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Motivated by the unexpected appearance of shear
horizontal Rayleigh surface waves, we investigate
the mechanics of antiplane wave reflection and
propagation in couple stress (CS) elastic materials.
Surface waves arise by mode conversion at a
free surface, whereby bulk travelling waves trigger
inhomogeneous modes. Indeed, Rayleigh waves are
perturbations of the travelling mode and stem
from its reflection at grazing incidence. As is
well known, they correspond to the real zeros of
the Rayleigh function. Interestingly, we show that
the same generating mechanism sustains a new
inhomogeneous wave, corresponding to a purely
imaginary zero of the Rayleigh function. This wave
emerges from ‘reflection’ of a bulk standing mode:
This produces a new type of Rayleigh-like wave
that travels away from, as opposed to along, the
free surface, with a speed lower than that of bulk
shear waves. Besides, a third complex zero of the
Rayleigh function may exist, which represents waves
attenuating/exploding both along and away from
the surface. Since none of these zeros correspond
to leaky waves, a new classification of the Rayleigh
zeros is proposed. Furthermore, we extend to CS
elasticity Mindlin’s boundary conditions, by which
partial waves are identified, whose interference lends
Rayleigh–Lamb guided waves. Finally, asymptotic
analysis in the thin-plate limit provides equivalent
one-dimensional models.
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1. Introduction
The discovery of surface waves by Lord Rayleigh [1] revealed that bulk waves may interact with
a free surface to produce a substantially different type of wave, that still propagates along the
surface and yet it decays exponentially in the interior. The recognition of surface waves came
timely, for it explained the large vertical tremors (ground roll) that could be clearly identified
in those early days of seismogram recording. Yet, as pointed out in [2], large low-frequency
horizontal vibrations, similar in nature to Rayleigh waves, appear in seismograms, which can
be only explained, within the classical theory, assuming a layered (inhomogeneous) structure for
the Earth. Indeed, [3] shows “how the layering in the earth affects surface waves far more strongly
than it does body waves” [2, §2.9]. Consequently, one is led to understand that horizontally
and vertically polarized surface waves are fundamentally different in nature, for the former are
an outcome of the double boundary, while the latter are embedded in the mechanics of wave
reflection at a surface [4].

Although this might well be the situation in classical elasticity (CE), the recent discovery
that antiplane surface waves are supported by the indeterminate couple stress (alias constrained
micropolar) theory suggests that horizontally polarized surface waves may also be incorporated
in the theory of surface reflection [5,6]. Immediately, the question arises with regard to what
specific feature of the theory is required for that to be the case. In fact, shear horizontal
surface acoustic waves are also retrieved in the context of the complete Toupin–Mindlin gradient
theory, that involves five microstructural parameters, although they are no longer supported
by the simplified version of gradient isotropic elasticity [4]. In [7], the appearance of shear
horizontal (SH) surface waves is interpreted as a general perturbation (relaxation) of the CE
boundary conditions, which binds ‘otherwise essentially skimming bulk SH waves to the limiting
surface’. To the same effect, several approaches are possible: from material inhomogeneity to
surface periodicity (grating), from multiple interfaces (layering) to magneto-elastic coupling. A
combination of the above is considered in [8], dealing with piezoacoustic (Bleustein–Gulyaev) SH
surface waves in a functionally graded material (FGM).

This notwithstanding, no study appears in the literature investigating the mechanics of surface
reflection in the presence of SH surface waves, in an attempt to single out the characteristic
feature that triggers their appearance. This analysis is most easily carried out in the context of
the indeterminate couple stress (CS) theory, that is perhaps the simplest strain-gradient theory
[9–11]. Indeed, for isotropic materials, it introduces, alongside the classical Lamé moduli, two
extra elastic constants, which incorporate the role of the microstructure, for a total of four material
parameters. In the case of antiplane motion, only three of these really matter, plus the possible
contribution of rotational inertia. In contrast to CE, this theory is no longer self-similar and
therefore it successfully predicts some important observable phenomena, such as dispersion of
bulk and surface waves [6,12] and size effects [13,14].

A number of contributions have appeared in the literature investigating wave propagation
in CS materials. In their pioneering work [15], Graff and Pao consider wave reflection and
propagation in the sagittal plane (i.e. plane-strain) of an isotropic CS half-space, in the absence
of rotational inertia. In particular, study of mode conversion at a free surface ‘is found to be more
complicated because of the existence of three types of waves’. Even greater complexity is recently
encountered in [16], dealing with wave reflection in the context of plane-strain propagation within
gradient isotropic elasticity. Indeed, although the simplified version of the theory is considered,
four different waves are triggered upon reflection. In [17], sagittal guided wave propagation in
a plate (Rayleigh–Lamb waves) made of isotropic CS material is investigated, in the absence of
rotational inertia, and dispersion relations are obtained. Very recently, dispersion of Rayleigh–
Lamb waves within three CS theories, including indeterminate CS, was analysed in [18]. [12]
studies propagation of Rayleigh waves in the sagittal plane for CS materials in the absence of
rotational inertia. A similarity between Rayleigh wave dispersion in CS materials and in lattice
structures is pointed out in [19]. Steady-state mode III fracture propagation is considered in [20],
which extends the results already obtained in [13] for statics and shows the dispersion diagram of
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bulk SH waves. Scattering of antiplane shear waves at the interface of a cylindrical nano-fibre in
CS materials is investigated by [21]. Diffraction of waves originating from time harmonic loading
of a semi-infinite crack is discussed in [6].

In this paper, we extend the work of Graff and Pao to antiplane waves and upon this we
develop the theory of surface and Rayleigh–Lamb antiplane waves in CS materials. With respect
to the original work of Graff and Pao, the mechanical framework is simpler and thus we can
develop full analytical insight. Besides, the important role of microstructure inertia is assessed.
In the process, we discover analogies and differences with sagittal plane propagation in CE. In
particular, a standing horizontally polarized bulk wave, associated to a purely imaginary branch-
point in the Rayleigh function, takes the place of the familiar longitudinal P-wave in sagittal plane
propagation of CE (§3). Still, its role is essential in coupling with the bulk travelling SH-wave at
the free surface to produce the antiplane surface wave, much like P and shear vertical (SV) waves
couple in CE to produce Rayleigh waves (§3b). Indeed, Rayleigh waves arise in CE at grazing
incidence, beyond the critical angle that is attached to reflected P waves being converted into
surface waves. Such surface waves are precisely the form in which standing bulk waves appear
at the free surface of CS materials. Interestingly, we investigate a novel type of ‘reflection’ that
involves standing waves and leads to a new Rayleigh-like wave, propagating in the interior of the
material and exponentially exploding/decaying along the surface (§3c). Clearly, this wave cannot
exist on an infinite surface. However, it is precisely this wave, associated with a purely imaginary
zero of the Rayleigh function, that is found in [6] radiating from the tip of a semi-infinite crack.
Guided propagation in a plate is investigated in §4, where reduced one-dimensional models for
beams with microstructure are also obtained.

