the calibration so-
lutions were obtained by diluting a selenous acid standard
solution containing selenium at 1 mg/mL (BDH, VWR Inter-
national, Milan). Ultrapure water (conductivity 0.056 μS/cm)
(Milli-Q, Merck, Darmstadt, Germany) was used to prepare all
solutions. The quality assurance was assessed using quality
controls for metals in urine from Lyphocheck Urine Metals
Control (Level-1, Bio-Rad Laboratories, Anaheim, CA, USA) and
Seronorm (Level-1, Sero AS, Billingstad, Norway). The limit of
quantification was 1.2 μg/L. Accuracy and precision ranged
from 90% to 110% and from 7% to 11%, respectively. 

2.3.2. Selenium and selenium speciation analyses 
For speciation of selenium compounds, we used the hyphen-
ated system from Perkin Elmer (Rodgau, Germany) compris-
ing a NexSAR gradient HPLC pump, autosampler, and NexION
300 D inductively coupled plasma-dynamic reaction cell-mass
spectrometry (ICP-DRC-MS), completely controlled by Clarity
software and the ion exchange-separation column for species
separation (AG-11 + AS-11 from Thermo Dionex, Idstein, Ger-
many). The sample volume was 50 μL and the flow rate was
0.80 mL/min. The mobile phases and chromatographic gradi-
ent were previously published [36] . The experimental settings
for ICP-DRC-MS were radio frequency power: 1250 W; plasma
gas flow: 15 L Ar/min; auxiliary gas flow: 1.05L Ar/min; neb-
ulizer gas flow: 0.92 L Ar/min; daily optimized, dwell time:
and 300 ms. Ions monitored were: 77 Se, 78 Se, 80 Se; DRC re-
action gas: CH4 reaction at 0.58 mL/min, and DRC rejection
parameter q: 0.6. The selenium species selenite, selenate,
selenomethionine-bound selenium (Se-Met), selenocystine-
bound selenium (Se-Cys), thioredoxin reductase–bound se-
lenium (Se-TXNRD), glutathione-peroxidase-bound selenium
(Se-GPX), selenoprotein P–bound selenium (Se-SELENOP), and
human serum albumin-bound selenium (Se-HSA) were an-
alyzed. Data files from selenium chromatograms were pro-
cessed with Clarity software for peak area integration. Total
serum selenium concentration was measured by ICP sector-
field MS. The experimental settings for ICP sector-field MS
(ELEMENT II, Thermo Scientific, Bremen, Germany) were as
follows: radiofrequency power: 1260 W; plasma gas flow: 16L
Ar/min; auxiliary gas flow: 0.85L Ar/min; nebulizer gas flow:
1.085 L Ar/min; daily optimized, dwell time 300 ms, and ions
monitored: 77 Se, 78 Se, high-resolution mode. Five-point cali-
bration curves from 0 to 5000 ng/L were linear with r2 for the
3 Se isotopes being better than 0.999881. Given budget limita-
tions, we assayed selenium and selenium species in serum for
only for the first 104 participants recruited. 

2.4. Data analysis 

We assessed the association between adherence to the MIND
diet and selenium exposure as measured in diet, urine, and
serum alongside its 95% confidence intervals (CI), using lin-
ear and non-linear spline-based regression analyses. In these
analyses, we adjusted for sex as discrete variable, along with
age, body mass index (BMI), and energy intake as continuous
variables. No study participants had missing variables or had
to be excluded from multivariable modeling. 

We then performed non-linear spline regression analysis,
based on a restricted cubic spline model [ 37 ,38 ] using 3 knots
at fixed percentiles (10th, 50th, and 90th) of selenium exposure
concentrations. To reduce the effect of the outliers by assign-
ing them a lower weight, winsorization was performed for uri-
nary selenium, dietary selenium intake, total serum selenium,
and for all selenium species. Sex-stratified analyses were also
performed because of sex-related differences in dietary intake
and potential varied effects of the MIND diet on selenium ex-
posure by sex [39] . We carried out these analyses using the
“mkspline,” “regress,” “winsor,” and “xbcrsplinei” routines in
Stata (version 17.0, Stata Corp., College Station, TX, 2021). 

