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Abstract

Alternating least squares within the multivariate curve resolution framework

has seen a lot of practical applications and shows their distinction with their

relatively simple and flexible implementation. However, the limitations of least

squares should be carefully considered when deviating from the standard

assumed data structure. Within this work, we highlight the effects of noise in

the presence of minor components, and we propose a novel weighting scheme

within the weighted multivariate curve-resolution-alternating least squares

framework to resolve it. Two simulated and one Raman imaging case are

investigated by comparing the novel methodology against standard multivari-

ate curve resolution-alternating least squares and essential spectral pixel selec-

tion. A trade-off is observed between current methods, whereas the novel

weighting scheme demonstrates a balance where the benefits of the previous

two methods are retained.

KEYWORD S

essential information, multivariate curve resolution–alternating least squares (MCR-ALS),
sample selection, spectral pixels, weighted least squares

1 | INTRODUCTION

Multivariate curve resolution (MCR) is a methodology with its fingers in many fields.1 Its ability to resolve unknown
mixtures, combined with simple-to-understand algorithms and interpretable results, makes it a highly performant
method. MCR is aimed at resolving the most linearly dissimilar sources of variances (which are assumed to be the pur-
est) underlying bilinear data. One of the most utilised MCR algorithms is multivariate curve resolution–alternating least
squares (MCR-ALS). MCR-ALS has been proven to be effective in many practical scenarios; however, within the ALS
procedure, some of the well-known limitations of least squares approaches must be considered. One of these limita-
tions, in particular, regards the presence of non-independent and -identically distributed (non-iid) noise. To cope with
this, a weighted MCR-ALS algorithm has been developed by Wentzell et al. based on maximum likelihood projections
and applied to different types of data.2,3 Another limitation relates to the so-called ‘black-hole’ effect, as pointed out
recently by Vitale et al.4 This issue is connected to the leverage that some data points may have in the non-negative
least squares (NNLS) calculation. In MCR, single data points that are very far from the data cloud are potentially the
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purest ones. However, when utilising MCR-ALS, their leverage might become too low to guarantee the correct solu-
tion when the number of data points for other components is very large. Even starting from the most favourable
initial estimates (i.e., the true pure profiles), the solution will, in such a situation, iteratively move closer to the
centre of the data cloud. A solution to overcome this black-hole effect and improve the accuracy of the MCR-ALS
output is sample selection, and an efficient way to do so is by selecting essential samples based on a convex hull
criterium.5–7 Examples of applications to hyperspectral imaging data showed that it is possible to recover similar or
sometimes better solutions with respect to standard MCR-ALS.8–10 However, when noise comes into play, selecting
too few samples can, at some point, decrease the stability of the model, as the number of points to properly esti-
mate its parameters is greatly reduced.11 In practical situations, there is a trade-off to be found, as reducing the
data down to its most essential information will increase the variance of the estimated parameters, whereas
utilising the entire data set might reduce the accuracy of said parameters, as observed in the aforementioned
black-hole effect.

In this short communication, we propose a weighted MCR-ALS methodology to balance this trade-off. To put it
in perspective, the selection of samples based on essential information can be seen as the most extreme form of
weighted analysis, that is, weighting one essential samples, and zero, others. Here we propose a weighting scheme
where sample weights are determined based on their relevance to the MCR solution. To this aim, convex peeling12

of the data set is performed, that is, repeated convex hull calculations, pruning the data layer by layer until no
points remain. For each layer, samples receive the same weight, with weights decreasing for the consecutive layers.
A comparison is made between standard MCR-ALS, weighted MCR-ALS with weights encoding ESP selection and
weighted MCR-ALS with weights encoding convex peeling, applied to three different data sets, two simulated and
one real.

