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Abstract

Given a proper edge-coloring of a loopless multigraph, the palette of a vertex is defined
as the set of colors of the edges which are incident with it. The palette index of a multigraph
is defined as the minimum number of distinct palettes occurring among the vertices, taken
over all proper edge-colorings of the multigraph itself. In this framework, the palette pseu-
dograph of an edge-colored multigraph is defined in this paper and some of its properties
are investigated. We show that these properties can be applied in a natural way in order to
produce the first known family of multigraphs whose palette index is expressed in terms of
the maximum degree by a quadratic polynomial. We also attempt an analysis of our result
in connection with some related questions.
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1 Introduction
Generally speaking, as soon as a chromatic parameter for graphs is introduced, the first
piece of information that is retrieved is whether some universal meaningful upper or lower
bound holds for it. This circumstance is probably best exemplified by mentioning, say,
Brooks’ theorem for the chromatic number and Vizing’s theorem for the chromatic index.
In either instance the maximum degree ∆ is involved and that probably explains the trend
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to consider ∆ as a somewhat natural parameter, in terms of which bounds for other chro-
matic parameters should be expressed. In the current paper we make no exception to this
trend and use the maximum degree ∆ as a reference value for the recently introduced chro-
matic parameter known as the palette index. To this purpose we introduce an additional
tool, that we call the palette pseudograph, which can be defined from a given multigraph
with a proper edge-coloring. Some properties of the palette pseudograph are investigated
in Section 2 and we feel they might be of interest in their own right. In the current con-
text, we use these properties in connection with an attempt of finding a polynomial upper
bound in terms of ∆ for the palette index of a multigraph with maximum degree ∆. As a
consequence of our main construction in Section 3, we can assert that if such a polynomial
bound exists at all then it must be at least quadratic.

Throughout the paper, following a standard terminology (see for instance [7]), we use
the term multigraph to denote an undirected graph with multiple edges but no loops, while
we use the term pseudograph for a graph admitting both multiple edges and loops. For any
given multigraph G, we always denote by V (G) and E(G) the set of vertices and the set
of edges of G, respectively. We further denote by Gs the underlying graph of G, that is
the simple graph obtained from G by shrinking to a single edge any set of multiple edges
joining two given vertices.

By a coloring of a multigraph G we always mean a proper edge-coloring of G. A
coloring of G is thus a mapping c : E(G)→ C, where C is a finite set whose elements are
designated as colors, with the property that adjacent edges always receive distinct colors.
We shall often say that (G, c) is a colored multigraph, meaning that c is a coloring of the
multigraph G.

Given a colored multigraph (G, c), the palette Pc(x) of a vertex x of G is the set of
colors that c assigns to the edges which are incident with x.

The palette index š(G) of a simple graphG is defined in [9] as the minimum number of
distinct palettes occurring among the vertices, taken over all proper edge-colorings of the
graph G. The definition can be extended verbatim to multigraphs. The exact value of the
palette index is known for some classes of simple graphs.

• A graph has palette index 1 if and only if it is a class 1 regular graph [9, Proposi-
tion 1].

• A connected class 2 cubic graph has palette index 3 or 4 according as it does or it
does not possess a perfect matching, respectively [9, Theorem 9].

• If n is odd, n ≥ 3 then š(Kn) is 3 or 4 depending on n ≡ 3 or 1 (mod 4), respec-
tively [9, Theorem 4].

• The palette index of complete bipartite graphs was determined in [8] in many in-
stances.

The quoted result for complete graphs shows that it is possible to find a family of
graphs, for which the maximum degree can become arbitrarily large, and yet the palette
index admits a constant upper bound, namely 4 in this case.

As it was remarked in [4], the fact that a class 2 regular graph of degree ∆ always
admits a (∆ + 1)-coloring forces ∆ + 1 to be an upper bound for the palette index of such
a graph (namely, ∆ + 1 is the number of ∆-subsets of a (∆ + 1)-set of colors).

That is definitely not the case for non-regular graphs: it was shown in [3] that for each
positive integer ∆ there exists a tree with maximum degree ∆ whose palette index grows
asymptotically as ∆ ln(∆).
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Consequently, one cannot expect for the palette index any analogue of, say, Vizing’s
theorem for the chromatic index: the palette index of graphs of maximum degree ∆ cannot
admit a linear polynomial in ∆ as a universal upper bound.

It is the main purpose of the present paper to produce an infinite family of multigraphs,
whose palette index grows asymptotically as ∆2, see Section 3. Our method relies essen-
tially on a tool that we define in Section 2, namely the palette pseudograph of a colored
multigraph. This concept is strictly related to the notion of palette index and it appears to
yield a somewhat natural approach to the study of this chromatic parameter.