2. Antiplane couple stress elasticity
Let us consider a Cartesian co-ordinate system (O, x1, x2, x3) and a thin plate B0 = {(x1, x2, x3) :
−h < x2 < h} made of isotropic elastic couple stress (CS) material, figure 1. This is a polar material,
for which, alongside the classical Cauchy stress tensor t, we define the couple stress tensor μ
such that, for any surface of unit normal n, it determines the internal reduced couple vector q =
μn acting across that surface. It is expedient to decompose the Cauchy stress tensor t into its
symmetric and skew-symmetric parts, respectively σ and τ ,

t = σ + τ , σ = Sym t, τ = Skw t. (2.1)

In addition, the couple stress tensor μ is split into its deviatoric and spherical parts

μ=μD + μS, μS = 1
3 (μ · 1)1, (2.2)

where 1 is the identity tensor and · denotes the scalar product, i.e. componentwise A · B = AijBij
and Einstein’s summation convention on twice repeated subscripts is assumed. According to the
principle of virtual work [11,12], one has

W =
∫
B

(σ · gradT u + μ · gradT ϕ) dV, (2.3)

where u and ϕ are, respectively, the displacement and micro-rotation vector fields, while the
superscript T denotes the transposed tensor. Unlike Cosserat micro-polar theories, for which
displacements and micro-rotations are independent fields, CS theory relates one to the other,
through [11, eqn (4.9)]

ϕ = 1
2 curl u. (2.4)

Component-wise, this is ϕi = 1
2 Eijkuk,j, where E is the rank-3 alternator tensor. Hereinafter, a

subscript comma denotes partial differentiation, e.g. (grad u)kj = uk,j = ∂uk/∂xj. Thus, we speak of
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Figure 1. Wave propagation in a homogeneous plate of couple stress elastic material.

latent micro-structure, for micro-rotations are induced by the displacement field. As in CE, we
define the linear strain tensor

ε= Sym grad u (2.5)

and thereby observe that, according to (2.3), σ is work-conjugated to ε. Further, we introduce the
torsion-flexure (wryness) tensor

χ = gradϕ, (2.6)

that, in light of the connection (2.4), is purely deviatoric, i.e. χ = χD. Consequently, to any effect,
μmay be replaced by μD in equation (2.3). Indeed, the CS theory is named indeterminate after the
observation that the first invariant of the couple stress tensor, i.e. tr μ=μ · 1 = μ11 + μ22 + μ33,
rests indeterminate and therefore it may be set equal to zero without loss of generality. Therefore,
μ collapses on μD and it is work conjugated with χT [11, eqn (2.22)]. For the sake of brevity, in the
following we shall write μ, with the understanding that μD is meant.

Within the framework of hyperelastic materials, the total strain ε and the torsion-flexure χ are
connected to the stress and to the couple stress through the constitutive relations [21, eqn (12)]

σ = ∂U
∂ε

, μ= ∂U
∂χ

,

where U = U(ε,χ) is the stored energy potential. At leading order for small deformations of an
isotropic material, we get [11, eqn (4.7)]

σ = 2Gε + Λ(ε · 1)1, μ= 2G�2
(
χT + ηχ

)
, (2.7)

where Λ and G > 0 take up the role of Lamé moduli, � > 0 is a characteristic length and −1 < η < 1
is a dimensionless number similar to Poisson’s ratio. The material parameters � and η depend on
the microstructure and can be connected to the material characteristic length in bending, �b, and
in torsion, �t, through

�b = �/
√

2, �t = �
√

1 + η. (2.8)

Values of �b and �t may be found in [22,23] and, as an example, for polyurethane foam we have

� = 0.462 mm, η = 0.797.

The limiting value η = −1 corresponds to a vanishing characteristic length in torsion, which is
typical of polycrystalline metals. Clearly, the definitions (2.8) show that �t = �b for η = −1/2 and
�t = � = √

2�b for η = 0, the latter situation being the strain gradient effect considered in [24]. For
the limiting value η = 1, the constitutive equation (2.7) provides a symmetric couple stress tensor
and, consequently, the present theory reduces to the modified couple stress theory of elasticity
introduced in [25]. Indeed, the modified couple stress theory involves only the material length �,
in consideration of the restriction �b = �t/2 = �/

√
2.

The equations of motion read, in the absence of body forces,

div t = ρü (2.9a)

and
axial τ + divμ= Jϕ̈, (2.9b)

where � is the mass density and J ≥ 0 is rotational inertia and a superposed dot denotes time
differentiation. Here, (axial τ )i = Eijkτkj denotes the axial vector attached to a skew-symmetric
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tensor. Equation (2.9b) may be solved for τ

τ = 1
2 E (divμ− Jϕ̈) , (2.10)

whence the skew-symmetric part of the total stress tensor t is determined by rotational
equilibrium. Clearly, CE is retrieved taking � = 0 and J = 0, for then μ= τ = o by equations (2.7)
and (2.10). As nicely discussed in [12,16], equation (2.10) is generally not objective, in the sense
that, owing to the acceleration term, it does not fulfil the requirement of frame indifference.
However, for time-harmonic motion, this issue is of no concern [21].

Under antiplane shear deformations, the displacement field u = (u1, u2, u3) is completely
defined by the out-of-plane component u3 = u3(x1, x2, x3, t). The non-zero components of the
micro-rotation vector, of the strain and of the flexure-torsion tensor become

ε13 = 1
2 u3,1, ε23 = 1

2 u3,2, (2.11a)

ϕ1 = 1
2 u3,2, ϕ2 = − 1

2 u3,1, (2.11b)

and χ11 = −χ22 = 1
2 u3,12, χ21 = − 1

2 u3,11, χ12 = 1
2 u3,22. (2.11c)

Consequently, equation (2.9) now read [11, eqns (2.7) and (2.9)]

σ13,1 + σ23,2 + τ13,1 + τ23,2 = ρü3, (2.12a)

μ11,1 + μ21,2 + 2τ23 = Jϕ̈1 (2.12b)

and μ12,1 + μ22,2 − 2τ13 = Jϕ̈2. (2.12c)

The constitutive equations (2.7), in light of the definitions (2.5), (2.6) and with the help of the
kinematic relations (2.11), give stress and couple stress in terms of displacement [6]

σ13 = Gu3,1, σ23 = Gu3,2, (2.13a)

μ11 = −μ22 = G�2(1 + η)u3,12, μ21 = G�2(u3,22 − ηu3,11) (2.13b)

and μ12 = −G�2(u3,11 − ηu3,22). (2.13c)

We observe that the contribution of Λ is immaterial for antiplane deformations, cf. [24, eqns
(8–9)]. Besides, introducing equations (2.11b), (2.13) into (2.10) yields

τ13 = − 1
2 G�2�̂u3,1 + J

4
ü3,1, τ23 = − 1

2 G�2�̂u3,2 + J
4

ü3,2, (2.14)

which correspond to eqn (9) of [20]. Here, �̂ denotes the two-dimensional Laplace operator in the
x1, x2 co-ordinates. Plugging equations (2.13a) and (2.14) into (2.12a) gives, for a homogeneous
material,

G
(

1
2 �2�̂�̂u3 − �̂u3

)
− J

4
�̂ü3 + ρü3 = 0. (2.15)

In the static case and in the absence of rotational inertia, we retrieve eqn (18) of [26] and eqn (11)
of [24].

At any point of a smooth surface we may specify the reduced force traction vector p and the
tangential part of the couple stress traction vector q [11, eqns (3.5–6)]

p = tTn + 1
2 grad μnn × n, q =μTn − μnnn, (2.16)

where we have μnn = n · μn = q · n. The reason why only the tangential part of q may be enforced
is discussed in [11,12]. In particular, at the bottom/top plate face x2 = ∓h, it is n = ±(0, 1, 0) and,
according to equation (2.16), the out-of-plane component of the reduced force traction and the
in-plane components of the couple stress traction read, respectively,

p3 = ±
(

t23 + 1
2 μ22,1

)
, q1 = ±μ21, q2 = 0. (2.17)
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3. Time-harmonic solutions
We introduce the reference length Θ� and the reference time T = �/cs by which we define the
dimensionless co-ordinates (ξ1, ξ2, ξ3) = (Θ�)−1(x1, x2, x3) and the dimensionless time τ = t/T.
Here, cs = √

G/ρ is the shear wave speed of classical elastic media and Θ is a convenient scaling
parameter to be defined in the following. Besides, we let the dimensionless plate half-thickness
H = h/�. With these definitions, the equilibrium equation (2.15) becomes

��u3 − 2Θ2�u3 − 2Θ4

(
�2

0
Θ2 �u3,ττ − u3,ττ

)
= 0, (3.1)

where � is the two-dimensional Laplace operator in ξ1 and ξ2 and we have let the dimensionless
parameter [20]

�0 = �d

�
, with �d = 1

2

√
J
ρ

.