2 | METHODS

2.1 | Weighted MCR-ALS

For the sake of brevity, MCR-ALS will not be detailed, and we refer to de Juan et al.1 In this work, a modified ALS
framework is formulated where instead of applying a standard NNLS approach to estimate the concentration and spec-
tral profiles, a weighted version of the fast NNLS algorithm developed by Bro et al.13 is applied. The main differences
with respect to standard MCR-ALS are presented in Equations (1)–(5):

D¼ bCbST þE ð1Þ

WeightedMCR�ALS

bC¼DSini ST
iniSini

� ��1

#
ð2Þ

bST ¼ bCT
W cbC

� ��1bCT
W cD

#
ð3Þ

bC¼DbS bSTbS� ��1
ð4Þ

#" alternatingð Þ
bST ¼ bCT

W cbC
� ��1bCT

W cD
ð5Þ

where D I� Jð Þ is the data matrix with I samples and J spectral channels, bC I�mð Þ contains the estimated concentra-
tion profiles for m components, bS J�mð Þ carries the estimated spectral profiles, E I� Jð Þ is the model error matrix,
W c I� Ið Þ the weighting matrix for bC, and the spectra used as initial estimates are denoted as ST

ini. W c is a square matrix
with its diagonal containing the weights of all samples and zeros elsewhere.
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2.2 | Weighting scheme

The samples are weighted according to their relevance to the MCR solution. In this work, we first used essential spec-
tral points (ESPs) as the basis for the weighting scheme. ESPs can be found by taking the points along the convex hull
of the normalised scores of the data set within its principal component subspace (PC-space).5–7 ESPs carry all the spec-
tral information required for an accurate MCR resolution, and their selection reduces the data set considerably without
losing any essential information.5–7 ESP selection can be encoded in W c, with weights equal to one, for ESPs, and
weights equal to zero, for non-ESPs. However, this is the most extreme form of weighting.

We extended this approach by applying convex peeling,12 where each peel, l, is considered a layer of the data in the
normalised scores within the PC-space. Peeling is an iterative process where the most external convex hull (first layer,
l¼ 1) is removed, and considering the remaining samples, a new convex hull is computed (second layer, l¼ 2). The pro-
cess is repeated until there are not enough points left to continue. The remaining points, if present, are given a weight
of 0. The samples belonging to each convex hull are inversely weighted with their respective peel number (weights
equal to 1=l). In W c, the samples of the first peel (ESP) have a weight of 1, and for the last and innermost peel, a weight
close to zero is set. The lower the relevance of the sample towards the MCR solution, the lower its weight.

2.3 | Residual bootstrap analysis

Residual bootstrap analysis for regression14 is a randomised error resampling technique to determine the stability of a
model from a single data set (D). The bootstrap framework is shown below, with Equation (6)–(9):

The reconstructed data matrix bD I� Jð Þ is estimated from a singular value decomposition (SVD)15 of D with k
components.

bD¼UΣVT ð6Þ

where the U I�kð Þ and V J�kð Þ are the left and right singular vectors of D, respectively, and Σ k�kð Þ is a square
matrix with its singular values on the diagonal and zeros elsewhere.

The error E I� Jð Þ is calculated by subtracting bD from D.

E¼D� bD ð7Þ

E is resampled to generate a new error matrix Ebs I� Jð Þ by removing a random subset (1%) of samples from E and
repopulating it with another random subset of E. In this way, a new error matrix is generated, following the same error
distribution that is present within E.

E!Ebs ð8Þ

This resampled error is added back to bD to generate a residual-bootstrapped data matrix Dbs I� Jð Þ which is further
processed or analysed, in this case, by means of MCR-ALS.

Dbs ¼ bDþEbs ð9Þ

To get a proper estimation of the model stability, the bootstrap is repeated 50 times,11 to generate 50 matrices Dbs.

3 | DATA SETS

Three data sets are analysed, two resulting from simulations and one from a six-component Raman hyperspectral image
of a pharmaceutical tablet.
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3.1 | Data set 1

A set of three spectral profiles (Figure 1A, 120 variables) and three concentration profiles (2595 samples) are simulated.
The concentration profiles (equal for each component) span the entire mixture space, containing a set of pure, binary
and ternary samples. One pure sample per component is present, and at least one spectral variable is fully selective.
All three components have the exact same concentration distribution. The concentration and spectral profiles are
multiplied by each other to obtain a noiseless data matrix. Afterwards, Gaussian noise (15% of the signal intensity) is
added to obtain a final data matrix (Figure 1B). A clear triangle is observed within the normalised PC-scores plot
(Figure 1C), which indicates that every possible combination of the three components is present within the data
matrix. Fifty data matrices are generated, with each matrix having an error structure randomly sampled from a
Gaussian distribution.