2 The palette pseudograph of a colored multigraph
For any given finite set X and positive integer t we denote by t ·X the multiset in which
each element of X is repeated t times.

The next definition will play a crucial role for our construction in Section 3. Given a
colored multigraph (G, c), we define its palette pseudograph Γc(G) as follows.

The vertex-set of Γc(G) is V (Γc(G)) = {Pc(v) : v ∈ V (G)}. In other words the
vertices of Γc(G) are all pairwise distinct palettes of (G, c).

For any given pair of adjacent vertices x and y of G, we declare the (not necessarily
distinct) palettes Pc(x) and Pc(y) to be adjacent and define the corresponding edge in the
palette pseudograph Γc(G).

More precisely, if x and y are adjacent vertices in G such that their palettes Pc(x)
and Pc(y) are distinct, then Pc(x) and Pc(y) yield two distinct vertices connected by an
ordinary edge in the palette pseudograph Γc(G), see vertices x1 and x2 in Figure 1. If,
instead, x and y are adjacent vertices in G with equal palettes Pc(x) and Pc(y), these form
a single vertex with a loop in the palette pseudograph Γc(G), see vertices x2 and x3 in
Figure 1.

If two (equal or unequal) palettes appear on several pairs of adjacent vertices ofG, then
each such pair yields one edge in Γc(G) (either a loop or an ordinary edge). It is thus quite
possible that the palette pseudograph Γc(G) presents multiple (ordinary) edges between
two given distinct vertices as well as multiple loops at a given vertex.

An example of a pair (G, c) and the corresponding palette pseudograph Γc(G) is pre-
sented in Figure 1.

The number of vertices of the palette pseudograph Γc(G) is thus equal to the number
of distinct palettes in the colored multigraph (G, c), while the number of edges (loops
and ordinary edges) in Γc(G) is equal to the number of edges in the underlying simple
graph Gs.

The following proposition is also an easy consequence of the definition of the palette
pseudograph: note that each loop in Γc(G) contributes 2 to the degree of its vertex.

Proposition 2.1. For any given colored multigraph (G, c), the degree of a vertex Pc(x) in
the palette pseudograph Γc(G) is equal to the sum of the degrees in the underlying simple
graph Gs of all vertices whose palettes in (G, c) are equal to Pc(x).

3 The main construction
The main purpose of this Section is the construction of a multigraph G∆ with maximum
degree ∆, whose palette index is expressed by a quadratic polynomial in ∆.

For the sake of brevity we shall assume ∆ even, ∆ ≥ 2: a slight modification of our
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Figure 1: A multigraph G with a proper edge-colouring and the associated palette pseudo-
graph.

construction yields the same result for odd values of ∆. Even though our graph G∆ is not
connected, a connected example can easily be obtained from G∆ as follows. Introduce a
new vertex ∞ which is declared to be adjacent to each vertex of degree ∆ in G∆. The
resulting multigraph G̃∆ is connected with maximum degree ∆ + 1. The palette index of
the multigraphs G̃∆ is again bounded from below by a quadratic polynomial in ∆. We feel
appropriate at this stage to stress a peculiar property of the palette index, in comparison with
other chromatic parameters: it is not true in general that the palette index of a multigraph is
equal to the maximum of the palette indices of its connected components (see Proposition
3 in [4]). This says that there is no particular reason to prefer connected examples to
disconnected ones in this context.

The multigraph G∆ is obtained as the disjoint union of multigraphs H∆
t , for t =

1, 2, . . . ,∆− 2, which are defined as follows.
Let H∆ be the simple graph with vertices u, v0, v1, . . . , v∆−1 and edges uv0, uv1, . . . ,

uv∆−1, v0v1, v2v3, . . . , v∆−2v∆−1. The graph H∆ is sometimes called a windmill graph
[6] and can also be described as being obtained from the wheel W∆ (see [2]) by alternately
deleting edges on the outer cycle.

The multigraph H∆
t is obtained by replacing each edge vjvj+1 which is not incident

with the central vertex u with t parallel edges between the same vertices vj and vj+1.
In detail, define for t = 1, 2, . . . ,∆− 2

V (H∆
t ) = {ut, v0

t , v
1
t , . . . , v

∆−1
t }

E(H∆
t ) = t · {vjt vj+1

t : j ∈ {0, 2, 4, . . . ,∆− 2}} ∪ {utvjt : j ∈ {0, 1, 2, . . . ,∆− 1}}
H∆

t =
(
V (H∆

t ), E(H∆
t )
)

For j = 0, 1, . . . ,∆−1 we denote the edge utv
j
t by ejt or simply by ej once t is understood.