We observe that �d is proportional to the dynamic characteristic length, ld = 2
√

6�d, introduced
in [21].

Under the time-harmonic assumption and considering straight-crested waves in the sagittal
plane (ξ1, ξ2), we let

u3 = W(ξ1, ξ2) exp(−iΩτ ),

independent of ξ3. Here, i is the imaginary unit and Ω = ωT > 0 the dimensionless (time)
frequency. Then, equation (3.1) yields the bi-harmonic PDE [19, eqn (19)] for the function W:

[
�� − 2

(
1 − �2

0Ω
2
)

Θ2� − 2Ω2Θ4
]

W = 0. (3.2)

This homogeneous equation may be easily factored out

(� + δ2)(� − 1)W = 0, (3.3)

provided that Θ is chosen as to satisfy the bi-quadratic equation

2Ω2Θ4 + 2(1 − �2
0Ω

2)Θ2 − 1 = 0.

We select the positive root

Θ2 =
√

(1 − �2
0Ω

2)2 + 2Ω2 − 1 + �2
0Ω

2

2Ω2 (3.4)

and observe that Θ is frequency dependent (figure 2). Indeed, it is a strictly monotonic increasing
(decreasing) function of Ω , inasmuch as �0 ≷ �0cr ≡ 1/

√
2, that starts from �0cr at Ω = 0 and

asymptotes to Θ = �0 for Ω → +∞. In fact, the special case �0 = �0cr gives the constant behaviour
Θ ≡ �0cr. In any case, Θ is a bounded function of Ω . By Vieta’s formulae applied to (3.2) and (3.3),
we have the connection

δ = 2δcrΘ
2, with δcr = �0crΩ , (3.5)

whence, by equation (3.4), we get

δ = 1
2δcr

[√
(1 − �2

0Ω
2)2 + 2Ω2 − 1 + �2

0Ω
2
]

. (3.6)
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Figure 2. (a) Rescaling parameterΘ and (b) bulk SHwavenumber δ versusΩ at �0 = 0 (black, solid), �0cr (red, dotted) and
1 (blue, dashed). (Online version in colour.)

In the special case �0 = �0cr, it is δ = δcr, that is linear in Ω . Figure 2 plots Θ and δ in terms of
the dimensionless frequency Ω . We have the asymptotic behaviour for large Ω

δ ∼
{

2�2
0δcr, �0 
= 0,

1, �0 = 0,
+ O(Ω−1), as Ω → ∞, (3.7)

and for small Ω

δ ∼ δcr, as Ω → 0+. (3.8)

For guided waves propagating along the plate, we have

W(ξ1, ξ2) = �w(ξ2) exp (iκξ1) ,

where K = k� denotes the dimensionless (spatial) wavenumber in the propagation direction ξ1
and we let the shorthand κ = ΘK. Letting V = Ω/K, the dimensionless phase speed along ξ1, we
get that

c = ω

k
= Vcs,

is the dimensional phase speed in the propagation direction. Similarly, we take

p3(ξ1, ξ2, ξ3, τ ) = Gt(ξ2) exp i (κξ1 − Ωτ)

and

q1(ξ1, ξ2, ξ3, τ ) = G�m(ξ2) exp i (κξ1 − Ωτ) .

The general solution of equation (3.3) is given by

w(ξ2) = cosh (λ1ξ2) e1 + cosh (λ2ξ2) e2 + λ−1
1 sinh (λ1ξ2) o1 + λ−1

2 sinh (λ2ξ2) o2, (3.9)

where the wavenumbers in the thickness direction ξ2 are ıλ1,2, with

λ1 =
√

κ2 − δ2, λ2 =
√

κ2 + 1. (3.10)

Branch cuts are taken as to warrant a positive real part for the square root on the real axis, see
[6]. The solution (3.9) produces plane bulk waves upon looking for the roots of λ1,2 = 0. In fact,
according to this definition of bulk waves, the wavenumber κ is a branch-point of the Rayleigh
function and, therefore, a multiple root (here a double root) of the characteristic equation.
Consequently, the general form of a bulk wave is given by superposition of a homogeneous with
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an inhomogeneous mode, with linearly varying amplitude. The real solution κ = δ corresponds
to SH travelling waves moving with phase speed

VSH = ΩΘ

δ
= 1√

2Θ
=
√

δcr

δ
. (3.11)

The purely imaginary solution κ = ı corresponds to a bulk evanescent mode. We name
evanescent any harmonic solution (mode) whose wavevector has complex-valued components, as
opposed to travelling modes for which the wavevector is real. Inhomogeneous waves that possess
an exponentially varying amplitude are special evanescent modes; in the context of guided wave
propagation they go under the name of surface waves [27, §7].

The plate is subjected to free surface conditions

p3(ξ1, ±Θ−1H, ξ3, τ ) = 0, q1(ξ1, ±Θ−1H, ξ3, τ ) = 0. (3.12)

Using equations (2.1), (2.13), (2.14) into equation (2.17), the free boundary conditions (3.12)
give

(1 − δ2)w′ −
[
−(2 + η)κ2w + w′′

]′ = 0 (3.13a)

and
w′′ + κ2ηw = 0, (3.13b)

where prime denotes differentiation with respect to the co-ordinate ξ2.

(a) Extending Mindlin’s mixed conditions to antiplane couple stress
As well known, in CE, Rayleigh–Lamb (RL) dispersion curves emerge from interference of
fundamental waves, named partial (or resonant) waves, that are obtained imposing suitable
boundary conditions [28–30]. For isotropic (transversely isotropic in general) materials,
such conditions decouple into sagittal plane (plane-strain) and out-of-plane (antiplane)
propagation [28].

In plane-strain propagation, the boundary conditions required to single out partial waves were
first illustrated by [31] and are either the ‘lubricated rigid wall’ conditions

u2 = 0, σ12 = 0, (3.14)

or the ‘flexible micro-chain’ conditions

u1 = 0, σ22 = 0. (3.15)

Mindlin’s conditions produce a pair of partial waves, named longitudinal (P) and SV partial
waves, which travel across the plate thickness with an even or an odd integral number of
half wavelengths (transverse resonance). Their name stems from the observation that the short-
wave high-frequency (SWHF) limiting behaviour of P and SV partial waves asymptotes to
longitudinal and shear bulk waves, respectively. Even P and even SV partial waves combine to
give symmetric RL waves, while interference of odd P and odd SV waves gives antisymmetric
(flexural) RL waves. Since no corresponding P partial wave exists in the region V < 1, symmetric
and antisymmetric branches of the RL spectrum are guided, in the SWHF limit, by even and odd
SV waves, respectively, the exception being the first branch which asymptotes to the Rayleigh
wave speed.

When considering the motion out of the sagittal plane (antiplane motion), Mindlin’s conditions
are simply

σ23 = 0, (3.16)

and only one family of shear horizontal (SH or antiplane) partial wave exists in CE, with even
and odd behaviour. As a consequence, no interference may occur and SH partial waves coincide
with the corresponding antiplane guided RL waves. Furthermore, no Rayleigh wave speed is
supported.
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2 
h

2 
h

x2x3x3
x2

(a) (b)

Figure 3. Sketch of the constraining conditions for the extended Mindlin’s boundary conditions in the (x2, x3)-plane: (a) as in
equation (3.17), (b) as in equation (3.18).

