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Modeling and control design are typically subsequent but independent activities. Optimal control is tra-
ditionally developed on the basis of explicit models. While this usually yields good results for linear
systems, the same is not as true for nonlinear ones, for which explicit solutions can be found only for
few cases. In practice, in most cases receding horizon controls based on linear approximations are used.
In this paper, we propose a procedure which delivers in one step both a model and an optimal receding
horizon control algorithm, without requiring a linearization. Our procedure relies essentially on a system
identification by a suitable class of functions which offers universal approximation properties that can be
directly incorporated in the control algorithm. Using directional forgetting we show that an adaptive ex-
tension can be realized. Measurements and simulations based on a standard automotive control problem
are presented to confirm the validity of our proposal.
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1. Introduction

Optimal operation is a common requirement for control sys-
tems, and optimal control is an important part of it. Optimal con-
trol is a topic whose different facets have been studied over a very
long period (see for example [7]). An optimal control usually re-
sults from two sequential steps, first setting up a model and then
using optimal control theory to obtain the control algorithm for
the given requirements.

While for linear systems there are well established methods
which work with the utmost majority of cases, the same is not
as true for nonlinear systems, for which many results exist, but no
general procedure. One of the reasons is that the analytical for-
mulation of optimal control of nonlinear systems can lead to very
complex and non-convex expressions [33], which are very seldom
solvable explicitly, and often very difficult to solve even numeri-
cally, at least in real time. Indeed, many proposals have been for-
mulated to explicitly take into account nonlinearity, providing ap-
proximated solutions for some specific classes, just as an example
see [27], but there is no universal solution. Also embedded com-
pensation of the nonlinearity has been proposed, see e.g. [14,23].
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In their majority, these works rely on state space, even continu-
ous system description, which may be a major handicap for un-
known nonlinear systems, for which nonlinear identification pro-
vides discrete-time input/output models for which a state space
continuous time form may not even exist. Using input/output mea-
surements for data-enabled predictive control is well known, see
e.g. [9]. However, these methods are mainly concerned with lin-
ear systems [3,4]. Also the excitation conditions are not simple
to define, a critical point when discussing adaption and forgetting
strategies.

Many nonlinear system identification methods have been pro-
posed, see e.g. [32], until more recently [19,20]. However, these
methods usually require many data and there is no established
procedure to design parsimonious experiments, even though some
proposals exist (see e.g. [25]). This makes their use difficult in our
context as measurements, for instance in the case of our example,
are expensive and slow.

The idea behind this paper is to look for a practical method
able to cope with a generally unknown nonlinear system described
only by sampled measurements as they are, i.e. without any lin-
earization or transformation into a state space (SS) and/or contin-
uous time form. In order to simplify the design, we also look for
a procedure in which the result of the modeling phase can be in-
serted immediately into an suitable optimizing algorithm, in the
usual form of a receding horizon form.
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Our solution is based on identifying polynomial nonlinear au-
toregressive models with exogenous input (PNARX models) follow-
ing our own fast strategy as described in [31] and using the re-
sult in a modified version of the continuation/generalized minimal
residual (C/GMRES) method [21], a truly nonlinear model predic-
tive control algorithm which has been extended to work with in-
put/output (I/O) time discrete models [5]. PNARX are of course not
the only possible choice, but they offer some very interesting ad-
vantages — universal approximators, linear-in-parameters and triv-
ial differentiability.

Its key advantage are its speed and general applicability: the ex-
perimental examples - on a very complex system - shown below
have taken a few hours from scratch to online-operation. It also
yields a better performance compared to the industrial production
solution, which is the result of a huge design and tuning work.

As always, there is also a price to be paid. This is mainly the
potentially large number of parameters of the model, a common
problem to all universal approximators. This means that the exci-
tation needed to identify a model can be difficult to obtain. Ac-
cordingly, our method consists of an offline and an online step. In
the offline step, we us an iterative approach, based on a combina-
tion of design of experiment (DOE) phases, which tune the infor-
mation content of the data, as well as of pruning phases, which
remove unnecessary model parts. For the online operation, the ex-
citation cannot be optimized by DOE, instead we propose using a
directional forgetting to allow an adaptive operation.

While some partial results have been published earlier by the
authors, the aim of this paper is to present the final framework as
well as its practical use and performance. The rest of the paper is
organized as follows. In Section 2 our approach is introduced, in
Section 3 the used nonlinear system is described and modeled, in
Section 4 the offline and online identification method is reported
together with the controller and finally in Section 5 the discrete
optimal controller is described and the results are presented in
Section 6. Some conclusion are drawn in Section 7.

2. Optimal plug and control of nonlinear systems
2.1. The goal

Our interest consists in developing a method by which an op-
timal control for a (partly) unknown nonlinear system can be de-
veloped in one step, by experiments to be performed in an initial
phase. Additionally, we are interested in providing some degree of
adaptation to be able to track changes as for instance due to wear
during normal operation.