Furthermore, for any index j ∈ {0, 1, . . . ,∆ − 1} there is a uniquely determined index
j′ ∈ {0, 1, . . . ,∆ − 1}, j 6= j′ such that vj

′

t is the unique vertex, other than ut, which is
adjacent to vjt in H∆

t .
The submultigraph of H∆

t which is induced by the vertices ut, v
j
t , v

j′

t will be denoted
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by L j . The edges of L j are ej , ej
′

and the t repeated edges having vjt and vj
′

t as endver-
tices. By definition, we have L j = L j′ .
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Figure 2: The graph H8
2 .

We now assume that a k-edge-coloring c : E(H∆
t )→ C = {c0, c1, . . . , ck−1} is given

and study some properties of the palette pseudograph Γc(H
∆
t ). Since the central vertex

ut has degree ∆ in H∆
t we have ∆ ≤ k and may assume, with no loss of generality,

that c(ej) = cj holds for j = 0, 1, . . . ,∆ − 1. The inequality t ≤ ∆ − 2 yields in turn
t + 1 < ∆. Consequently, since each non central vertex vjt has degree t + 1, we see
that the palette Pc(ut) = {0, 1, . . . ,∆ − 1} is distinct from every other palette Pc(v

j
t ).

For that reason, rather than looking at the palette pseudograph Γc(H
∆
t ) we consider the

subpseudograph Γ−c (H∆
t ) = Γc(H

∆
t ) \ Pc(ut) obtained by removing the palette Pc(ut)

(as a vertex of the palette pseudograph).

Lemma 3.1. The pseudograph Γ−c (H∆
t ) is a simple graph and is a forest.

Proof. We prove first of all that Γ−c (H∆
t ) has no loop, that is Pc(v

j
t ) 6= Pc(v

j′

t ) for all j.
Consider the two adjacent vertices vjt and vj

′

t . The corresponding edges ej and ej
′

have
distinct colors cj and cj′ in {0, . . . ,∆ − 1}, respectively. The color cj cannot appear on
one of the edges between vjt and vj

′

t , since c is a proper coloring. Hence, cj belongs to
Pc(v

j
t ) and does not belong to Pc(v

j′

t ), and the two palettes are distinct, as claimed.
Next, we prove that Γ−c (H∆

t ) has no multiple edges, by showing that if Pc(v
j
t ) =

Pc(v
h
t ) for h 6= j, j′, then Pc(v

j′

t ) 6= Pc(v
h′

t ). Suppose the vertices vjt and vht share the
same palette. The edges ej and eh are colored with colors cj and ch, respectively. Hence
{cj , ch} ⊂ Pc(v

j
t ) (= Pc(v

h
t )). In particular, one of the edges between vht and vh

′

t has
color cj and so we have cj ∈ Pc(v

h′

t ). On the other hand, cj does not belong to Pc(v
j′

t )
because c is a proper coloring, and the claim follows.

In order to complete our proof, we need to prove that Γ−c (H∆
t ) has no cycle and is thus

a forest.
Assume, by contradiction, that Γ−c (H∆

t ) has a cycle Γ. Without loss of generality, we
may assume that Γ contains the vertices Pc(v

0
t ) and Pc(v

1
t ) of Γ−c (H∆

t ). Since Pc(v
0
t ) has

degree at least two in Γ−c (H∆
t ), there exists h 6= 0 such that Pc(v

0
t ) = Pc(v

h
t ) and Pc(v

h′

t )
belongs to Γ. Recall that e0 has colour c0 in c. Therefore, the colour c0 belongs to both
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palettes Pc(v
0
t ) and Pc(v

h
t ), since they are the same palette. Furthermore, the edge eh has

colour ch, different from c0. Then c0 is the colour of one of the edges between vht and vh
′

t .
Hence, the colour c0 also belongs to the palette Pc(v

h′

t ). Repeating the same argument, we
obtain that c0 belongs to each palette of the cycle Γ. That is a contradiction, since c0 does
not belong to the palette Pc(v

1
t ).

Lemma 3.2. The degree of a vertex Pc(v
j
t ) in Γ−c (H∆

t ) is exactly equal to the number of
vertices of H∆

t having the same palette Pc(v
j
t ) in the colouring c.