3. Results 

Table 1 and Fig S2-S4 report the main characteristics of the
study population along with mean MIND diet adherence
scores and mean urinary, dietary, and serum selenium con-
centrations, accounting for sex, age, BMI category, smoking,
marital status, and educational attainment. Mean MIND diet
adherence score was 7.6, which was similar in females (7.9)
compared with males (7.3). Females showed higher selenium
intake and biomarker concentrations than males. Higher ad-
herence to MIND was associated with normal weight, whereas
lower MIND diet adherence was associated with overweight
and obesity or being single. 
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Table 1 – Characteristics of the study population composed of healthy subjects and mean MIND diet adherence, urinary and dietary Se ( n = 137) and serum Se ( n = 104) 
concentrations for each subgroup of the cohort. 

Characteristics All Males Females 

N % Urinary 
Se 
(μg/L) 

Dietary 
Se 
(μg/day) 

Serum 

Se 
(μg/L) 

MIND 

diet 
N % Urinary 

Se 
(μg/L) 

Dietary 
Se 
(μg/day) 

Serum 

Se 
(μg/L) 

MIND 

diet 
N % Urinary 

Se 
(μg/L) 

Dietary 
Se 
(μg/day) 

Serum 

Se 
(μg/L) 

MIND 

diet 

All subjects 137 100 26.8 84.1 117.4 7.6 62 45.3 29.0 90.0 119.2 7.3 75 54.7 24.9 79.2 115.8 7.9 
Age (y) 

< 50 80 58.4 27.2 86.1 116.8 7.6 39 62.9 30.2 91.0 119.0 7.2 41 54.7 24.4 81.5 114.5 7.9 
≥50 57 41.6 26.1 81.2 118.4 7.7 23 37.1 27.0 88.3 119.5 7.3 34 45.3 25.5 76.4 117.5 7.9 

BMI (kg/m ²) 
< 25 74 54.0 25.6 82.2 116.5 8.0 32 51.6 28.5 91.1 116.9 7.6 42 56.0 23.4 75.4 116.1 8.2 
≥25–< 30 50 36.5 28.6 84.2 119.8 7.2 27 43.6 29.5 87.0 122.1 6.9 23 30.7 27.5 80.9 117.1 7.5 
≥30 13 9.5 26.5 94.3 112.0 7.4 3 4.8 30.4 104.3 117.0 6.8 10 13.3 25.4 91.3 110.3 7.6 

Smoking history 
Never 101 73.7 26.1 83.9 117.5 7.6 45 72.6 28.8 88.6 118.9 7.2 56 74.7 23.9 80.2 116.2 7.9 
Former 36 26.3 28.7 84.5 117.3 7.8 17 27.4 29.6 93.6 119.9 7.5 19 25.3 27.8 76.4 114.4 8.0 

Marital status 
Mar- 

ried/unmarried 
partner 

97 70.8 26.8 83.1 116.7 7.7 44 71.0 29.7 87.7 117.8 7.4 53 70.7 24.3 79.3 115.7 7.9 

Single 26 19.0 27.6 87.7 119.3 7.4 12 19.4 28.8 104.3 121.8 7.1 14 18.7 26.7 73.5 116.7 7.7 
Sepa- 

rated/divorced 
14 10.2 25.1 84.3 119.0 7.7 6 9.6 24.2 78.0 123.2 6.7 8 10.7 25.7 88.9 114.8 8.4 

Educational 
attainment 

Elementary 
school 

2 1.5 37.3 147.0 131.5 7.8 2 3.2 37.3 147.0 131.5 7.7 - - - - - - 

Middle school 20 14.6 26.0 84.8 120.1 7.5 8 12.9 29.5 80.9 126.1 7.2 12 16.0 23.7 87.9 114.7 7.7 
High school 66 48.2 23.9 82.7 116.2 7.7 28 45.2 25.0 90.9 114.2 7.2 38 50.7 23.0 76.7 117.9 8.0 
College or more 49 35.8 30.6 83.1 117.4 7.6 24 38.7 32.9 87.4 122.5 7.3 25 33.3 28.4 78.9 112.6 7.8 