2.2. The problem
As is generally known, a generic nonlinear system can be de-

scribed in its continuous time state space form by
x=f(x,u,r) (1a)

y=h(x,u,t), (1b)

where x € R" denotes the state, u ¢ R™ the input, t the time, and
y € R! the output. With a scalar cost function |

J(t) = D(x(t1), t1) + [1ga(x,u,t)dt, 2)

where t; and t; are the initial and final time, ¢(-) the running cost,
and ®(t;) the terminal cost, the standard optimal control problem
formulation is

u(t) = argminJ (3)
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st.x= f(x,u,t).

It is well known that, by application of Bellman’s optimality prin-
ciple [17] under some conditions this optimal control problem can
be reformulated by the Hamilton-Jacobi-Bellman (H]JB) equation as
the search of an optimal function V*(x, t) which has to fulfill a par-
tial differential equation. If a nonlinear input affine system

X = f(x) +gx)u (4)
and a quadratic cost function in u is considered, e.g.

t

J) = [ aGo -+ uRude (5)

to
this partial differential equation becomes

v v+ 1 cov+Tavr
- ot - q(X) + X f(X) - Zg(x) Ox ox g(X) (6)
and an explicit expression for the control can be derived
Lov+T

1
u*(x) = —ER‘lg(x) o

Unfortunately, solving the partial differential equation for V* is
usually not possible, except for very special functions f(x) and g(x)
and special q(x), for example for linear systems with a quadratic
cost function. Otherwise, possibly strong and mostly ad-hoc ap-
proximations are needed, see e.g. [26,27].

2.3. Our proposal

Against this background, we suggest that both parts of the con-
trol design process, the modeling and the control design, should be
coordinated, in particular, the modeling should be conceived as the
“best” approximation of the input/output behavior of the nonlinear
system by a class for which a solution to the optimal control prob-
lem is directly available. Indeed, modeling is to some extent always
an approximation process, as no model can ever represent a sys-
tem completely. First principle modeling is the method of choice
for many applications, in particular for simulations, but such mod-
els require sufficient knowledge about the system to be modeled,
tend to be complex and to include elements which will be any-
way removed during the approximation steps needed for control
design.

System identification is one method of modeling, essentially the
mapping of the actual I/O behavior of a system on a class of basic
functions. If the system is not known sufficiently well to choose a
specific class, a class of universal approximators can be used which
allow a good approximation of the I/O behavior (see [8]). Unfortu-
nately, not all universal approximators yield models which can be
directly used for optimal control design (see e.g. [6,10,35]).

With that in mind, we propose the combination of polynomial
NARX models [16,22] and C/GMRES control [21], as the latter does
not need any linearization, so that the parameters of the PNARX
model can be used directly. As the model depends only on data, in
principle it can be updated.

All this leads to an adaptive optimal control according to the
scheme that is sketched in Fig. 1.

It should be noticed, however, that in order to realize this struc-
ture two challenges must be met. In particular, universal approxi-
mators tend to yield a large number of parameters which make
the identification much more difficult. Against this background, we
suggest a two-step procedure: in an offline step, we identify the
full model, while in the online situation we only update it ac-
cording to the available excitation. For the offline phase, the au-
thors have proposed an offline iterative identification framework
in [31] which uses DOE steps to obtain a simpler model with good
prediction properties. For the online phase, a DOE is not possible,
but using directional forgetting allows to update at least parts of
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Fig. 1. Scheme of the adaptive optimal control.
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Fig. 2. Meta-algorithm describing the proposed procedure.

the model whenever a sufficient excitation is available. This is ad-
equate for most practical applications, because usually a few prop-
erties change over time.

The other much simpler challenge is adapting the C/GMRES
method, which has been developed for continous time state space
models to the framework of identification - i.e. discrete time in-
put/output models - which was already presented by the authors
in [5].

The final design procedure steps of the plug and control adaptive
scheme whose components will be described in details in the fol-
lowing, can be represented by a meta-algorithm as shown in Fig. 2:
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Fig. 3. Schematic of the airpath.

In order to assess the performance of our method, we shall use
a very well known problem of automotive control, the air path
control of a Diesel engine.

3. Test application: air path control

In an internal combustion engine ideal combustion happens if
the oxygen-fuel ratio is exactly in balance. In practice an optimal
combustion is not possible and therefore exhaust gases like nitro-
gen oxides (NOy), carbon monoxide (CO) as well as particle matters
(PM) are produced in addition to the products of an ideal combus-
tion, carbon dioxide (CO,) and water (H,0). CO occurs only un-
der few conditions, and PM can be prevented from reaching the
atmosphere by filters, so the key interest is in NOy. A well es-
tablished method to reduce NOy consists in recirculating parts of
the exhaust gases, mixing them with the fresh air which arrives
to the combustion chamber. This recycling is done via the exhaust
gas recirculation (EGR) valve. In addition to that modern engines
can also have a turbocharger with variable geometry turbine (VGT),
which is used to increase the total amount of fresh air led to the
combustion chamber. Both control inputs EGR valve position and
VGT guide vane position can be used to effectively reduce harmful
emissions if properly controlled. The physical background for the
possible emission reduction can be found e.g. in [15]. A schematic
of an airpath equipped with a VGT turbocharger and external high
pressure EGR is shown in Fig. 3.

