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a b s t r a c t 

Modeling and control design are typically subsequent but independent activities. Optimal control is tra- 

ditionally developed on the basis of explicit models. While this usually yields good results for linear 

systems, the same is not as true for nonlinear ones, for which explicit solutions can be found only for 

few cases. In practice, in most cases receding horizon controls based on linear approximations are used. 

In this paper, we propose a procedure which delivers in one step both a model and an optimal receding 

horizon control algorithm, without requiring a linearization. Our procedure relies essentially on a system 

identification by a suitable class of functions which offers universal approximation properties that can be 

directly incorporated in the control algorithm. Using directional forgetting we show that an adaptive ex- 

tension can be realized. Measurements and simulations based on a standard automotive control problem 

are presented to confirm the validity of our proposal. 

© 2022 The Author(s). Published by Elsevier Ltd on behalf of European Control Association. 
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. Introduction 

Optimal operation is a common requirement for control sys- 

ems, and optimal control is an important part of it. Optimal con- 

rol is a topic whose different facets have been studied over a very 

ong period (see for example [7] ). An optimal control usually re- 

ults from two sequential steps, first setting up a model and then 

sing optimal control theory to obtain the control algorithm for 

he given requirements. 

While for linear systems there are well established methods 

hich work with the utmost majority of cases, the same is not 

s true for nonlinear systems, for which many results exist, but no 

eneral procedure. One of the reasons is that the analytical for- 

ulation of optimal control of nonlinear systems can lead to very 

omplex and non-convex expressions [33] , which are very seldom 

olvable explicitly, and often very difficult to solve even numeri- 

ally, at least in real time. Indeed, many proposals have been for- 

ulated to explicitly take into account nonlinearity, providing ap- 

roximated solutions for some specific classes, just as an example 

ee [27] , but there is no universal solution. Also embedded com- 

ensation of the nonlinearity has been proposed, see e.g. [14,23] . 
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n their majority, these works rely on state space, even continu- 

us system description, which may be a major handicap for un- 

nown nonlinear systems, for which nonlinear identification pro- 

ides discrete-time input/output models for which a state space 

ontinuous time form may not even exist. Using input/output mea- 

urements for data-enabled predictive control is well known, see 

.g. [9] . However, these methods are mainly concerned with lin- 

ar systems [3,4] . Also the excitation conditions are not simple 

o define, a critical point when discussing adaption and forgetting 

trategies. 

Many nonlinear system identification methods have been pro- 

osed, see e.g. [32] , until more recently [19,20] . However, these 

ethods usually require many data and there is no established 

rocedure to design parsimonious experiments, even though some 

roposals exist (see e.g. [25] ). This makes their use difficult in our 

ontext as measurements, for instance in the case of our example, 

re expensive and slow. 

The idea behind this paper is to look for a practical method 

ble to cope with a generally unknown nonlinear system described 

nly by sampled measurements as they are, i.e. without any lin- 

arization or transformation into a state space (SS) and/or contin- 

ous time form. In order to simplify the design, we also look for 

 procedure in which the result of the modeling phase can be in- 

erted immediately into an suitable optimizing algorithm, in the 

sual form of a receding horizon form. 
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Our solution is based on identifying polynomial nonlinear au- 

oregressive models with exogenous input (PNARX models) follow- 

ng our own fast strategy as described in [31] and using the re- 

ult in a modified version of the continuation/generalized minimal 

esidual (C/GMRES) method [21] , a truly nonlinear model predic- 

ive control algorithm which has been extended to work with in- 

ut/output (I/O) time discrete models [5] . PNARX are of course not 

he only possible choice, but they offer some very interesting ad- 

antages – universal approximators, linear-in-parameters and triv- 

al differentiability. 

Its key advantage are its speed and general applicability: the ex- 

erimental examples – on a very complex system – shown below 

ave taken a few hours from scratch to online-operation. It also 

ields a better performance compared to the industrial production 

olution, which is the result of a huge design and tuning work. 