In the case of antiplane couple stress elasticity, the picture becomes more involved. We now
prove that the generalization of Mindlin’s boundary conditions (3.16) for antiplane motion in CS
is either

w = m = 0, (3.17)

or
w′ = t = 0. (3.18)

A graphical representation of such boundary conditions is given in figure 3.

(b) Wave reflection and mode conversion
The presence of a bulk evanescent wave gives rise to an interesting phenomenon of mode
conversion between travelling waves and evanescent modes which has no parallel in CE. To see
this, we consider a travelling wave impinging on either plate surface, say the top surface, at an
incident angle α1 with respect to ξ2, in the presence of an evanescent mode travelling along ξ1,

W(ξ1, ξ2) = B1 exp i [δ(sin α1ξ1 + cos α1ξ2)] + B2 exp i [δ(sin α2ξ1 − cos α2ξ2)]

+ B4 exp i
[
δ sin α1ξ1 ± ı

√
1 + (δ sin α1)2 ξ2

]
. (3.19)

Here, B1 is the amplitude of the impinging wave, B2 the amplitude of the reflected wave
forming an angle α2 with ξ2 and B4 is the amplitude of the evanescent mode, see figure 4. In
particular, the evanescent mode is so constructed that (a) it possesses the same wavenumber
along ξ1 as the impinging wave and (b) the wavevector has norm squared −1, i.e. it is indeed
evanescent. Clearly, this evanescent mode is a surface wave. Such wave system satisfies the
governing equation (3.3).

We observe that, if reflection at the surface of an half-plane is considered, then wave
propagation occurs in ξ2 ≤ 0 and only the minus sign has to be taken in (3.19) to warrant
depthwise decay (on account of the definition for the square root). In fact, if we reversed the
direction of ξ2, we would also need to change the sign of the ξ2-component of the wave vector for
the impinging wave and results would turn out the same. When, however, a plate is considered,
both signs can be retained, i.e. two evanescent modes are triggered. This non-uniqueness of the
reflection occurs also in CE for P-waves at grazing incidence [32, §3.1.4.5].

Imposing the first set of generalized Mindlin’s boundary conditions, equation (3.17), we find
that

α1 = α2 = α, (3.20)

and, as expected, no mode conversion occurs for

B2 = −B1, B4 = 0.
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Figure 4. Travelling bulk shear plane wave B1, impinging on a free surface with the angle α1 to the surface normal, and
generating a reflected travelling bulk shear wave B2 plus a surface wave B4. (Online version in colour.)

Indeed, this is a case of total reflection with π phase shift. This is at variance with respect to the
behaviour of SH waves in CE, which reflect unaltered. In fact, this reflection scenario corresponds
to that of P and SV waves hitting an in-plane constrained boundary, see [32, §3.1.1.2]. This result
confirms that indeed (3.17) extends Mindlin’s mixed boundary condition to CS elasticity.

Similarly, imposing the second set of Mindlin’s boundary conditions, equation (3.18), we find
again (3.20) and the wave reflects in its likeness (i.e. no phase shift) with no mode conversion

B2 = B1, B4 = 0.

This result corresponds to mode conservation of SH waves in CE, see [32, §3.2.1].
Moving now to the free surface conditions (3.12), we get a system of equations depending

on the sign in (3.19) for the evanescent wave. Accounting again for (3.20), this system gives the
displacement reflection coefficients

B2

B1
= − exp(2iθ2),

B4

B1
= Φ4 exp(−iθ4), (3.21)

with

θ2 = ± arctan
(

b2

a2

)
, Φ4 = c4

|Δ| , tan θ4 = cot θ2,

being

a2 =
√

2δ3
√

2 + δ2(1 − cos 2α1) [(η + 1) cos (2α1) − η + 1]2 ,

b2 = 2 cos α1

[
δ2(η + 1) (1 − cos 2α1) + 2

]2

and c4 = 4δ2 cos α1 [(η + 1) cos (2α1) − η + 1]
[
δ2(η + 1)(1 − cos 2α1) + 2

]
.

Here, Δ = a2 − ib2 is the determinant of the system (3.13) and |Δ| =
√

a2
2 + b2

2 its norm, that is
always positive. Hence, we see that this is a case of total reflection, whereby the incident wave
reflects with equal (in absolute term) amplitude and phase shift 2θ2 + π . At the same time, an
evanescent wave is triggered with reflection coefficient Φ4 and phase shift θ4 = π/2 − θ2, see
figure 5. A similar, but not equivalent, condition occurs in CE for the reflection of SV waves
beyond the critical angle of incidence, with the P wave turning into a surface wave with complex
amplitude [32, §3.1.4.5].

Reflection coefficients (3.21) are plotted in figure 5. We observe that the reflection coefficient
B4/B1 is generally complex, which means that phase change occurs upon reflection into
evanescent modes. The occurrence of complex reflection coefficients in CE is connected to the
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Figure 5. Real (solid, black) and imaginary part (dashed, red) of the reflection coefficients B2/B1 and B4/B1, phase angle θ2
and amplitude ratioΦ4 for an incident travelling wave, as a function of the angle of incidence α1 (δ = 0.5, η = 0.1). Total
reflection, in the absence ofmode conversion (i.e.B4 = 0), is obtained atα1 = 1.26452≈ 5π/12, according to equation (3.22).
Here, minus has been chosen in (3.19), the case of plus being obtained by reversing the sign of the imaginary part of B2 and B4.
(Online version in colour.)

incidence of SV waves taking place beyond the critical angle, which determines complex reflection
angles for P waves [32, §3.1.2.2].

In light of (3.21), total mode conversion from travelling to evanescent modes is impossible,
which result is expected in consideration of the fact that surface waves carry negligible energy
compared to plane waves. Furthermore, total reflection generally triggers evanescent modes, with
the notable exception of the critical incidence angle α0 ≥ π/4

cos (2α0) = 1 − 2
1 + η

, (3.22)

that exists provided that η ≥ 0. For η � 1, we have the expansion

α0 = 1
2 π − √

η + η3/2

3
+ · · · (3.23)

that is shown in figure 6 alongside the exact curve. The plot is remarkable for it shows that, at
η = 0, we have α0 = π/2, that is grazing incidence. As it will presently appear, the existence
of Rayleigh waves is connected to the appearance of evanescent modes precisely at grazing
incidence and, in fact, the situation η = 0 does not support antiplane Rayleigh waves.

Approaching grazing incidence, i.e. as the angle of emergence ε = 1
2 π − α tends to zero, the

O(1) term in the solution vanishes and we have

W(ξ1, ξ2) = εW1(ξ1, ξ2) + ε2W2(ξ1, ξ2) + · · · . (3.24)

Thus, the leading order term in the expansion of the displacement is

W1(ξ1, ξ2) = ∓B′
1eiδξ1 + B′

2ξ2eiδξ1 ± B′
4eiδξ1+

√
1+δ2ξ2 , (3.25)
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with the coefficients

B′
1 = 2i

ζ 2
11(δ)

η2δ3
√

1 + δ2
B1, B′

2 = η2δ4
√

1 + δ2

ζ 2
11(δ)

B′
1, B′

4 = ηδ2

ζ11(δ)
B′

1, (3.26)

where we have let

ζ11(κ) = (1 + η)κ2 + 1, ζ12(κ , δ) = (1 + η)κ2 − δ2.

Hence, we have an ‘incident’ plane travelling wave, B′
1, that generates a ‘reflected’ travelling

wave, B′
2, whose amplitude is proportional to ξ2 and thereby it is sometimes denoted SHy, plus a

surface wave B′
4. All such waves move along ξ1 with speed cSH. Together, incident and reflected

waves represent the most general form of bulk shear plane waves (see also [33]), while the surface
wave is a bulk evanescent mode, for its wavevector is complex-valued with norm −1, and it exists
only inasmuch as η 
= 0.