Engine control is mainly a feed-forward control, in which set
points are decided at a higher level and then control loops enforce
them. In the case of air path control, typically manifold air pres-
sure (MAP) and fresh air to the manifold (mass air flow - MAF) are
the dynamic set points. The control problem becomes then

i _ 2
MAP(?;I,II&IAF(Q / 41 (MAP(t) — MAP;(t))” +

+qo (MAF(t) — MAF,¢(t))?dt.

Fig. 4 shows the experimental setup, consisting of a N47 2 liters
engine by BMW, a highly dynamic brake by AVL and the corre-
sponding measurement technique (see https://desreg.jku.at for de-
tails). Tests are done with the production engine control unit (ECU)
by Bosch, where some functions can be bypassed so to modify only
the desired output to the actuators. A vehicle simulation software,
in our case CarMaker/InMotion [2], was used to calculate the load
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Fig. 4. Experimental setup of the engine test bench with a BMW N47 Diesel engine.

Table 1
Inputs and outputs of the air path model.
Value range
Description Symbol Unit —_
min.  max.
Inputs
EGR valve position XeGrR % 0 100
VGT guide vane position Xver % 60 95
Measured Disturbances
Engine speed Ne min-! 800 3000
Injected fuel per cycle mg mg 0 45
Outputs
IM air mass flow per cycle  MAF  mg 0 1800
IM air pressure MAP  mbar 800 3500

conditions so that the engine would experience the very same load
as on the road. The key advantage is the reproducibility, because
road measurement happen always in different conditions, while
the conditions in the test cell, in particular humidity and temper-
ature of the intake air and temperature of the surrounding air are
kept constant. Additionally, many more measurements are possible
in a test cell than in practice.

Usually, only the position of the VGT and the EGR can be ma-
nipulated, as the injected fuel amount and the actual speed of
the internal combustion engine are given by the dynamics of the
drive chain and the driver. The resulting multiple input multiple
output (MIMO) model (from VGT and EGR to MAP and MAF) is
highly nonlinear, so a dynamic feed-forward control of the model
is quite hard to realize due to the nearly impossible inversion of
the systems behavior. In the industrial practice, this is approxi-
mately achieved by very complex map based local control loops.

Notice that engines are operated in limited operating regions,
see Table 1 for our values.

4. Adaptive nonlinear identification
4.1. Offline identification

Recall that the function
fa: R" - RO,

where [(n,d) = % ]‘[?:’01 (d+i+1), is denoted polynomial space
basis function of degree d € N. With x € R", n € N, being
X=[xX1 X %3 -~ Xg]"

)

it can be defined recursively such that

1 Fro®)
X fia(x)
fo@) =1, fix)=|% fra@) | (7)

0| | fin®
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and in general for i > 2

fic1.0(%) T 7 ]
-1 fio®)
fic1n(%)
[ fii1.1(®)7]
X fia(®)
fix)=| Lficin®) ] = , (8)
[ fii1.2(%)7]
: X2 fi2(%)
_fi—],n(x)_
L [fi—],n(.x)] < Xn | _fi.n.(x)_

a PNARX model results. As it is linear in parameters, it can be
rewritten in the same form as usual for linear models

Vie=fa@®) 0+ e =@ 0+e. 9)
with
X;{r = [yk—n . Yi-1 Uk_m C uk]. (10)

albeit with the difference that the unknown parameters are mul-
tiplied by a function of the measured values and not the values
themselves. Again, writing (9) for all k from 1 to N yields the equa-
tion system

y=>00+e, (11)

The price to be paid for using PNARXs - as with universal ap-
proximators in general - is the possible explosion of the number of
parameters. Of course, not all parameters are as important for the
quality of the model, and there are methods to keep their number
increase under control. It must also be noticed that, in practice, the
approximations quality will be limited not only by the model com-
plexity, but also by the properties of e. See [31] for more details.

4.2. Data based modeling of the airpath

In order to identify a data based model, a DOE procedure is ap-
plied in the first place to receive sufficient excitation required for
an initial parameter identification.

For the DOE the approach described in [13] was used and sig-
nals of length 1000s have been recorded. The DOE involves scal-
ing of the designed signals, for which the input signal ranges in
Table 1 are used. There are several DOE optimality criteria avail-
able, in this work we employ D-optimal input design, which is of-
ten used because the determinant criterion is invariant to linear
scaling and re-parametrization of models. D-optimal input design
can be seen as minimizing the volume of the confidence ellipsoid
of the parameter covariance matrix of the identified model. The it-
erative algorithm developed in [36] and also used in [13] was uti-
lized to generate an approximately D-optimal input sequence.

In Fig. 5 the results obtained after applying the DOE signal of
degree 4 are shown. Note that there is a slight deviation between
desired (setpoint; red) signals applied to the ECU and the actual
measured signals (blue) obtained by the sensors/ECU.