As always, there is also a price to be paid. This is mainly the 

otentially large number of parameters of the model, a common 

roblem to all universal approximators. This means that the exci- 

ation needed to identify a model can be difficult to obtain. Ac- 

ordingly, our method consists of an offline and an online step. In 

he offline step, we us an iterative approach, based on a combina- 

ion of design of experiment (DOE) phases, which tune the infor- 

ation content of the data, as well as of pruning phases, which 

emove unnecessary model parts. For the online operation, the ex- 

itation cannot be optimized by DOE, instead we propose using a 

irectional forgetting to allow an adaptive operation. 

While some partial results have been published earlier by the 

uthors, the aim of this paper is to present the final framework as 

ell as its practical use and performance. The rest of the paper is 

rganized as follows. In Section 2 our approach is introduced, in 

ection 3 the used nonlinear system is described and modeled, in 

ection 4 the offline and online identification method is reported 

ogether with the controller and finally in Section 5 the discrete 

ptimal controller is described and the results are presented in 

ection 6 . Some conclusion are drawn in Section 7 . 

. Optimal plug and control of nonlinear systems 

.1. The goal 

Our interest consists in developing a method by which an op- 

imal control for a (partly) unknown nonlinear system can be de- 

eloped in one step, by experiments to be performed in an initial 

hase. Additionally, we are interested in providing some degree of 

daptation to be able to track changes as for instance due to wear 

uring normal operation. 

.2. The problem 

As is generally known, a generic nonlinear system can be de- 

cribed in its continuous time state space form by 

˙ 
 = f (x, u, t) (1a) 

 = h (x, u, t) , (1b) 

here x ∈ R 

n denotes the state, u ∈ R 

m the input, t the time, and

 ∈ R 

l the output. With a scalar cost function J

 ( t 1 ) = �( x ( t 1 ) , t 1 ) + 

∫ t 1 

t 0 

ϕ(x, u, t )d t , (2) 

here t 0 and t 1 are the initial and final time, ϕ(·) the running cost, 

nd �(t 1 ) the terminal cost, the standard optimal control problem 

ormulation is 

 ( t ) = arg min 

u 
J (3) 
2 
s.t. ˙ x = f (x, u, t) . 

t is well known that, by application of Bellman’s optimality prin- 

iple [17] under some conditions this optimal control problem can 

e reformulated by the Hamilton–Jacobi–Bellman (HJB) equation as 

he search of an optimal function V ∗( x, t ) which has to fulfill a par- 

ial differential equation. If a nonlinear input affine system 

˙ 
 = f ( x ) + g ( x ) u (4) 

nd a quadratic cost function in u is considered, e.g. 

 ( t 1 ) = 

∫ t 1 

t 0 

q ( x ) + u 

T Ru d t (5) 

his partial differential equation becomes 

∂V 

∗

∂t 
= q ( x ) + 

∂V 

∗

∂x 
f ( x ) − 1 

4 

g ( x ) 
� ∂V 

∗

∂x 

� ∂V 

∗

∂x 
g ( x ) (6) 

nd an explicit expression for the control can be derived 

 

∗( x ) = −1 

2 

R 

−1 g ( x ) 
� ∂ V 

∗� 

∂x 
. 

nfortunately, solving the partial differential equation for V ∗ is 

sually not possible, except for very special functions f (x ) and g(x ) 

nd special q (x ) , for example for linear systems with a quadratic 

ost function. Otherwise, possibly strong and mostly ad-hoc ap- 

roximations are needed, see e.g. [26,27] . 