Abbreviations: BMI, body mass index; MIND, Mediterranean-DASH Intervention for Neurodegenerative Delay; Se, selenium. 
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Fig. 1 – Spline regression analysis for the association 

between MIND diet adherence scores and dietary ( n = 137), 
urinary ( n = 137), and serum ( n = 104) selenium (Se) 
concentrations. Analysis adjusted for age, sex, body mass 
index (BMI), and energy intake. A linear relation emerged 

between MIND diet adherence and overall selenium 

exposure, as determined by diet, urine, and serum 

assessments. Notably, the correlation observed was 
negative with serum selenium concentrations. MIND, 
Mediterranean-Dietary Approach to Stop Hypertension 

Intervention for Neurodegenerative Delay. 
Figure S5 reports the spline regression analysis showing
the association between single components of the MIND diet
and total serum selenium concentrations. A monotonic in-
verse association was found with intake of vegetables (both
green leafy and other vegetables), berries, nuts, fish, and poul-
try. Conversely, a positive association, though not entirely lin-
ear, was found for intake of butter/margarine, cheese, whole
grain, beans, red meat, pastries and sweets, and wine. After
adjustment for age, sex, BMI, and energy intake, spline regres-
sion analyses showed a substantially linear association be-
tween adherence to the MIND diet and overall selenium ex-
posure as assessed through diet, urinary concentrations, or
serum concentrations ( Fig. 1 ). For serum selenium, an inverse
association emerged. 

When examining the relation between selected MIND diet
adherence and selenium compounds in serum, monotonic in-
verse associations emerged with overall organic selenium and
particularly for Se-SELENOP, an almost null association with
Se-TXNRD, and a U-shaped pattern of association with Se-
GPX, Se-Cys, and Se-Met, although attenuated for the latter,
with an inflection point around a MIND diet adherence score
of 8. Although selenite did not show a clear pattern of associ-
ation with MIND diet adherence scores, overall inorganic se-
lenium and the selenate compound exhibited an inverted U-
shaped relation, again with an inflection point around 8, as
did Se-HSA ( Fig. 2 ). 

Overall, unadjusted results were similar to the main anal-
yses (Fig. S6-S7). In sex-specific analyses, there were several
differences compared with the overall analysis. Among males,
higher levels of adherence to MIND diet (i.e., > 8) corresponded
with decreased mean urinary and serum selenium concentra-
tions, whereas a positive association emerged among females.
Only the results for selenium dietary intake were comparable
(Fig. S8). With regard to serum selenium species, different and
often opposite trends emerged for males and females, with
the only exception being Se-Cys. Among males, the MIND diet
showed non-linear inverse associations with total organic se-
lenium and Se-SELENOP, an almost linear inverse association
with Se-GPX, a slight positive association with Se-TXNRD, and
a generally null association with Se-Met. Adherence to the
MIND diet was positively and almost linearly associated with
total inorganic selenium and both inorganic species (selenite
and selenate), whereas a slight inverse association emerged
for Se-HSA (Fig S9). Conversely, among females, we observed
U-shaped associations between adherence to the MIND diet
and total organic selenium, Se-GPX, and Se-Met. In contrast,
we observed inverted U-shaped associations for total inor-
ganic selenium and the 2 inorganic species. J and inverted J
associations were observed for Se-SELENOP and Se-HSA, re-
spectively (Fig. S10). 

4. Discussion 

Findings from our cross-sectional study of healthy non-
smokers indicate that adherence to the MIND diet influences
intake of selenium and selenium species. Our data further
support the hypothesis that adherence to the MIND diet coun-
teracts cognitive decline. Greater adherence to the MIND diet
demonstrated a positive association with intake and urinary
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Fig. 2 – Spline regression analysis for the association between MIND diet adherence scores and serum selenium (Se) species 
concentrations ( n = 104). Analysis adjusted for age, sex, body mass index (BMI), and energy intake. Adherence to the MIND 

diet had varying associations with different serum selenium compounds. Organic selenium and Se-SELENOP showed 

consistent inverse relationships, whereas Se-TXNRD had minimal correlation. Se-GPX, Se-Cys, and Se-Met displayed a 
U-shaped pattern. Inorganic selenium and selenate had inverted U-shaped relations, as did Se-HSA. MIND, 
Mediterranean-Dietary Approach to Stop Hypertension Intervention for Neurodegenerative Delay; Se-Cys, 
selenocystine-bound selenium; Se-GPX, glutathione-peroxidase-bound selenium; Se-HSA, human serum albumin-bound 

selenium; Se-Met, selenomethionine-bound selenium; Se-SELENOP, selenoprotein P-bound selenium; Se-TXNRD, 
thioredoxin reductase-bound selenium; Se(IV), selenite; Se(VI), selenate. 