Proof. The underlying simple graph of H∆
t \ {ut} is the disjoint union of isolated edges,

that is every vertex has degree exactly 1 in the underlying simple graph. It follows from
Proposition 2.1 that when a given palette P is viewed as a vertex in Γ−c (H∆

t ), then its
degree is equal to the number of vertices in H∆

t sharing the palette P .

The next Proposition states a well-known property of forests.

Proposition 3.3. The average degree of a forest is strictly less than 2.

Proof. Suppose that the forest F has n vertices. Then F has at most n− 1 edges and∑
v∈V (F )

d(v) = 2|E(F )| ≤ 2(n− 1)

so that the average degree is

1

n

∑
v∈V (F )

d(v) ≤ 2(n− 1)

n
< 2.

By the previous proposition and Lemma 3.2, the average number of vertices in H∆
t

sharing the same palette is less than 2 and that implies the following lower bound for the
palette index of H∆

t :

š(H∆
t ) >

∆

2
+ 1.

Theorem 3.4.
∆

2
(∆− 2) < š(G∆) < (∆ + 1) (∆− 2) (3.1)

Proof. The second inequality is an immediate consequence of the fact that the number of
vertices in G∆ is (∆ + 1) (∆− 2).

For the first inequality, it is sufficient to observe that all vertices of degree t+ 1 in G∆

belong to the subgraph H∆
t , so they cannot share the same palette with a vertex in another

subgraphH∆
t′ , with t′ 6= t. On the other hand, the vertex ut of degree ∆ inH∆

t could share
the same palette with every other vertex of degree ∆, one in each subgraph H∆

t . We obtain

š(G∆) ≥
∑
t

(š(H∆
t )− 1) > (∆− 2)

∆

2
.
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4 Some considerations on a related parameter
We introduce a new natural parameter related to the palette index of a multigraph. Consider
an edge-coloring c of G which minimizes the number of palettes, that is the number of
palettes is exactly š(G): how many colors does c require? More precisely, we consider
the minimum k such that there exists a k-edge-coloring of G with š(G) palettes. We will
denote such a minimum by χ′š(G). Obviously, χ′š(G) ≥ χ′(G) because we need at least
the number of colors in a proper edge-coloring. In [9], the authors remark that in some
cases this number is strictly larger than the chromatic index of the graph. How much larger
could it be?

An upper bound for the value of χ′š(G) for some classes of graphs can be deduced from
an analysis of the proofs of the corresponding results for the palette index.

• [9] Let Kn be a complete graph with n > 1 vertices. Then,

χ′š(Kn) = ∆ if n ≡ 0 (mod 2)

χ′š(Kn) ≤ 3∆

2
if n ≡ 1 (mod 2)

In particular, if n = 4k+3 then it is proved that the palette index is equal to 3 and the
proof is obtained by using three sets of colors of cardinality 2k+1. If n = 4k+5, the
proof works by using three sets of colors of cardinality 2k + 1 and three additional
colors, that is 6(k + 1) colors. The number of colors is exactly 3∆

2 in both cases.

• [9] Let G be a cubic graph. Then,

χ′š(G) ≤ 5.

In particular, five colors are necessary ifG is not 3-edge-colorable and has no perfect
matching.

• [4] Let G be a 4-regular graph. Then,

χ′š(G) ≤ 6.

In particular, six colors are used in some examples with palette index 3 (see the proof
of Proposition 11 in [4]).

• [3] Let G be a forest. Then,
χ′š(G) = ∆.

• [8] Let Km,n be a complete bipartite graph with 1 ≤ m ≤ n. This situation is a
little more involved, in the sense that we cannot always obtain a good upper bound
for χ′š(Km,n) using the proofs of the results in [8]. In some cases, see for instance
Proposition 11 in [8], the number of colors is twice the maximum degree ∆ (recall
that minimizing the number of colors was not important in that context). Never-
theless, we analyze some small cases and obtain the same number of palettes (the
minimum) by using a smaller number of colors.

One such example is obtained by considering the graph K5,6 (i.e. case k = 3 in
Proposition 11 of [8]). Denote by {u1, . . . , u5} and {v1, . . . , v6} the bipartition of
the vertex-set of K5,6. The proof of Proposition 11 in [8] furnishes an edge-coloring
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with 12 colors and 6 palettes. Following the notation used in [8] we represent the
coloring with a matrix, where the element in position (i, j) is the color of the edge
uivj .

M5,6 =


1 2 3 4 5 6
3 1 2 6 4 5
2 3 1 5 6 4
7 8 9 10 11 12
8 7 12 11 10 9


The following coloring has only 8 colors and again 6 palettes.