3.2 | Data set 2

The simulated data matrix is generated as reported in Vitale et al.,4 which results in a three-component (A, B and C)
system and features 56,700 samples and 120 spectral-like variables (Figure 2A). A set of 50 matrices are generated from
it by recalculating the error but maintaining the exact same concentration and spectral profiles. The relative amount of
noise is kept at 15% of the signal intensity, similar to Data set 1. Component C is set as a minor component, meaning
that a big portion of the samples contains mainly components A and B, and component C has a very low concentration
across the samples. However, different from the data matrices generated by Vitale et al., this data set contains 800 pure
samples of C; this is because the noise level is three times larger. The spectra of a single data matrix are shown in
Figure 2B.

FIGURE 1 Single matrix of Data set 1, (A) pure spectral profiles (A-C); (B) 10% of the spectra from the data matrix; (C) normalised

scores in the (X1, X2) PC-subspace.
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FIGURE 2 Single matrix of Data set 2, (A) pure spectral profiles (A-C); (B) 10% of the spectra from the data matrix; (C) normalised

scores in the (X1, X2) PC-subspace.

FIGURE 3 Data set 3, (A) pure spectral profiles (A-F); (B) 10% of the spectra from the data matrix, after preprocessing; (C) normalised

scores (X1, X2) in the PC-subspace.
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3.3 | Data set 3

This data set relates to a six-component semi-synthetic Raman image of a pharmaceutical tablet and consists of 5000
samples and 1600 variables. We refer to Coic et al.8 for the details of the analysis. The spectra are pre-processed with a
Savitzky–Golay filter16 using a first-order polynomial and a window size of 11. The six blended chemical compounds
are known, and their corresponding spectral profiles (used as a reference) are taken from an in-house database. See
Figure 3 for an overview of the data. As can be seen in the normalised scores plot (Figure 3C), the data structure shows
that minor components are present, although a higher dimensional representation would be needed for full
visualisation.

FIGURE 4 Multivariate curve resolution–alternating least squares (MCR-ALS) solutions obtained from Data set 1, using MCR-ALS on

the data set (‘Full’, 2595 samples), using weighted MCR-ALS with weights encoding essential spectral point (ESP) selection (‘ESP’,
10 samples) and using weighted MCR-ALS with weights encoding the results of convex peeling (‘Weighted’, 97 peels). The true solutions

(dashed green) and the 50 MCR solutions (blue) are plotted separately for each component and analysis method.
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A bootstrap analysis is performed on the data to obtain 50 bootstrapped matrices, as described in Section 2.3 with
k¼ 10.

4 | RESULTS AND DISCUSSION

For each data set, 50 MCR solutions (every model estimated from a matrix with a different error structure) are obtained
by the approaches tested: (1) MCR-ALS on the data set (results denoted as ‘Full’ in the remainder of the text);
(2) weighted MCR-ALS with weights encoding ESP selection (‘ESP’) and (3) weighted MCR-ALS with weights encoding

FIGURE 5 Multivariate curve resolution–alternating least squares (MCR-ALS) solutions obtained from Data set 2, using MCR-ALS on

the data set (‘Full’, 56,700 samples), using weighted MCR-ALS with weights encoding essential spectral point (ESP) selection (‘ESP’,
15 samples) and using weighted MCR-ALS with weights encoding the results of convex peeling (‘Weighted’, 98 peels). The true solutions

(dashed green) and the 50 MCR-ALS solutions (blue) are plotted separately for each component and analysis method.
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the results of convex peeling (‘Weighted’). The dispersion of the solutions obtained from the 50 replicates can be com-
pared among the different approaches to determine the stability of the estimated parameters.