At normal incidence, α = 0, we get

θ2 = ± arctan δ−3, Φ4 = 2δ2√
1 + δ6

, θ4 = ± arctan δ3, (3.27)

depending on the sign in (3.19) and irrespective of η. This result differs substantially from the
corresponding result in CE, where reflection at normal incidence occurs in the absence of mode
conversion [32, §3.1.4.1]. Indeed, in CS elasticity, we always have the appearance of an evanescent
mode, regardless of η.

(c) Reflection of evanescent modes
Equation (3.19) does not exhaust all possible scenarios of wave reflection at a free surface. Indeed,
with an approach that has no counterpart in CE, we may consider reflection of evanescent modes.
To see this, we consider a system of waves in the form

W(ξ1, ξ2) = B1 exp (− sin α1ξ1 − cos α1ξ2) + B2 exp (− sin α2ξ1 + cos α2ξ2)

+ B4 exp i
(

i sin α1ξ1 +
√

sin2 α1 + δ2 ξ2

)
, (3.28)

where the first two contributions represent evanescent bulk plane standing waves and the last
is an evanescent bulk wave (with wavevector norm δ) that travels along ξ2 and decays along ξ1,
i.e. it is a surface wave, see figure 7. Strictly speaking, B1 is not impinging on the boundary, for
it is not travelling, yet its presence in the bulk is tied with the appearance, due to the boundary,
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Figure 7. Evanescent bulk standing wave B1, acting on a free surface with the angleα1 to the surface normal and generating a
‘reflected’ standing bulkwave B2 together with a Rayleigh-likewave B4 travelling in the direction normal to the surface. (Online
version in colour.)

of the other pair of waves. This wave system satisfies the governing equation (3.3) and, upon
assuming (3.20), it is ‘reflected’ with no mode conversion, when subjected to either of the extended
Mindlin’s conditions (3.18) or (3.17). Consequently, these mixed boundary conditions work for
evanescent modes just as well as for travelling modes.

On a free surface, we get the displacement reflection coefficients

B2

B1
= exp(2iθ ′

2),
B4

B1
= Φ ′

4 exp(−iθ ′
4), (3.29)

with

θ2 = arctan(b′
2/a′

2), Φ4 = c′
4√

a′2
2 + b′2

2

, θ ′
4 = −θ ′

2,

being

a′
2 = 4 cos α1

[
2δ2 + η + 1 − (1 + η) cos (2α1)

]2
,

b′
2 = 2

√
2
√

1 + 2δ2 − cos (2α1) [(η + 1) cos (2α1) − η + 1]2

and c′
4 = 8 cos α1 [(η + 1) cos (2α1) − η + 1]

[
2δ2 + η + 1 − (η + 1) cos (2α1)

]
.

Reflection coefficients (3.29) are plotted in figure 8. They equal the corresponding coefficients
for travelling waves (3.21) when δ = 1, for then the Rayleigh function is centrally symmetric. The
critical angle that triggers no surface mode B4 is again given by equation (3.22). The reflection
coefficients at normal incidence, α = 0, are given by

θ ′
2 = −θ ′

4 = arctan δ−3, Φ ′
4 = 2δ2√

1 + δ6
. (3.30)

In the limit of grazing incidence, the zero-order solution disappears and we consider an
expansion in the angle of emergence ε = π/2 − α1 as in (3.24). The leading order solution consists
of two standing waves plus a Rayleigh-like wave, that travels away from the surface at a speed
smaller than that of shear bulk waves,

W1(ξ1, ξ2) = B′′
1e−ξ1 − B′′

4e−ξ1+i
√

δ2+1ξ2 + B′′
2ξ2e−ξ1 + O(ε2), (3.31)

having let

B′′
1 = 2i

(
δ2 + η + 1

)2
η2
√

1 + δ2
B1, B′′

4 = η

δ2 + η + 1
B′′

1, B′′
2 = i

η2
√

1 + δ2(
δ2 + η + 1

)2 B′′
1. (3.32)
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(d) Classification of the Rayleigh zeros
We consider the general decaying solution for an half-plane ξ2 ≤ 0 [32, §3.1.4.7]

w(ξ2) = e1 exp (λ1ξ2) + e2 exp (λ2ξ2) , (3.33)

provided that branch cuts in the square root are taken as to give positive real part on the real axis,
see [6]. Plugging this form into the boundary conditions (3.13) and demanding for non-trivial
solutions to exist, yields the Rayleigh function

R(κ , δ) = ζ 2
11λ1 − ζ 2

12λ2. (3.34)

Zeros and branch-points for the Rayleigh function are presented in figure 9. The Rayleigh
wavenumber κR is obtained looking for the real root of

R(κ , δ) = 0, (3.35)

and the corresponding eigenform is given by

W(ξ1, ξ2) = eiκRξ1

[
e
√

κ2
R−δ2ξ2 − ζ12(κR, δ)

ζ11(κR)
e
√

κ2
R+1ξ2

]
. (3.36)

The special case η = 0 is interesting for we have

R(κ , δ) = −λ1λ2(λ3
1 − λ3

2)

which possesses the obvious order 1/2 roots κ = ±δ and κ = ±i, respectively corresponding to
bulk SH and bulk evanescent waves, i.e. as anticipated, for η = 0, Rayleigh waves collapse into
bulk waves.
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equation (3.34). (Online version in colour.)

The Rayleigh wavenumber κR may be expressed in terms of the distance from the bulk shear
wavenumber δ,

κR = δ
(

1 + κ2
1R

)
, with κ2

1R = δ6(1 + δ2)

2ζ 4
11(δ)

η4 � 1, (3.37)

from which we see that κR > δ and therefore cR < cSH inasmuch as η 
= 0, i.e. the Rayleigh wave
speed is lower than the bulk wave speed. Given that |η| < 1, we see that equation (3.37) is
extremely accurate, in light of the fact that κ2

1R = O(η4). Rayleigh waves come in pairs and decay
exponentially depth-wise with attenuation indices that may be expanded in powers of κ1R

λ1 =
√

2δκ1R + O(κ3
1R), λ2 =

√
1 + δ2 + O(κ2

1R),

whence (3.36) lends (we take e1 = B′
1)

WR(ξ1, ξ2) = B′
1eiδξ1 − B′

4eiδξ1+
√

1+δ2ξ2 + B′
2ξ2eiδξ1 + O(κ2

1R). (3.38)

We observe that equation (3.38) perfectly matches the leading order term in the expansion
of the displacement (3.25), when approaching grazing incidence. Indeed, we can interpret the
grazing incident solution as the expansion of the Rayleigh solution in the small parameter κ1R,
expressing the distance of the Rayleigh wavenumber from the bulk shear-wave wavenumber.
However, relating the two expansions is not straightforward, for the leading order term solution
at grazing incidence, W1, matches the leading and first correction terms of the Rayleigh expansion
WR. Indeed, B′

2 = √
2κ1RB′

1 brings a small term correction in (3.38). Still, it is tantalizing to interpret
Rayleigh waves as being originated from the reflection of bulk shear waves impinging on the
free surface at ‘almost’ grazing incidence, the distance from perfect grazing being related to their
slowness with respect to bulk shear waves.

Equation (3.35) admits the pair of purely imaginary zeros ±κI, that are located close to the
purely imaginary branch points ±i, see figure 9. Writing κI in terms of the distance from ı , we find

κI = i
(

1 + κ2
1I

)
, with κ2

1I = 1 + δ2

2(1 + δ2 + η)4 η4 � 1.