4.3. Offline model identification

For the identification, the model orders have been selected to
my =3 and my =2 for the first output (MAF) and my=>5 and
my =1 for the second output (MAP). These parameters were tuned
empirically based on experience. A polynomial degree of dp =2
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Fig. 5. Input and output signals of the engine air path for DOE inputs for a model of degree 4.

was used for both model outputs. The possible number of polyno-
mial regressors has been pruned to 30 regressors for MAF and 29
regressors for MAP by a LASSO-based regressor selection algorithm
(see [34]) using the identification data in order to avoid overfit-
ting. This leads to a total of 59 model parameters to be identified.
The identification with the previously shown DOE data of degree 4
yielded superior results compared to DOE data of lower degree as
well as WLTP data (where the Worldwide harmonized Light ve-
hicles Test Procedure was completed instead of a specific DOE),
obtained by cross validation between the respective data sets. In
detail, all identified models have been validated using the other
datasets and the 1-step prediction error as well as the simulation
error (see [18]) utilizing the FIT value, defined in [13, Eq. (4.88)].
Exemplary results for the setting of n =2 identification steps and
the WLTP data (assumed to be a realistic validation data set) are
shown in Fig. 6.

It can be observed, that the outputs of the plant with an op-
timized parameter set 6* (yellow lines in Fig. 6) approximate the
behavior of the airpath system quite well.

4.4. Online identification

In [29] two ways of suitable online identification for systems
are presented, namely a recursive least squares (RLS) algorithm
with exponential forgetting (RLS-EF) as well as a RLS algorithm
with directional forgetting (RLS-DF). Both methods shall be shortly
revised here. As extensively shown in [29] the algorithms are ro-
bust to the noise model structure (see the numerical example ses-
sions in [29]). Due to lack of space, we do not repeat such exam-
ples here.

By application of the RLS algorithm the parameter-vector f can
be estimated online to be utilized for the approximation of the un-
known system S by the PNARX model M(H). This enables tracking
of a reference r by S without further knowledge of the actual non-

linear system, utilizing the discrete-time 1/0 C/GMRES method pre-
sented in Section 5.2.

The identification data is defined using N measurements from
time step ks = k to ke = k+ N — 1 (where the (n) is dropped in the
following since it is regarded a fixed number)

Pink)™ [ Vi
Py = : =] Yy=1|: (12)
@'(n, ke)" o Vi,
and the (parameter dependent) prediction vector by
A y;cs\krn
Vi) = =Pl - Oi(n,0) = D} - O(6). (13)
yie\ke—n

for which - to be precise - n additional measurements are needed.
Note that @i is a (N x m;) matrix and Y}, is a (N x 1) vector. De-
note m; = Y1, m;, 0 6 € R™.

The quadratic error of the n-step prediction model is used as a
cost function to get the optimal parameters 6y, as

INO) =" (0 = T5(0) Wi (Y - T(6)).

i=1

(14)

Oy = argmginJN(é’)- (15)
In order to perform exponential forgetting of old data the weight-
ing matrix Wy is chosen as

)\N—l )\N—l

Wy = diag(wy), (16)

AN.—N )‘:0
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Fig. 6. Validation result (1-step prediction and simulation) for WLTP data and n = 2 step identification.

where A € [0, 1] is the forgetting factor. If A =1 is chosen, the case
without forgetting is obtained.

In [30] the recursive algorithm for (approximately) solving this
problem is derived [30, Algorithm 1]. In this algorithm the param-
eter update is done via a Newton-step

On = On-1 — H(On-1.8n. Hv) "G (On-1. gn. HN) (17)
with
IO\
G(On-1.8n. Hy) = < ]gé )) (18)
0=0n_1
my . . . .
=-23"0"(On-1)[gy — HyO®'(n-1)] (19)
i1
d
H(On-1.8n. Hy) = <89g(97gN’HN)> (20)
0=0n_1
a T
oy [ 9 qi
® (9)—(89®(Q)> (21)
and the tuples
v =g\ .. &), Hy = (Hy, ..., Hy"). (22)

The recursive exponential forgetting update strategy for gy and Hy
is

8 = 81 T PNV (23)
Hy = AHy_y + onon (24)

for eachie {1,...,my}.

According to [29], it is possible to incorporate also directional
forgetting in this n-step prediction identification scheme. The key
idea of directional forgetting is to forget only past data in the di-
rection of the new incoming information.

Let’s first consider the 1-step RLS algorithm,

In the 1-step case the function ®(#) =0 is the identity func-
tion and therefore ®’(6) =1 is the identity matrix. Then

G(On-1, 8N, Hv) = —2[gn — HnOn-1]
H(On-1,8n, Hv) = 2Hy.

4.4.1. Recursive parameter update with gy
The recursive parameter update becomes

1
On =On_1 + E(HN)*12[gN — HyOn_1]
=6n_1+ (Hy)'gn — (Hyv) "HynOn-1

= (Hy)'gn

This is the standard RLS algorithm without matrix inversion
lemma. Note that this algorithm converges after one iteration,
since

G(On, gn. Hv) = —2[gn — HnOn]
= —2[gn — Hy(Hy)'gn] = 0.