For Data set 1, results are provided in Figure 4. As expected, those obtained from ‘Full’ show that without any
weighting or selection, a good (accurately representing the ground truth for each component) and stable
(no dispersion) estimation of the pure spectral profiles is obtained. The solutions obtained from ‘ESP’ show that
weighting the ESPs as one and all others as zeros clearly has an impact on the dispersion of the solutions, indicating an
increased variance in the estimates of the MCR-ALS model parameters (profiles). Whereas for ‘Weighted’, the perfor-
mance is found to be similar to ‘Full’.

In Figure 5, the results for Data set 2 are shown, which now highlight, differently from Data set 1, the potential
impact of an under-represented minor component on the accuracy of the outcomes.4 The solutions obtained from ‘Full’
show that MCR-ALS is not able to accurately estimate the parameters of component C, even though little to no disper-
sion is observed. With ‘ESP’, the spectra of component C are estimated properly and point out the importance of
selecting relevant samples to drive the MCR-ALS solutions towards the true one in the presence of minor components.
However, this comes at the price of higher dispersion, as already noted in Data set 1. For ‘Weighted’, similarly to ‘ESP’,
accurate spectra are obtained without any bias in the minor component estimate. However, in contrast to ‘ESP’, very
little dispersion in the model parameters is seen because the full data set is used.

Figure 6 shows the results for Data set 3. Like in Coic et al.,8 ‘Full’ cannot estimate all components, minor compo-
nents C and F (which explain 0.05% and 1.77% of the variance of the original data, respectively) are missed. By contrast,
‘ESP’ and ‘Weighted’ can retrieve solutions very close to the reference spectra, with ‘Weighted’ showing a decrease in
the dispersion of the solutions compared with ‘ESP’. These results corroborate the ones obtained from Data set 2: A
decrease in the dispersion of the parameter estimates of an order of magnitude for component F to around half for com-
ponent B is observed. Only component C sees no decrease in dispersion because ‘ESP’ selects all the samples
containing C, meaning that using the full data with respect to ESP adds no additional information on C. Concerning
component F, ‘ESP’ still selects the purest samples; however the selected samples have a significant noise level, induc-
ing dispersion in the solutions. Weighting the data set with convex peeling instead of just the ESPs, increases the num-
ber of analysed samples containing component F, in turn, reducing the variance in its calculated spectral profile.

FIGURE 6 Multivariate curve resolution–alternating least squares (MCR-ALS) solutions obtained from Data set 3, using MCR-ALS on

the data set (‘Full’, 5000 samples), using weighted MCR-ALS with weights encoding essential spectral point (ESP) selection (‘ESP’,
35 samples) and using weighted MCR-ALS with weights encoding the results of convex peeling (‘Weighted’, 52 peels). The true solutions

(dashed green) and the 50 bootstrapped MCR-ALS solutions (blue) are plotted separately for each component and analysis method.
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When comparing the results of ‘Full’ and ‘ESP’, both Data sets 2 and 3 show that, in the presence of minor compo-
nents, a trade-off is present between the approaches. One should choose between precise but biased solutions with
‘Full’ or accurate but imprecise solutions with ‘ESP’. ‘Weighted’, instead, takes the middle ground, where the
utilisation of the full data combined with the knowledge of the essential information they carry, in the presence of noise
and minor components, gives both more accurate and precise solutions.

5 | CONCLUSION

With this work, we show that, in the presence of minor components, ESP selection is required to drive the MCR-ALS
solution towards the true one, with the caveat of losing parameter stability due to instrumental noise. We propose an
extended weighting scheme within the weighted MCR-ALS framework that is based on convex hull data peeling and is
able to preserve the benefits of ESP selection without reducing model parameter stability. This weighting framework is
based on the relevance of the entire ensemble of investigated samples towards the MCR-ALS resolution. However, this
can be further optimised by, for example, limiting the number of convex peels or applying a threshold on the sample
relevance criterion to compress the data more adequately, reducing computation times. Furthermore, other relevance
criteria can be applied as well (see the recent work done by Zade et al.17).
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