.3. Our proposal 

Against this background, we suggest that both parts of the con- 

rol design process, the modeling and the control design, should be 

oordinated, in particular, the modeling should be conceived as the 

best” approximation of the input/output behavior of the nonlinear 

ystem by a class for which a solution to the optimal control prob- 

em is directly available. Indeed, modeling is to some extent always 

n approximation process, as no model can ever represent a sys- 

em completely. First principle modeling is the method of choice 

or many applications, in particular for simulations, but such mod- 

ls require sufficient knowledge about the system to be modeled, 

end to be complex and to include elements which will be any- 

ay removed during the approximation steps needed for control 

esign. 

System identification is one method of modeling, essentially the 

apping of the actual I/O behavior of a system on a class of basic 

unctions. If the system is not known sufficiently well to choose a 

pecific class, a class of universal approximators can be used which 

llow a good approximation of the I/O behavior (see [8] ). Unfortu- 

ately, not all universal approximators yield models which can be 

irectly used for optimal control design (see e.g. [6,10,35] ). 

With that in mind, we propose the combination of polynomial 

ARX models [16,22] and C/GMRES control [21] , as the latter does 

ot need any linearization, so that the parameters of the PNARX 

odel can be used directly. As the model depends only on data, in 

rinciple it can be updated. 

All this leads to an adaptive optimal control according to the 

cheme that is sketched in Fig. 1 . 

It should be noticed, however, that in order to realize this struc- 

ure two challenges must be met. In particular, universal approxi- 

ators tend to yield a large number of parameters which make 

he identification much more difficult. Against this background, we 

uggest a two-step procedure: in an offline step, we identify the 

ull model, while in the online situation we only update it ac- 

ording to the available excitation. For the offline phase, the au- 

hors have proposed an offline iterative identification framework 

n [31] which uses DOE steps to obtain a simpler model with good 

rediction properties. For the online phase, a DOE is not possible, 

ut using directional forgetting allows to update at least parts of 
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Fig. 1. Scheme of the adaptive optimal control. 

Fig. 2. Meta-algorithm describing the proposed procedure. 
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Fig. 3. Schematic of the airpath. 
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he model whenever a sufficient excitation is available. This is ad- 

quate for most practical applications, because usually a few prop- 

rties change over time. 

The other much simpler challenge is adapting the C/GMRES 

ethod, which has been developed for continous time state space 

odels to the framework of identification – i.e. discrete time in- 

ut/output models – which was already presented by the authors 

n [5] . 

The final design procedure steps of the plug and control adaptive 

cheme whose components will be described in details in the fol- 

owing, can be represented by a meta-algorithm as shown in Fig. 2 : 
3 
In order to assess the performance of our method, we shall use 

 very well known problem of automotive control, the air path 

ontrol of a Diesel engine. 

. Test application: air path control 

In an internal combustion engine ideal combustion happens if 

he oxygen-fuel ratio is exactly in balance. In practice an optimal 

ombustion is not possible and therefore exhaust gases like nitro- 

en oxides ( NO x ), carbon monoxide (CO) as well as particle matters 

PM) are produced in addition to the products of an ideal combus- 

ion, carbon dioxide ( CO 2 ) and water ( H 2 O ). CO occurs only un- 

er few conditions, and PM can be prevented from reaching the 

tmosphere by filters, so the key interest is in NO x . A well es- 

ablished method to reduce NO x consists in recirculating parts of 

he exhaust gases, mixing them with the fresh air which arrives 

o the combustion chamber. This recycling is done via the exhaust 

as recirculation (EGR) valve. In addition to that modern engines 

an also have a turbocharger with variable geometry turbine (VGT), 

hich is used to increase the total amount of fresh air led to the 

ombustion chamber. Both control inputs EGR valve position and 

GT guide vane position can be used to effectively reduce harmful 

missions if properly controlled. The physical background for the 

ossible emission reduction can be found e.g. in [15]. A schematic 

f an airpath equipped with a VGT turbocharger and external high 

ressure EGR is shown in Fig. 3 . 