Looking at the attenuation indices, it is

λ1 = i
√

1 + δ2 + O(κ2
1I), and λ2 = i

√
2κ1I + O(κ3

1I),

and we have the expansion

WI(ξ1, ξ2) = B′′
1e−ξ1 − B′′

4e−ξ1+i
√

δ2+1ξ2 + B′′
2ξ2e−ξ1 + O(κ2

1I), (3.39)
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possible only inasmuch as η > ηL.

with

B′′
1 = − δ2 + η + 1

η
e1, B′′

2 = i
√

2κ1IB′′
1, B′′

4 = 4

√
2κ2

1L
1 + δ2 B′′

1. (3.40)

Again, the wave system (3.39) with the coefficients (3.40) matches the expansion of the
evanescent mode wave system (3.31), (3.32) when approaching grazing incidence. We conclude
that the purely imaginary zero of the Rayleigh equation expresses a perturbation of the grazing
incident condition for bulk evanescent modes, the distance from it (along the imaginary axis)
expressing how stronger the decay rate is with respect to the bulk mode. We note that none of
the three terms in this system is a proper leaky wave, i.e. according to [34] ‘an inhomogeneous
wave that propagates along the surface with a phase velocity larger than the shear wave but
smaller than the pressure wave’. In fact, the B′′

4 term looks more like a Rayleigh wave moving
away from, rather than along, the free surface with speed c < cSH. This is precisely the wave found
in [6] radiating from the tip of a semi-infinite rectilinear crack. Thus, the claim put forward in [34],
according to which any complex solution of the Rayleigh function is a leaky wave, does not hold
in CS elasticity.

Equation (3.34) possesses the extra pair of complex roots κ = ±κL, provided that parameters
(δ, η) lay in the domain of figure 10. This domain of existence is mapped onto the (Ω , η) plane, for
different values of �0, in figure 11. The root κL sits close to the branch cut and for it we choose
�(κL)�(κL) < 0 (see figure 9). Its precise location may be found explicitly only for δ = 1, making
the observation that in such special situation κL lies on the fourth quadrant bisector

κL = γL exp(−iπ/4), γL = 4

√
−1 − 3η + 2

√
1 + 2η + 2η2

(1 + η)2(3 − η)
.

Using (3.6), we see that δ = 1 corresponds to Ω = �−1
0 , provided that �0 
= 0. Under the

connection ν = −η, γL becomes proportional to Konenkov’s well known constant γe = [
(1 − ν)

(3ν − 1 + 2
√

1 − 2ν + 2ν2)
]1/4 arising in edge-wave propagation in a plate [35]. The root is

admissible inasmuch as it rests inside the branch cut, i.e. |κL| < √
2/2 that demands η > ηL where

ηL =
√

2(5 − √
5) − √

5 ≈ 0.1151. Interestingly, ηL is also the minimum value of η that is capable of
supporting the root κL in the physical sheet in general, that is for any �0, see figure 11. Indeed, γL

is a decreasing function of η, whose minimum 0.492883 is attained for η = 1.
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Plugging κ = ±κL into the eigenmode (3.36), we get

W(ξ1, ξ2) = e± 1+i√
2
γLξ1

(
e
√

−1−iγ 2
L ξ2 + ı − γ 2

L (η + 1)

ı + γ 2
L (η + 1)

e
√

1−iγ 2
L ξ2

)
,

and the first (second) exponential term inside the parenthesis has negative (positive) real part
argument. Consequently, either root is associated with a pair of waves that propagate and explode
(decay in the case of −κL) along the free surface, with a longitudinal speed cL = √

2δcSH/γL

greater than that of bulk shear waves cSH. One wave decays moving away from the surface,
the other explodes. Consequently, these are not leaky waves either, at least according to the
classical definition. Furthermore, it is unclear what bulk wave such roots couple with, for they
are perturbations of none. We also point out that, at variance with [34], for a half-plane we are not
free to choose the sign in front of square roots λ1,2, that is univocally determined by the choice of
the branch cuts. Such choice is determined by Sommerfeld’s condition and by the boundedness
requirement at infinity, as detailed in [36] and in [6].

On account of these results, we suggest the classification work-flow of figure 12 for the zeros
of the Rayleigh function. This classification is not complete, for it only covers the possibilities
explored in this paper.

(e) Antiplane partial waves
We now apply the extended Mindlin’s conditions for CS, equations (3.17) and (3.18), to the case
of guided propagation in a plate. Demanding that the even (odd) part of the boundary conditions
vanishes, produces odd

cosh
(
Θ−1λ1H

)
cosh

(
Θ−1λ2H

)
= 0, (3.41)

and even partial waves

sinh
(
Θ−1λ1H

)
sinh

(
Θ−1λ2H

)
= 0. (3.42)

Only one family of antiplane travelling partial waves exist, namely those associated with λ1
(figure 13),

κ2 − δ2 = −
(

n
Θπ

2H

)2
, n = 0, 1, 2, . . . , (3.43)

the first of which, attained for n = 0, corresponds to SH bulk waves. For this reason, and in
analogy with RL partial waves in CE, we denote such waves as SH partial waves. It is important
to observe that, in the SWHF limit, equation (3.43) gives κ → δ from below and the bulk SH wave
speed is approached from above, i.e. partial waves are supersonical. According to the parity of n,
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we distinguish even and odd partial waves, the former set being composed by the level curves
sinh(Θ−1λ1H) = 0 and the latter by the solution curves cosh(Θ−1λ1H) = 0. Using equation (3.5),
the group velocity of SH partial waves may be written as

Vg = 2δcrδ − ((nπ )/2H)2

2K
, (3.44)

that is always positive for the first branch in general and for all branches when a thick plate is
considered, i.e. as H → +∞. Indeed, in the latter case, partial waves collapse into SH body waves.

In light of equation (3.10), we see that partial waves associated with λ2 are evanescent, for
they are connected with a purely imaginary wavenumber κ = iκ̄ , κ̄ > 0. However, as we have just
shown when discussing wave reflection, they are equally important, because they may combine
with travelling waves at the boundaries. Besides, such waves originate localized effects when
semi-infinite or finite domains are dealt with, e.g. see [35]. They are given by

κ̄2 = 1 +
(

n
Θπ

2H

)2
, n = 0, 1, 2, . . . , (3.45)

and the case n = 0 corresponds to bulk evanescent waves. Interestingly, evanescent modes
possess positive (negative) group velocity, inasmuch as �0 ≶ �0cr. Besides, in consideration of the
monotonic behaviour of Θ , see figure 2, we see that evanescent modes exists in the bounded range
κ̄m < κ̄ < κ̄M, where

κ̄m = min
(
κ̄ (LWLF), κ̄ (SWHF)

)
, κ̄M = max

(
κ̄ (LWLF), κ̄ (LWLF)

)
,

being

κ̄ (LWLF) = 1 + 1
2

(
n

π

2H

)2
, κ̄ (SWHF) = 1 +

(
n

�0π

2H

)2
.

In the SWHF regime, they asymptote to the wavenumber κ̄ (SWHF).
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Figure 13. Even (solid, black) and odd (dashed, red) antiplane travelling partial waves frequency spectrum (η = 0.1, H = 10)
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(c) �0 = 1, and (d) �0 = √

2. (Online version in colour.)

4. Antiplane Rayleigh–Lamb waves
We are now in a position to discuss antiplane RL waves in CS isotropic materials. They will
emerge from combination of travelling and evanescent partial waves through the boundary
conditions. To a certain extent, the process is similar to what occurs in plane-stain CE, where
two families of travelling waves interact.