4.4.2. Recursive parameter update without gy

The standard form of the RLS without matrix inversion lemma
can be derived by eliminating gy. Recall (23) and (24) for the scalar
case my =1

v = Agn-1 + ONYN (25)

Hy = AHn_1 + oney . (26)
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Oy = Hy'gn = Hy' (Agn-1 + @nyn) (27)
HnOn = Agn-1 + ONYN- (28)
By using Oy_1 = H,gllg,\,,] and therefore gy_1 = Hy_16n_1 We get
HnOn = AHn_16n-1 + ONYN (29)
By plugging in (26) for AHy_; we get

HnOn = (Hy — onep )On-1 + ONYN (30)
and therefore with

Oy = Hy' (Hy — on@y )On-1 + Hy'onyn (31)
=0On_1 + Hy'on N — 9 On-1) (32)

the standard RLS form.
By making use of the results in [30], the corresponding recur-
sive update of gy is obtained as:

On = On1 + Hy'on (/v — o On-1) (33)
= Hy' (HnOn-1 + ©nYN — ONPNON-1) (34)
8N

With Oy_1 = Hy' gn-1:
gn = HvHy! 1 gn-1 + onyn — onen Hy ' 18-t (35)
By plugging in the recursive update of Hy, we get
gnv = (Hv-1 — (1 = X)AHy + oo HY ! gn-1 +
PONYN — §0N§01\TIHIQE1gN—1
=gv-1— (1-2A)Agn + @nyn (36)

Agn = AHyHy' gv-1 = AHNON_1. (37)
4.5. Multi-step directional forgetting RLS

Combining the parameter update from (17), (19) and (20), with
the update for gy and Hy, we obtain the general algorithm for

dealing with both directional forgetting and exponential forgetting
(Algorithm 1) with the tuples defined in (22), y), the ith element

Algorithm 1 Multi-Step Recursive LS.
1: procedure MS-RLS(Oy_1, gn_1, HN_1, YN» @Ns A, €)
22 forie{l,...,my} do
3 g{N:glN,l -1 _)\)Ag'N+(p11v.V;\J
4 Hi = Hi_, — (1 = M) AH + olol]
5: end for
6: N <« (gl]\], .
7
8
9

my
8y
Hy < (H}.....Hy")
QN <~ QN,]
: while ||g(9N,gN,HN)|| > ¢ do
10: Oy < On — H(On. gn. HN) 71G(On. gn. Hy)

11: end while
12: return (Oy, gv. Hy)
13: end procedure

of the vector yy and the tuple ¢y = ((p},, . ga,r\;'y).

For directional forgetting, the update is
H,‘L]zg’(l\()q)}'\f.l-l;;,il
¢ Hy 9y

if [loyll = € (38)

AH, = Tl
if oyl <€
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Agy = AHy(Hy_1)"'gy 1. (39)

Note that the exponential forgetting case can also be represented in
this form by using the update

AH;\I = H,’;,q, Ag‘}\, = gl}\m- (40)

which can be interpreted as uniform forgetting in “all directions”
of Hy ;.

5. Input/output discrete time C/GMRES
5.1. Basic algorithm

Nonlinear model predictive control has been attracting the at-
tention of researchers already for decades. Correspondingly, there
are very many available proposals we cannot review here for sake
of space, see e.g. [12,15] and references therein.

C/GMRES [21] is a somewhat different method because it es-
sentially concentrates on solving the Euler-Lagrange equations at
some time instants over a limited time horizon in a moving hori-
zon fashion.

To recall the key idea, let us consider again the general system
of (1a) under some equality constraints

C(x(t), u(t), p(t)) = 0. (41)

where p(t) € RP denotes a measured disturbance. Inequality con-
straints can also be transformed into the equality constraints by in-
troducing quadratic slack variables and by adding linear penalties
on the slack variables in the cost function [21]. Another practical
method is to use barrier functions with fixed barrier parameters. It
is well known that, with (2) a Hamiltonian can be defined as

Hx (), u(t), A(t), u(t), p(t))

= @), u(t), p(t)) + AT (t) f(x(t), u(t), p(t))

+ul (OCEE), ut), p(t)), (42)
where A(t) indicates the co-states and w(t) the Lagrange multi-
plier of the equality constraint. Over the chosen horizon, the nec-

essary conditions for an optimum at the sample times can be
rewritten in vectorial form as

X1 = X+ T f(x(0), u(t), p(t))

x(k=0) = xg
. . oH
M =M+ aT;;TS

«T ac

)\‘*T 7' -
K K o %=Xk
oxx

0
87)(5( IX!<=XK + lu‘

Jdug
C(xp. ug. py)
FU(t),x(t),t)

OH (X U 4 A g1 -Pg1)
dug_q
£3 * £3
C(Xg_q- Ug_1. Pg_1)