Engine control is mainly a feed-forward control, in which set 

oints are decided at a higher level and then control loops enforce 

hem. In the case of air path control, typically manifold air pres- 

ure ( MAP ) and fresh air to the manifold (mass air flow – MAF ) are 

he dynamic set points. The control problem becomes then 

min 

AP (t) , MAF (t) 

∫ 
q 1 ( MAP (t) − MAP ref (t)) 2 + 

+ q 2 ( MAF (t) − MAF ref (t)) 2 dt . 

Fig. 4 shows the experimental setup, consisting of a N47 2 liters 

ngine by BMW, a highly dynamic brake by AVL and the corre- 

ponding measurement technique (see https://desreg.jku.at for de- 

ails). Tests are done with the production engine control unit (ECU) 

y Bosch, where some functions can be bypassed so to modify only 

he desired output to the actuators. A vehicle simulation software, 

n our case CarMaker/InMotion [2] , was used to calculate the load 

https://desreg.jku.at
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Fig. 4. Experimental setup of the engine test bench with a BMW N47 Diesel engine. 

Table 1 

Inputs and outputs of the air path model. 

Description Symbol Unit 

Value range 

min. max. 

Inputs 

EGR valve position X EGR % 0 100 

VGT guide vane position X VGT % 60 95 

Measured Disturbances 

Engine speed n e min −1 800 3000 

Injected fuel per cycle m f mg 0 45 

Outputs 

IM air mass flow per cycle MAF mg 0 1800 

IM air pressure MAP mbar 800 3500 
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onditions so that the engine would experience the very same load 

s on the road. The key advantage is the reproducibility, because 

oad measurement happen always in different conditions, while 

he conditions in the test cell, in particular humidity and temper- 

ture of the intake air and temperature of the surrounding air are 

ept constant. Additionally, many more measurements are possible 

n a test cell than in practice. 

Usually, only the position of the VGT and the EGR can be ma- 

ipulated, as the injected fuel amount and the actual speed of 

he internal combustion engine are given by the dynamics of the 

rive chain and the driver. The resulting multiple input multiple 

utput (MIMO) model (from VGT and EGR to MAP and MAF ) is 

ighly nonlinear, so a dynamic feed-forward control of the model 

s quite hard to realize due to the nearly impossible inversion of 

he systems behavior. In the industrial practice, this is approxi- 

ately achieved by very complex map based local control loops. 

Notice that engines are operated in limited operating regions, 

ee Table 1 for our values. 

. Adaptive nonlinear identification 

.1. Offline identification 

Recall that the function 

f d : R 

n → R 

l(n,d) , 

here l(n, d) = 

1 
n ! 

∏ n −1 
i =0 (d + i + 1) , is denoted polynomial space

asis function of degree d ∈ N . With x ∈ R 

n , n ∈ N , being 

 = [ x 1 x 2 x 3 · · · x n ] 
� 
, 

t can be defined recursively such that 

f 0 ( x ) = 1 , f 1 ( x ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 

x 1 
x 2 
. . . 

x n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

f 1 , 0 ( x ) 
f 1 , 1 ( x ) 
f 1 , 2 ( x ) 

. . . 
f 1 ,n (x ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (7) 
4 
nd in general for i ≥ 2 

f i ( x ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

⎡ 

⎣ 

f i −1 , 0 ( x ) 
. . . 

f i −1 ,n ( x ) 

⎤ 

⎦ · 1 

⎡ 

⎣ 

f i −1 , 1 ( x ) 
. . . 

f i −1 ,n ( x ) 

⎤ 

⎦ · x 1 

⎡ 

⎣ 

f i −1 , 2 ( x ) 
. . . 

f i −1 ,n ( x ) 

⎤ 

⎦ · x 2 

. . . [
f i −1 ,n ( x ) 

]
· x n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

f i, 0 ( x ) 

f i, 1 ( x ) 

f i, 2 ( x ) 

. . . 

f i,n ( x ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (8) 

 PNARX model results. As it is linear in parameters, it can be 

ewritten in the same form as usual for linear models 

 k = f d ( x k ) 
� θ + e k = ϕ 

� 
k θ + e k , (9) 

ith 

 