(a) Symmetric waves
We now consider symmetric waves, i.e. waves whose profile is an even function of ξ2. Then, we
enforce that the odd part of p3 and the even part of q1 vanish at ξ2 = H/Θ , whence we get a linear
system in the even vector ψe = [e1, e2]

Sψe = o,
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approximation (4.2) (dashed, red) (η = 0.1, H = 10). (a)�0 = 0.1 and (b) �0 = �0cr . (Online version in colour.)

where

S =
[
ζ11λ1 sinh

(
Θ−1λ1H

)
ζ12λ2 sinh

(
Θ−1λ2H

)
ζ12 cosh

(
Θ−1λ1H

)
ζ11 cosh

(
Θ−1λ2H

)
]

.

The frequency equation ds(κ , Ω) = 0, where

ds(κ , Ω) = ζ 2
11λ1 sinh

(
Θ−1λ1H

)
cosh

(
Θ−1λ2H

)
− ζ 2

12λ2 sinh
(
Θ−1λ2H

)
cosh

(
Θ−1λ1H

)
, (4.1)

is plotted in figure 14. The SWHF behaviour of the real spectrum is guided from above by even
partial waves, see figure 15. In particular, the first branch of the plot rests little below the first even
partial wave (that is the bulk shear wave), i.e. for a given Ω we have κ > δ. Consequently, since
λ1 and λ2 are real numbers in the region κ > δ, we see that equation (4.1) tends to the Rayleigh
equation (3.35) and therefore κ → κR from above. Thus, as it occurs in CE, we obtain the well-
known result by which, in the SWHF limit, the lowest travelling mode (that is even) propagates
in a plate as a Rayleigh wave. Obviously, the same behaviour is retrieved letting H → ∞. All
other branches are located in the region κ < δ, wherein λ1 = iλ̄1 is purely imaginary. Given that
such branches are located in between two adjacent partial modes, like those they asymptote to
the bulk shear wavenumber. This different limiting behaviour of the first branch than higher
symmetric modes, is difficult to capture numerically. For example, in [18], in the context of sagittal
propagation, it is claimed that ‘as the frequency increases, all modes converge to the Rayleigh
wave propagation speed’.

Upon considering equation (3.43) and the limit behaviour (3.8), the asymptotic model [37] for
symmetric antiplane waves in the long-wave low-frequency (LWLF) range is, to leading order in
Ω ,

K2 − Ω2 = 0, (4.2)

regardless of η, H and �0. In fact, this model is exact for the entire first branch, that is non-
dispersive, when �0 = �0cr, see figure 14b. This non-dispersive character of the lowest RL mode
also occurs in CE [15, §8.1.1]. The corresponding eigenform, to leading order, is simply

w(ξ2) = e2 cosh ξ2.
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Figure 15. Symmetric antiplane RLwaves (solid, black) and even SH partial waves (dashed, red) frequency spectrum (η = 0.1,
�0 = 0.1,H = 10). In the SWHF limit, all branches but the first asymptote to the bulk SHwavenumberκ = δ; instead, the first
branch approaches the Rayleigh wavenumber κR > δ from above (i.e. from lower speed). (Online version in colour.)

Equation (4.2) provides the leading order differential model for the lowest antiplane vibration
mode for a plate made of CS elastic material

∂2W

∂x2
1

− 1

c2
s

∂2W
∂t2 = 0, (4.3)

corresponding to travelling waves moving at speed cs, that is the shear wave speed in CE. This
model may be refined in the thin plate limit H � 1, for then equation (4.1) yields, to leading order
in H,

dst(κ , Ω) = ζ 2
11λ̄

2
1 + ζ 2

12λ
2
2 = (1 + δ2)

[
−(1 − η2)κ4 + (δ2 − 1)κ2 + δ2

]
, (4.4)

which corresponds to the differential model in the LWLF regime

− 1
2 (1 − η2)K4 − K2 + 1

2 Ω2K2 + Ω2 = 0. (4.5)

When moving back to operators, equation (4.5) gives the same governing equation as for
Rayleigh flexural beam-columns

− 1
2 �2(1 − η2)

∂4W

∂x4
1

+ ∂2W

∂x2
1

+ 1
2 T2 ∂2W

∂x2
1∂t2

− 1

c2
s

∂2W
∂t2 = 0, (4.6)

where the second term accounts for a tensile loading and the third term provides rotational
inertia. This differential model governs antiplane symmetric vibrations of thin beam-plates made
of CS material, as in figure 16. Remarkably, this model is independent on �d and therefore on
rotational inertia. We point out that this PDE corresponds to eqn (19) of [38], that provides
the simplest description for waves propagating in microstructured continua whose internal
lengthscale is much smaller than the propagating wavelength. As illustrated in [38], ‘The special
feature of this approximation is that it can be used over the whole range of wavenumbers, since it
does not represent a short-wave or long-wave approximation. The underlying assumption is that
the influence of the microstructure is small’. Also, simplified versions of (4.6) are not accurate, as
shown in figure 14a.
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x2

x3

x1

Figure 16. Antiplane symmetric (about the mid-plane x2 = 0) vibrations of a beam-plate made of CS elastic material (for the
sake of clarity, in this picture, an element of finite thickness along x3 is shown). Since antiplane vibrations are dealt with, shaded
cross sections move parallel to the (x2, x3) plane. (Online version in colour.)

It is worth marking the difference with CE, where thin-plate transversal vibrations are
simply described by the wave equation (4.3). This limiting case may be easily retrieved from
equation (4.6), by simply taking � = 0 (and consequently T = 0). Besides, we observe that, in the
case of the modified couple stress theory, that occurs for η = 1, the first term of (4.6) drops out and
the differential model reduces to that of a vibrating string with rotational inertia. In this case, we
have a problem accommodating the right number of boundary conditions. Indeed, this outcome
is expected, for the case 1 − η � 1 leads to a singularly perturbed model and to the appearance of
a boundary layer.

(b) Antisymmetric waves
For antisymmetric RL waves, we have the linear system in the odd vector ψo = [o1, o2]

Aψo = o,

where

A =
[

ζ11 cosh
(
Θ−1λ1H

)
ζ12 cosh

(
Θ−1λ2H

)
ζ12λ

−1
1 sinh

(
Θ−1λ1H

)
ζ11λ

−1
2 sinh

(
Θ−1λ2H

)
]

.

The dispersion relation do(κ , Ω) = 0, with

do(κ , Ω) = ζ 2
11λ

−1
2 cosh(Θ−1λ1H) sinh(Θ−1λ2H) − ζ 2

12λ
−1
1 sinh(Θ−1λ1H) cosh(Θ−1λ2H), (4.7)

is plotted in figure 17. The frequency spectrum branches are guided by odd partial waves (3.41),
see figure 18. The cut-off frequencies Ω∗

n are obtained from solving the transcendental equation
do(0, Ω) = 0, that gives

δ3 tan
(
Θ−1Hδ

)
= tanh

(
Θ−1H

)
. (4.8)

This equation, besides Ω , depends on the parameters �0 and H. It may be approximated, for
H � Θ , to the simple form for the cut-off equation

δ = δ∗ = 1, ⇒ Ω∗ = �0
−1. (4.9)

We observe that this is exactly the situation discussed in connection with the root κI of the
Rayleigh function. Conversely, for H � Θ , a very good approximation is

δ3 tan
(
Θ−1Hδ

)
= 1. (4.10)
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Figure 18. Antisymmetric antiplane RL waves (solid, black) and odd SH partial waves (dashed, red) frequency spectrum
(η = 0.1, �0 = 0.1, H = 10). All branches asymptote to bulk shear waves. (Online version in colour.)