 

 

 

 

 

 

 

 

 

 

excretion of selenium, as well as diminished serum concen-
trations of total selenium, mainly because of decreased con-
centrations of Se-SELENOP, the major selenium transporter
in the blood, and of the inorganic species, particularly sele-
nate. Interestingly, both Se-SELENOP and selenate have been
suggested to have a neurotoxic potential in a prospective co-
hort study [ 18 ,23 ]. In addition, we showed an inverse associ-
ation between MIND diet adherence and Se-HSA concentra-
tions, though this finding is difficult to interpret given the un-
certain composition and biological role of Se-HSA [40] . The
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opposite patterns of dietary and urinary selenium in relation
with MIND diet adherence scores, compared with blood sele-
nium, could be attributable to a higher excretion of the met-
alloid in subjects with an increased dietary intake because of
the MIND diet, possibly from interactions with other dietary
constituents [ 41 ,42 ] and consequently lower circulating con-
centrations of selenium. 

In non-occupationally exposed individuals and non-
smokers, exposure to selenium occurs primarily through diet,
which is also the major determinant of selenium concentra-
tions in blood (generally in serum or plasma), that represent
the most commonly used and most validated biomarkers of
selenium exposure in the short to medium term [ 25 ,43 ]. For
this reason, serum and plasma selenium concentrations are
biomarkers commonly used to assess selenium exposure in
epidemiological studies [25] . In our population, urinary se-
lenium concentrations were positively associated with sele-
nium dietary intake, as expected, whereas the association
with serum concentrations was negative, suggesting that di-
etary components of the MIND diet could decrease absorption
and increase excretion of the metalloid. This phenomenon
could be explained by factors including high consumption
of cadmium-rich foods such as fruits and vegetables char-
acterizing the MIND diet [44–46] and therefore an increased
selenium excretion from an interaction with this heavy
metal [ 41 ,42 ]. 

Because our study population comprised healthy non-
smokers, we expect that the major contributor to selenium
in blood was dietary intake. According to the 2023 report from
the European Food Safety Authority on the tolerable upper in-
take level for selenium, foods that mainly contribute to se-
lenium are meat and meat products, fish and seafood, milk
and dairy products, and grains and grain-based products [26] .
Accordingly, we found that higher serum selenium concentra-
tions were associated with higher intake of red and processed
meats, whole grains, and cheese (though not fish). Conversely,
higher intakes of vegetables, berries, nuts, fish, and poultry
were associated with lower selenium concentrations. Inter-
estingly, the latter are classified as “brain-healthy” foods [47] .
Globally, the MIND diet is composed of foods rich in vitamin E,
folate, dietary fiber, carotenoids, flavonoids, and monounsat-
urated fats, while emphasizing lower intake of saturated fats
and trans fatty acids [ 1 ,10 ]. In recent years, a growing num-
ber of RCTs and observational studies have suggested that the
MIND diet may reduce risk of cognitive decline [ 48 ,49 ]. A 2023
study also found that a greater adherence to the MIND diet
was inversely associated with postmortem Alzheimer’s dis-
ease pathology [50] . Another study found an inverse associa-
tion with dementia incidence only in females [51] . Though the
exact mechanisms are not fully understood, foods and nutri-
ents endorsed by the MIND diet have been associated with fa-
vorable cognitive and magnetic resonance imaging measures
of the brain, such as white matter integrity [52–55] . The MIND
diet brain-healthy foods may also act through antithrombotic
and anti-inflammatory mechanisms, promoting neuronal sig-
naling and neurogenesis [ 56 ,57 ]. 