� 
k = 

[
y k −n . . . y k −1 u k −m 

. . . u k 

]
. (10) 

lbeit with the difference that the unknown parameters are mul- 

iplied by a function of the measured values and not the values 

hemselves. Again, writing (9) for all k from 1 to N yields the equa- 

ion system 

 = �θ + e , (11) 

The price to be paid for using PNARXs – as with universal ap- 

roximators in general – is the possible explosion of the number of 

arameters. Of course, not all parameters are as important for the 

uality of the model, and there are methods to keep their number 

ncrease under control. It must also be noticed that, in practice, the 

pproximations quality will be limited not only by the model com- 

lexity, but also by the properties of e . See [31] for more details. 

.2. Data based modeling of the airpath 

In order to identify a data based model, a DOE procedure is ap- 

lied in the first place to receive sufficient excitation required for 

n initial parameter identification. 

For the DOE the approach described in [13] was used and sig- 

als of length 10 0 0s have been recorded. The DOE involves scal- 

ng of the designed signals, for which the input signal ranges in 

able 1 are used. There are several DOE optimality criteria avail- 

ble, in this work we employ D-optimal input design, which is of- 

en used because the determinant criterion is invariant to linear 

caling and re-parametrization of models. D-optimal input design 

an be seen as minimizing the volume of the confidence ellipsoid 

f the parameter covariance matrix of the identified model. The it- 

rative algorithm developed in [36] and also used in [13] was uti- 

ized to generate an approximately D-optimal input sequence. 

In Fig. 5 the results obtained after applying the DOE signal of 

egree 4 are shown. Note that there is a slight deviation between 

esired (setpoint; red) signals applied to the ECU and the actual 

easured signals (blue) obtained by the sensors/ECU. 

.3. Offline model identification 

For the identification, the model orders have been selected to 

 u = 3 and m y = 2 for the first output ( MAF ) and m u = 5 and

 y = 1 for the second output ( MAP ). These parameters were tuned 

mpirically based on experience. A polynomial degree of d p = 2 
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Fig. 5. Input and output signals of the engine air path for DOE inputs for a model of degree 4. 
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as used for both model outputs. The possible number of polyno- 

ial regressors has been pruned to 30 regressors for MAF and 29 

egressors for MAP by a LASSO-based regressor selection algorithm 

see [34] ) using the identification data in order to avoid overfit- 

ing. This leads to a total of 59 model parameters to be identified. 

he identification with the previously shown DOE data of degree 4 

ielded superior results compared to DOE data of lower degree as 

ell as WLTP data (where the Worldwide harmonized Light ve- 

icles Test Procedure was completed instead of a specific DOE), 

btained by cross validation between the respective data sets. In 

etail, all identified models have been validated using the other 

atasets and the 1-step prediction error as well as the simulation 

rror (see [18] ) utilizing the FIT value, defined in [13, Eq. (4.88)] .

xemplary results for the setting of n = 2 identification steps and 

he WLTP data (assumed to be a realistic validation data set) are 

hown in Fig. 6 . 

It can be observed, that the outputs of the plant with an op- 

imized parameter set θ ∗ (yellow lines in Fig. 6 ) approximate the 

ehavior of the airpath system quite well. 

.4. Online identification 

In [29] two ways of suitable online identification for systems 

re presented, namely a recursive least squares (RLS) algorithm 

ith exponential forgetting (RLS-EF) as well as a RLS algorithm 

ith directional forgetting (RLS-DF). Both methods shall be shortly 

evised here. As extensively shown in [29] the algorithms are ro- 

ust to the noise model structure (see the numerical example ses- 

ions in [29] ). Due to lack of space, we do not repeat such exam-

les here. 