For Ω � 1, we have Θ ∼ �0cr and δ ∼ δcr, whence δ/Θ = Ω and equation (4.8) gives

Ω3

2
√

2
tan (HΩ) = tanh

(√
2H
)

, (4.11)

that, as expected, reduces to (4.9) when H � 1. Conversely, when H � 1, we have

Ω∗
1 ≈ π

2H
, δ∗ ≈ π

2
√

2H
,
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Figure 19. Antiplane antisymmetric (about the mid-plane x2 = 0) vibrations of a thin beam-plate made of CS elastic material
(for the sake of clarity, in this picture an element of finite thickness along x3 is shown). Since antiplane vibrations are dealt
with, any unit cross-section deforms from rectangular to rhombic, while remaining in the same (x2, x3) plane. (Online version
in colour.)

that is exactly the situation depicted in figure 18. For the first cut-off (4.9), we get the eigenform

w(ξ2) = o1 sin(ξ2) + o2 sinh(ξ2). (4.12)

The thin-plate limit of the dispersion relation (4.1) gives, to leading order in H,

dot(κ , Ω) = (1 + δ2)
(
−2(1 + η)κ2 + δ2 − δ∗2

)
, (4.13)

that, to leading order in the LWLF approximation, provides the cut-off approximation (4.9). When
Ω − Ω∗ � 1, we have the expansion

δ2 − δ∗2 =
√

2�3
0(Ω2 − Ω∗2) =

√
2�3

0Ω
2 −

√
2�0 � 1,

whence we obtain the consistent differential model

1 + η√
2�3

0

∂2W

∂x2
1

− 1

c2
s

∂2W
∂t2 + 1

�2
d

W = 0. (4.14)

The same PDE governs longitudinal (or torsional) vibrations of a beam with distributed elastic
restraints. However, it should be pointed out that these elastic restraints possess negative elastic
constant. This equation describes the lowest antiplane antisymmetric mode for a beam made of
CS material, as in figure 19. For this model, rotational inertia appears in the first and last terms.

The equivalent model in CE may be obtained letting � → 0, whence Ω∗ = �/�d → 0 and cut-off
vanishes. Then, in the LWLF regime, equation (4.13) is dominated by the δ∗ term, that is O(1),
whence we get the trivial solution, which means that no lowest mode antisymmetric antiplane
vibrations are supported. When considering the case η = −1, that corresponds to no characteristic
length in torsion, the first term of (4.14) drops out and we are left with a simple ODE which
warrants that solutions have an exponential form in time

W(ξ1, t) = W1(ξ1) exp
(

cs

�d
t
)

+ W2(ξ1) exp
(

− cs

�d
t
)

.

Therefore, within this model, we cannot have proper vibrating antisymmetric LWLF modes
either.
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5. Conclusion
For an elastic theory to support Rayleigh waves, there needs to exist a form of mode conversion
from travelling to inhomogeneous (surface) waves upon reflection at a free surface. Besides, this
mechanism is required to stand right at grazing incidence. For instance, it may happen beyond a
certain critical angle of incidence, like in sagittal plane propagation of SV waves within CE, or, as
in antiplane motion for CS materials, the inhomogeneous wave may appear for all incident angles.
Consequently, only one family of SV Rayleigh waves is supported in CE, for no mechanism
of mode conversion exists for P and SH waves to trigger inhomogeneous waves. By the same
reasons, SH Rayleigh waves cannot be sustained in CS materials when η = 0, because then mode
conversion ceases to stand right at grazing incidence.

In CS materials, a novel ‘reflection’ mechanism occurs, according to which a bulk standing
wave acts upon a surface, it is ‘reflected’ in its likeness (still a standing wave) and simultaneously
triggers a Rayleigh-like wave that travels away from, not along, the surface, with phase speed
lower than that of bulk shear waves. Upon approaching the grazing condition, this displacement
field may be expanded in terms of the emergence angle to yield precisely the Rayleigh-like wave
expressed by the purely imaginary zero of the Rayleigh function. It is exactly this wave that is
found in [6] radiating from the tip of a semi-infinite crack under dynamic loadings. It is pointed
out that no Rayleigh-like wave is supported in CE, for no evanescent bulk mode exists. This
wave is not a leaky wave in the classical sense, for it is travelling away from the surface (while
standing along the surface), with speed lower than that of shear bulk waves. Therefore, in general,
complex roots of the Rayleigh functions are not expressions of leaky waves. The same result holds
true for the third root of the Rayleigh function, which appears for a restricted set of material
parameters and represents a attenuating/exploding travelling wave in any direction. Yet, this
root differs from the other two (i.e. the real and the purely imaginary root) in that it is located
far from either branch-points expressing bulk waves. Consequently, we suggest a classification
of the Rayleigh function zeros according to whether they sit in the neighbourhood of or far from
a branch-point. In the former case they correspond to Rayleigh, Rayleigh-like or leaky waves
and represent a perturbation of the neighbouring bulk wave. In the latter case, they are waves
attenuating/exploding in every direction.

Moving to guided propagation in a plate, we determine a generalized set of Mindlin’s
boundary conditions for identifying partial modes. Under such conditions, wave reflection occurs
in the absence of mode conversion, equally so for travelling and for standing modes. Only one
family of travelling partial modes exists in CS materials, along with a family of standing modes.
As a result, travelling Rayleigh–Lamb modes are simply guided by and asymptote to travelling
partial modes, with the exception of the first even mode (the lowest mode) that asymptotes to the
Rayleigh wave speed. Hence, just like in plane-strain elasticity, lowest mode SWHF perturbations
are guided by one boundary, as in a half-plane [39]. Conversely, standing Rayleigh–Lamb modes
are more complicated, for they are obtained by interference of two families of partial waves. When
considering travelling modes, a thin-plate approximation gives the equivalent one-dimensional
model for describing lowest symmetric and antisymmetric modes. Such approximated models
should be used when building a theory of antiplane vibrations of thin beam-plates made of CS
material [38,40].
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37. Erbaş B, Kaplunov J, Nobili A, Kılıç G. 2018 Dispersion of elastic waves in a layer interacting
with a Winkler foundation. J. Acoust. Soc. Am. 144, 2918–2925. (doi:10.1121/1.5079640)

38. Engelbrecht J, Berezovski A, Pastrone F, Braun M. 2005 Waves in microstructured materials
and dispersion. Philos. Mag. 85, 4127–4141. (doi:10.1080/14786430500362769)

39. Nobili A, Prikazchikov DA. 2018 Explicit formulation for the Rayleigh wave field induced
by surface stresses in an orthorhombic half-plane. Eur. J. Mech. A Solids 70, 86–94.
(doi:10.1016/j.euromechsol.2018.01.012)

40. Kaplunov J, Zakharov A, Prikazchikov D. 2006 Explicit models for elastic and piezoelastic
surface waves. IMA J. Appl. Math. 71, 768–782. (doi:10.1093/imamat/hxl012)

http://dx.doi.org/doi:10.1016/S0020-7683(02)00152-X
http://dx.doi.org/doi:10.1007/s00419-017-1277-2
http://dx.doi.org/doi:10.1007/s00419-017-1277-2
http://dx.doi.org/doi:10.1121/1.1913575
http://dx.doi.org/doi:10.1063/1.1701956
http://dx.doi.org/doi:10.1121/1.1419085
http://dx.doi.org/doi:10.1098/rspa.2017.0265
http://dx.doi.org/doi:10.1121/1.5079640
http://dx.doi.org/doi:10.1080/14786430500362769
http://dx.doi.org/doi:10.1016/j.euromechsol.2018.01.012
http://dx.doi.org/doi:10.1093/imamat/hxl012

	Introduction
	Antiplane couple stress elasticity
	Time-harmonic solutions
	Extending Mindlin's mixed conditions to antiplane couple stress
	Wave reflection and mode conversion
	Reflection of evanescent modes
	Classification of the Rayleigh zeros
	Antiplane partial waves

	Antiplane Rayleigh--Lamb waves
	Symmetric waves
	Antisymmetric waves

	Conclusion
	References