=0, (43)

where U(t) indicates the sequence of inputs to the system over
the prediction horizon. As finding the zeroes of the nonlinear
function F(U(t),x(t),t) is no easy task, the continuation method
[24] can be used. It essentially consists in replacing (and relax-
ing) the search of the zeros, which could be done, e.g., by New-
ton’s method, by enforcing F(U(t), x(t), t) to approach zero as time
increases. Of course, all problems related to the possible non-
convexity remain, e.g., the starting point must lie in space of at-
traction of the solution. In order to use the continuation method,
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in a first step, the product of Jacobians with vectors is rewritten
as:
. dF . O0F. OF
F = — —X+ 5
U, x,t) 8UU+ axx+ 9
_F(U+Uh,x+xh,t +h) —F(U,x.t)
N h
= DyF(U, X, t;U,%,1), (44)
with a positive real number h. Using this leads to

DyF(U,x +xh,t + h; U, 0,0)
=AF (U, x,t) — DF(U,x,t;0,% 1). (45)

This is a linear equation concerning U, which can be solved quite
fast by using the GMRES algorithm. The algorithm is based on the
Krylov-subspace method, which is designed to solve a large linear
equation. The advantage of this algorithm is that the residual is
reduced monotonically during iterations and a solution of a suffi-
cient accuracy is obtained with a much less number of iterations
than the dimension of the unknown quantity U (t).

5.2. Algorithm for discrete-time I/O model

In this paper, the system is assumed to have the form

X1 = P(Xk, Xk—ng+1> uk—nks uk+1—nk—nb’ pk—npks uk+1—npk—nb)’ (46)

where n, indicates the maximum number of time shifts of the out-
puts, n, the delay time till the input effects the output and n,
the maximum number of the inputs effecting the output. np, in-
dicates the time shifts of the time dependent parameters of the
system, till they occur at the output of the system and nj is
the maximum number of the time dependent parameters effect-
ing the output of the system. In the following, (46) is shortened to
X1 = P(Xp, X_ng Uk_n, - Uk_n,—n,+1) to improve readability, but the
time dependent parameters of the system are still included in the
calculations.

The aim is again to minimize the performance index | over K
prediction steps to get the optimal control input u; for the system
to be controlled. To solve this problem the principles of static op-
timization can be used to get the necessary conditions. First, the
Lagrange-function related to the equations stated above

L' =]+ upC(xy, g, pi)
+ )"17{-“ (P(Xk’ Xk—ng» uk—nka uk—nrnbﬂ) - Xk+l) (47)

is introduced.
By using the necessary conditions, the equations

or —0= 8L(Xk7 U, pk) + T BC(Xk, U, pk)

Buk - Uy k Suk
max (k+n,+np,K)
K OP(x;, X;_p,. Uiy Uimpy—ny+1) 48
+ Z i+1 8Uk ( a)

i=k+ny

ar 0= OL(Xy, U, Pr) | 7 9C (X, Uk, Pro)
=0 = + X
8xk Xk 8xk

max (k-+ngq,K)

2 0 (P(Xi, Xi_ng» Ui—n» Uiny—ny+1) — Xit1)
+ Z i+1 3X,
K

i=k—1
(48b)

ar aC dp
aTkl":K =0= Mﬁakalkzk + 87)ck|k:K

hold in an optimal point, where p € RP*K indicates the vector of
the Lagrange-multipliers for the equality constraints and A € R™*K
the vector of the Lagrange-multipliers of the systems equations,

(48c)
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holds. These equations are similar to those of Pontryagin’s mini-
mum principle, but now, especially (48b), for each k is linked to
some others. That means in general not only two equations are
linked via the time shifted variables. So it is necessary, to have a
closer look at them. Let’s start at the terminal equation for Ag:

aC 0
Aks1 = M%aka lk=k + BTZ lk=x (49)

In this equation, all variables can be predicted. The backwards
calculation should be no problem using (48b), because it is legal
to cut off the summation if the index exceeds K, because it is as-
sumed that K is chosen in a way making the system able to reach
the desired output within. Otherwise, the costs of the penalty state
are changing Ag,q. Due to this, in step K — 1 the summation only
lasts over two indices and again all variables can be calculated. To
make the equations fit to the C/GMRES algorithm, they have to be
reformulated,

Xir1 = P(Xis Xp_ng» Uk—nys Uk—ny—np+1)
Y ar’
k+k =
Xy i

P 8790| i *T£|
kK = g le=kiK M Ixr |K=ktK
k' k'
AL (G U Ay o PR)

U
C(x;, uz. py)

F(Uk?xk’ k) = :
O (K1 Yo 1M M1 Pl 1)
u?;+K—1
C(XZ+K—] ’ uE-FK—l ’ pz+l{—l)
o (50)

Based on (50), the equation F (U, x4, k) = 0 can still be solved us-
ing the continuation method, as proposed in [5] for a discrete-time
state equation. To this end, it is necessary to introduce the differ-
ence between two time steps using the sampling time T

X —X
AXk — k+1 k

T;
AUk - Uk+1 - Uk (51)
T;
by means of a forward differentiation. This results in
AF(Uk, Xk, k) = ASF(Uk, Xk, k) =
BF(Uk,xk, k) aF(Uk,Xk, k)
= an AXk + 8Uk AUk
+F(Uk,xk,k+l)—F(Uk,xk,k). (52)
T
Compared to (44) and (45) this is equal to D,F(U,x,t; W, w, ),

if W= %, w= % and w =1 is assumed. Under these assump-

tions, the C/GMRES algorithm can be executed similarly to the
continuous-time case. The necessary modifications are:

« DyF(U,x+hx t +h;U,0,0) becomes
F(Up+AUTs X1, (k1) Ts)—F Ug g1, (KD T)
T;
« AF(U, x,t) — DhF(i], x,t;0,%,1) becomes
AF Uy, X k) — F Uy g1 (KD Ts)—F (U % KT)

s

It is possible to determine these quantities within each sam-
pling step, if the prediction for U in the former timestep was ac-
curate enough. Since the nonlinear model predictive control algo-
rithm realizes feedback control, it inherently suppresses the influ-
ence of noises. The overall method works satisfactorily even under
measurement noises in the real experiment, as shown in Section 6.
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Fig. 7. Comparison of the application of the algorithm with artificial trajectory.

6. Results
6.1. Offline method

A sensible approach to test the performance of the method
consists in comparing it to the standard production implementa-
tion, which is the result of an enormous experimental optimization
work using dedicated tools like AVL CAMEO [1]. Engine control is
mainly a feed-forward control, and in particular air path control is
traditionally separated in two steps: first suitable reference values
are defined, which achieve the overall requirements, like consump-
tion and emissions, and then a lower level feedback mainly on the
actuators is used to enforce them. In dynamic transients, it is crit-
ically to track the references as precisely as possible. Fig. 7 shows
the performance of the production version (ECU) and of the sug-
gested non adaptive algorithm (Discr 10) in time domain. Fig. 8
shows the distance from the estimated Pareto front. It may sur-
prise that the distance from the Pareto front is roughly the same.
Actually, the opposite would be true, behind the performance of
the ECU there are may working years of optimization work while
the Discr 10 results derive from a few hours tuning. Indeed, if the
problem is left unchanged, the optimum will be the same, so no
improvement in performance can be expected, the optimum is just
the same, whatever method is used to approximate it.

Both figures, however, show also other three cases, meant to
assess the impact of the method, of the discretization, and of
the use of a input/output form instead of a state space one. Our
PNARX model can be linearized at every step and used for a stan-
dard sequential quadratic programming (SQP). The time plot in
Fig. 7 shows a slower behavior, but the Pareto plot is clearly show-
ing a substantial drop in performance. The PNARX model can be
transformed into a higher dimensional state space form [11] and
a very fast Euler approximation can be used for control. The re-
sults are given as Cont SS in both plots. The performance (in terms
of distance from the Pareto front), is the same as the production
form.

Finally, this very state space form can be discretized in a stan-
dard way. This leads to the performance of Discr SS.

Following conclusions seem important:

- Using a nonlinear control method (C/GMRES) proves better than
a linearized one.

- Discrete time approximation leads to a loss of performance, but
the form state space or input/output does not make a substan-
tial difference.

« The work amount form problem to solution goes from hours to
person years.

Of course, it is an example, but consistent with our general ex-
perience, and gives a good reason to suggest this method.

6.2. Nominal control

A nonlinear model predictive control (NMPC) for tracking refer-
ence profiles of MAF and MAP (which is a standard approach and
also done e.g. in the former works [5,11,28]) is designed using the
identified 2-step model. The previously described C/GMRES is used
to efficiently solve the receding-horizon optimal control problem.
The NMPC controls only the inputs uc = [Xgcr, Xyer]', while the
measured disturbances p = [ne, m¢]" are given by the requirement
of the driver.

We use a similar scenario as in [28], given by (almost) constant
signals ne = 2000rpm and m¢ = 20 mg/cycle shown in Fig. 10 and
reference trajectories for MAF and MAP as filtered step sequences
shown in Fig. 9. The controller is applied to the identified model
in simulation and in the nominal setting described in this subsec-
tion the controller has perfect model parameter knowledge. The
input to the plant is denoted u = [uc, p]" (including measured dis-
turbances), the output is denoted y = [MAF, MAP]" and the refer-
ence signals denoted r = [MAF,r, MAPs]T. The cost function of the
controller at time step k’ is defined as

K +npy

Jure = @(AY(K +npy)) +Ts > L(Ay(k), Au(k)) (53)
k=Kk'

with Ay(k) =y(k) —r(k), Au(k) = uc(k) —uc(k — 1), the terminal
cost function

@(Ay) = Ay'SAy, (54)
and the running cost function

L(Ay, Au) = Ay"QAy + Au"RAu, (55)
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where the weighting matrices of this quadratic cost function have
been set to

1 0 05 0 01 0
Q:[o 1}’3:[0 0.5}5:[0 0.1}'

For evaluating the control performance over the whole scenario of
T = 40s the evaluation cost function is defined as

(56)

T/Ts

=T LAy (k). Au(k)).

k=0

(57)

The following parameters have been used for the C/GMRES al-
gorithm: prediction horizon npy = 10, max. iterations of GMRES
kmax = 10, step size h = 0.002, stabilization parameter ¢ = 1/h, rel-
ative tolerance ry, = 1 x 1078, no preconditioning, no look-ahead.