By application of the RLS algorithm the parameter-vector ˆ θ can 

e estimated online to be utilized for the approximation of the un- 

nown system S by the PNARX model M ( ̂  θ ) . This enables tracking 

f a reference r by S without further knowledge of the actual non- 
5 
inear system, utilizing the discrete-time I/O C/GMRES method pre- 

ented in Section 5.2 . 

The identification data is defined using N measurements from 

ime step k s = k to k e = k + N − 1 (where the (n ) is dropped in the

ollowing since it is regarded a fixed number) 

i 
N = 

⎡ 

⎣ 

ϕ 

i (n, k s ) � 

. . . 

ϕ 

i (n, k e ) 
� 

⎤ 

⎦ = 

⎡ 

⎢ ⎣ 

ϕ 

i 
k s 

� 

. . . 

ϕ 

i 
k e 

� 

⎤ 

⎥ ⎦ 

Y i N = 

⎡ 

⎢ ⎣ 

y i 
k s 
. . . 

y i 
k e 

⎤ 

⎥ ⎦ 

(12) 

nd the (parameter dependent) prediction vector by 

ˆ Y i N (θ ) = 

⎡ 

⎢ ⎣ 

ˆ y i 
k s | k s −n 

. . . 

ˆ y i 
k e | k e −n 

⎤ 

⎥ ⎦ 

= �i 
N · �i (n, θ ) = �i 

N · �i (θ ) . (13) 

or which – to be precise – n additional measurements are needed. 

ote that �i 
N 

is a (N × m i ) matrix and Y i 
N 

is a (N × 1) vector. De-

ote m t = 

∑ m y 

i =1 
m i , so θ ∈ R 

m t . 

The quadratic error of the n -step prediction model is used as a 

ost function to get the optimal parameters θN , as 

 N (θ ) = 

m y ∑ 

i =1 

(Y i N − ˆ Y i N (θ )) � W N (Y 
i 

N − ˆ Y i N (θ )) , (14) 

N = arg min 

θ
J N (θ ) . (15) 

n order to perform exponential forgetting of old data the weight- 

ng matrix W N is chosen as 

 N = diag ( w N ) , w N = 

⎡ 

⎣ 

λN−1 

. . . 

λN−N 

⎤ 

⎦ = 

⎡ 

⎣ 

λN−1 

. . . 

λ0 

⎤ 

⎦ , (16) 
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Fig. 6. Validation result (1-step prediction and simulation) for WLTP data and n = 2 step identification. 
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here λ ∈ [0 , 1] is the forgetting factor. If λ = 1 is chosen, the case

ithout forgetting is obtained. 

In [30] the recursive algorithm for (approximately) solving this 

roblem is derived [30, Algorithm 1] . In this algorithm the param- 

ter update is done via a Newton-step 

N = θN−1 − H(θN−1 , g N , H N ) 
−1 G(θN−1 , g N , H N ) (17) 

ith 

(θN−1 , g N , H N ) = 

(
∂ J N (θ ) 

∂θ

)� 
∣∣∣∣∣
θ= θN−1 

(18) 

 −2 

m y ∑ 

i =1 

�i ′ (θN−1 ) 
[
g i N − H 

i 
N �

i (θN−1 ) 
]

(19) 

(θN−1 , g N , H N ) = 

(
∂ 

∂θ
G(θ, g N , H N ) 

)∣∣∣∣
θ= θN−1 

(20) 

i ′ (θ ) = 

(
∂ 

∂θ
�i (θ ) 

)� 
(21) 

nd the tuples 

 N = (g 1 N , . . . , g 
m y 

N 
) , H N = (H 

1 
N , . . . , H 

m y 

N 
) . (22) 

he recursive exponential forgetting update strategy for g N and H N 

s 

 

i 
N = λg i N−1 + ϕ 

i 
N y 

i 
N (23) 

 

i 
N = λH 

i 
N−1 + ϕ 

i 
N ϕ 

i � 
N (24) 

or each i ∈ { 1 , . . . , m y } . 
6 
According to [29] , it is possible to incorporate also directional 

orgetting in this n -step prediction identification scheme. The key 

dea of directional forgetting is to forget only past data in the di- 

ection of the new incoming information. 