M ′5,6 =


1 2 3 4 5 6
3 1 2 6 4 5
2 3 1 5 6 4
4 5 7 8 1 2
5 4 8 7 2 1


We would like to stress that, even if we can obtain similar colorings for some other
sporadic cases, we are not able to generalize our results to all infinite families con-
sidered in [8].

All previous results and the study of some sporadic cases suggest that χ′š(G) cannot be
too large with respect to ∆. In particular, we believe there exists a linear upper bound for
χ′š(G) in terms of ∆. The following is thus an even stronger conjecture.

Conjecture 4.1. Let G be a (simple) graph. Then,

χ′š(G) ≤ d3
2

∆e.

As far as we know, this conjecture is new and completely open. We believe any progress
in that direction could be useful for a deeper understanding of the behavior of the palette
index of general graphs.

5 Concluding remarks and open problems
In this final Section we propose some further open questions and indicate a few connections
with other known problems.

In Section 3, we have presented a family of multigraphs whose palette index is ex-
pressed by a quadratic polynomial in ∆. We were not able to find a family of simple
graphs with such a property and so we leave the existence of such a family as an open
problem.

Problem 5.1. For ∆ = 3, 4, . . . , does there exist a simple graph with maximum degree ∆
whose palette index is quadratic in ∆?

As far as we know, the best general upper bound in terms of ∆ for the palette index of
a simple graph G is the trivial one, which is obtained from a (∆ + 1)-edge-colouring c of
G: in principle, each non-empty proper subset of the set of colours could occur as a palette
of (G, c), whence š(G) ≤ 2∆+1 − 2. On the other hand, all known examples suggest
that this upper bound is far from being tight. In particular, we raise the question whether a
polynomial upper bound holding for general multigraphs may exist at all.
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Problem 5.2. Prove the existence of a polynomial p(∆) such that š(G) ≤ p(∆) for every
multigraph G with maximum degree ∆.

We slightly suspect that if a polynomial p solving Problem 5.2 can be found at all, then
some quadratic polynomial will do as well.

Finally, we would like to stress how this kind of problems on the palette index is some-
how related to another well-known type of edge-colorings, namely interval edge-colorings,
introduced by Asratian and Kamalian in [1].

Definition 5.3. A proper edge-coloring c of a graph with colors {c1, c2, . . . , ct} is called
an interval edge-colouring if all colours are actually used, and the palette of each vertex is
an interval of consecutive colors.

The following relaxed version of the previous concept was first studied in [10] and then
explicitly introduced in [5].

Definition 5.4. A proper edge-colouring c of a graph with colors {c1, c2, . . . , ct} is called
an interval cyclic edge-colouring if all colours are used and the palette of each vertex is
either an interval of consecutive colors or its complement.

Both interval and interval cyclic edge-colorings are thus proper edge-colourings with
severe restrictions on the set of admissible palettes.

There are many more results on interval edge-colourings (see among others [12]). In
particular, it is known that not all graphs admit an interval edge-colouring. Furthermore,
it is proved in [11] that if a multigraph of maximum degree ∆ admits an interval edge-
colouring then it also admits an interval cyclic ∆-edge-colouring.

The following holds:

Proposition 5.5. Let G be a multigraph of maximum degree ∆ admitting an interval edge-
colouring. Then, š(G) ≤ ∆2 −∆ + 1.

Proof. Since G admits an interval edge-colouring, then it also admits an interval cyclic
∆-edge-colouring c (see [11]). Each palette of (G, c) is thus an interval of colors in the set
{c1, c2, . . . , c∆} or its complement is one such interval. For t = 1, . . . ,∆ − 1, there are
exactly ∆ such subsets of cardinality t, and a unique one for t = ∆. We have thus at most
∆(∆− 1) + 1 distinct palettes in (G, c), that is š(G) ≤ ∆2 −∆ + 1.

In other words, the previous Proposition assures that a putative example of a family of
multigraphs whose palette index grows more than quadratically in ∆ should be searched
for within the class of multigraphs without an interval edge-colouring.

In this paper, we also introduce the palette pseudograph of a colored multigraph (G, c).
A precise characterization of the palette pseudograph of the family introduced in Section 3
is the key point of our main proof. It suggests that a study of palette pseudographs in a
general setting could increase our knowledge of the palette index. Possibly, it could also
help in the search for an answer to some of the previous problems. Hence, we conclude our
paper with the following:

Problem 5.6. Let H be a pseudograph. Determine whether a colored multigraph (G, c)
exists, such that H is the palette pseudograph of (G, c).
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