Although the epidemiological evidence produced for the
MIND diet envisions it as being protective against Alzheimer’s
dementia and other forms of dementia, the role of the trace
element selenium in the etiology and prevention of cognitive
disorders is unclear and debated [ 21 ,58 ]. Selenium in the form
of selenoproteins (with at least a selenocysteine residue in its
active site) is involved in several biological processes related
to neurological disease, from oxidative stress to immune func-
tion, with beneficial and less frequently adverse effects having
been reported in experimental and observational studies [59] .
In fact, although a selenium-deficient diet may lead to oxida-
tive stress because of decreased concentrations of antioxidant
selenoproteins, an excessive dietary intake may provoke a re-
dox shift toward a more oxidizing cellular environment, re-
sulting in apoptotic cell death [ 14 ,28 ,60 ]. Although some stud-
ies suggest that excess exposure to selenium and its specific
chemical forms may increase the risk of Alzheimer’s demen-
tia and amyotrophic lateral sclerosis [ 61 ,62 ], other studies in-
dicate null or beneficial effects on cognitive performance [63–
65] . For instance, selenium appeared to correlate with neu-
rofibrillary tangles pathology and amyloid beta levels in some
cross-sectional studies [ 19 ,66 ]. Interestingly, selenium supple-
mentation had little effect on dementia prevention in the
PREADViSE study, a combination of an RCT with the organic
selenium form selenomethionine and a subsequent observa-
tional follow-up of the study arms, with a risk ratio of 0.83
(95% CI, 0.60–1.13) [22] . Given the marked differences between
selenium species in terms of biological properties, any assess-
ment of the health effects of selenium exposure should spec-
ify the selenium compound(s) under investigation [67] . In our
study, we observed several differences in relation with adher-
ence to the MIND diet not only according to the biomarker of
exposure assessed (i.e., dietary intake, urinary, and serum con-
centrations), but also to the specific selenium compounds in-
vestigated. In addition, several sex differences were observed.
Higher adherence to the MIND diet was associated with lower
concentrations of overall organic and inorganic selenium in
serum, though the association appeared linear in the first case
and inverted U-shaped in the latter. Although almost null as-
sociations emerged for Se-TXNRD and selenite, higher adher-
ence to MIND diet corresponded with lower concentrations of
Se-SELENOP, selenate, and Se-HSA. These results are of par-
ticular interest, given that the first 2 compounds have been
associated with adverse effects on cognitive decline and de-
mentia risk based on an observational cohort study [ 19 ,23 ,66 ].
Underlying mechanisms for such association could be related
to the onset of insulin resistance, glucose metabolism disrup-
tion, and diabetes in the etiology of dementia, and for which
selenium, and specifically selenoprotein P, is a hypothesized
contributor [ 25 ,68–70 ]. Regarding the inorganic form of sele-
nate, an experimental study conducted in vertebrates found
impairment in long-term memory recall when sodium sele-
nate was administered [71] . Selenate was also the inorganic
form showing a strong association with Alzheimer’s demen-
tia risk. The association observed for Se-HSA needs further in-
vestigation, given the uncertain nature of this compound [41] .
However, in a previous prospective cohort study, Alzheimer’s
dementia risk was greater among participants with higher Se-
HSA concentrations (risk ratio, 1.7; 95% CI, 0.5–5.3) [18] . More-
over, recent studies reported a positive association between
Se-HSA and inorganic selenium species, suggesting inorganic
nature of this compound [ 18 ,40 ], an observation of interest
given the considerably higher toxicity of inorganic selenium
species compared with the organic ones [42] . 
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In our cross-sectional study, we ascertained selenium con-
centrations and MIND diet adherence at only 1 point in time.
Thus, we could not assess temporal variations in adherence to
the MIND diet and selenium exposure. In addition, we cannot
rule out confounding by unmeasured dietary and nondietary
factors. Finally, observed associations were imprecise because
of the small sample size. 

The inverse association observed between MIND diet ad-
herence and circulating selenium concentrations may be con-
sidered either a limitation or a beneficial effect of this dietary
pattern, depending on the role attributable to selenium expo-
sure with reference to cognitive decline. However, given the bi-
valent nature of selenoprotein P and the established neurotox-
icity of inorganic selenium including selenate, lower exposure
to these neurotoxic selenium species appears to contribute to
the protective effect of the MIND diet against cognitive de-
cline. Further studies are warranted to clarify the effects of
selenium on cognitive decline, possibly with a longitudinal
design, including speciation analysis and assessing the end-
points through neuropsychological evaluation, neuroimaging,
and biomarker testing. 
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