This nominal control, where the model parameters in the pre-
diction model 6 are the same as the plant model parameters 6*,
leads to the results depicted in Figs. 9 and 10. As expected, the
controlled outputs fit really well to the provided reference.

10

6.3. Perturbation of the model used in controller

Now the sensitivity of the control performance with respect
to a deviation in model parameters (used only in the prediction
model of the NMPC) is examined. With this trick, the contrary -
namely the behavior of the controller in case of an arbitrary devi-
ation in system parameters can be emulated. This is not realized
directly, as the plant with optimal parameter set 9* realizes a re-
alistic air path behavior (as visible in Fig. 6) and the parameter set
in the NMPC should always converge to such a realistic parame-
ter set (even if they are disturbed to represent an unrealistic be-
havior) - which is shown in the following. The plant remains the
same (parameters 6*), but the prediction model parameters 0 in
the controller are disturbed

0 =0*(1+¢eA0) (58)

where A6 is a random parameter vector from a uniform distribu-
tion in [-1,1] and ¢ is the gain of the disturbance. Variations up
to 5% of the nominal value have been made, i.e. € € [-0.05, 0.05].
The resulting loss in control performance is shown by evaluation
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the cost function J with respect to &, which is shown in Fig. 11.
It can be seen that there is a high sensitivity and at the maxi-
mum performance loss (where ¢ = —0.05) the cost function value
is ] = 7779, about 6 times higher as in the nominal case.

6.4. Adaptive expansion

The previously defined NMPC is now combined with the multi-
step recursive LS (MS-RLS) algorithm with directional forgetting
(Algorithm 1) in order to get an adaptive, self-tuning NMPC con-
troller that is able to react to initially wrong model parameters
or slowly changing system parameters over time. Directional for-
getting is used in order to cope with the low information of the
identification signals typically appearing in a tracking closed-loop
application, as discussed in [29]. A comparison between n =1 and
n=2 for the parameter estimation in the MS-RLS algorithm is
made. The control scheme is depicted in Fig. 1.

The scenario (reference signals r and disturbance p from
Figs. 9 and 10) has been repeated 5 times while applying the self-
tuning NMPC continuously for this longer scenario. In this way the
cost function J can be evaluated 5 times. The result of this simula-
tion is shown in Fig. 12, where MS-RLS settings of n =1 and n = 2
are compared to the nominal case cost (flat line).

A parameter deviation with & = —0.05 was used as initial pa-
rameters in the C/GMRES prediction model and MS-RLS (for which
no adaptation leads to a cost function value of | = 7779). The fol-
lowing settings were used in the MS-RLS algorithm: forgetting fac-
tor A = 0.999, directional forgetting threshold € = 1 x 10~3 [29, Eq.
(28)], tolerance (¢ in Algorithm 1 of [29]) of 1 x 1076, maximum
iterations 100.

Fig. 13 shows exemplary results of the tracking outputs: the
reference is compared with the case no adaptation (6 constant
with & = —0.05), and the first and fifth repetition of the case with
adaptation (MS-RLS with n = 2 and settings described above). It is

13

shown that the tracking performs better with adaptation and after
several repetitions the performance is close to the nominal case.

In the presented closed-loop case, however, the parameters es-
timated by MS-RLS do not yet converge to the true parameters of
the plant, because the signals n. and mg¢ are in a very narrow range
and the algorithm with directional forgetting has too little infor-
mation to estimate the parameters correctly.

7. Conclusions

Optimality is a common requirement for most industrial sys-
tems, and optimal control a key element for it. While the theory is
well established, its practical application is mostly limited to lin-
ear system as there is no sufficiently general approach for non-
linear optimal control. Approximations are always needed, either
the model needs to be simplified or the control task, most both of
them.

Control design is usually based on models, for nonlinear sys-
tems as well, and the key suggestion of this paper is to tailor the
model to a suitable control system design method. What this pa-
per shows is that the combination of PNARX models and C/GMRES
does provide such an environment for many practical cases, and
that this environment can be extended in direction of adaptive
control. Of course, approximations are still needed, but they hap-
pen in a systematic way which requires little or no intervention by
the user.

As every control method, physical boundaries are not moved.
The modeling phase will come to a limit as soon as stochastic
aspects become important - something very relevant in the ex-
amples mentioned here. The optimum will be the same indepen-
dently on the way is reached - the control performance of the op-
timal tracking of the MAP/MAF in the example is not significantly
different from the production solution. The difference, however, is
the price: behind the industrial example we have huge amounts of
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tuning work on an extremely complex control structure, the same
results are achieved in few hours with a simple structure in our
case. The difference becomes even more important for the large
number of applications for which the tuning effort of an engine
control unit would not be affordable - engines are produced in
millions - so that the optimal performance would not be reached.
The key price to be paid is the curse of dimensionality, which in
practice means that a completely adaptive version will hardly be
feasible, as no input will be exciting enough. We also need access
to the plant, and the ability to perform some experiments - most
medical applications, for instance, would exclude it. Still, the ap-
proach should bring substantial benefits for most industrial appli-
cations.
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