Let’s first consider the 1-step RLS algorithm, 

In the 1-step case the function �(θ ) = θ is the identity func- 

ion and therefore �′ (θ ) = I is the identity matrix. Then 

G(θN−1 , g N , H N ) = −2 [ g N − H N θN−1 ] 

(θN−1 , g N , H N ) = 2 H N . 

.4.1. Recursive parameter update with g N 
The recursive parameter update becomes 

N = θN−1 + 

1 

2 

(H N ) 
−1 2 [ g N − H N θN−1 ] 

= θN−1 + (H N ) 
−1 g N − (H N ) 

−1 H N θN−1 

= (H N ) 
−1 g N 

his is the standard RLS algorithm without matrix inversion 

emma. Note that this algorithm converges after one iteration, 

ince 

(θN , g N , H N ) = −2 [ g N − H N θN ] 

= −2 

[
g N − H N (H N ) 

−1 g N 
]

= 0 . 

.4.2. Recursive parameter update without g N 
The standard form of the RLS without matrix inversion lemma 

an be derived by eliminating g N . Recall (23) and (24) for the scalar

ase m y = 1 

 N = λg N−1 + ϕ N y N (25) 

 N = λH N−1 + ϕ N ϕ 

� 
N . (26) 
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N = H 

−1 
N g N = H 

−1 
N (λg N−1 + ϕ N y N ) (27) 

 N θN = λg N−1 + ϕ N y N . (28) 

y using θN−1 = H 

−1 
N−1 

g N−1 and therefore g N−1 = H N−1 θN−1 we get 

 N θN = λH N−1 θN−1 + ϕ N y N (29) 

y plugging in (26) for λH N−1 we get 

 N θN = (H N − ϕ N ϕ 

� 
N ) θN−1 + ϕ N y N (30) 

nd therefore with 

N = H 

−1 
N (H N − ϕ N ϕ 

� 
N ) θN−1 + H 

−1 
N ϕ N y N (31) 

= θN−1 + H 

−1 
N ϕ N (y N − ϕ 

� 
N θN−1 ) (32) 

he standard RLS form. 

By making use of the results in [30] , the corresponding recur- 

ive update of g N is obtained as: 

N = θN−1 + H 

−1 
N ϕ N (y N − ϕ 

� 
N θN−1 ) (33) 

= H 

−1 
N (H N θN−1 + ϕ N y N − ϕ N ϕ 

� 
N θN−1 ) ︸ ︷︷ ︸ 

g N 

(34) 

ith θN−1 = H 

−1 
N−1 

g N−1 : 

 N = H N H 

−1 
N−1 g N−1 + ϕ N y N − ϕ N ϕ 

� 
N H 

−1 
N−1 g N−1 . (35) 

y plugging in the recursive update of H N , we get 

 N = (H N−1 − (1 − λ)�H N + ϕ N ϕ 

� 
N ) H 

−1 
N−1 g N−1 + 

ϕ N y N − ϕ N ϕ 

� 
N H 

−1 
N−1 g N−1 

= g N−1 − (1 − λ)�g N + ϕ N y N (36) 

g N = �H N H 

−1 
N−1 g N−1 = �H N θN−1 . (37) 

.5. Multi-step directional forgetting RLS 

Combining the parameter update from (17), (19) and (20) , with 

he update for g N and H N , we obtain the general algorithm for 

ealing with both directional forgetting and exponential forgetting 

 Algorithm 1 ) with the tuples defined in (22) , y i 
N 

the i th element

lgorithm 1 Multi-Step Recursive LS. 

1: procedure MS-RLS ( θN−1 , g N−1 , H N−1 , y N , ϕ N , λ, ε) 

2: for i ∈ { 1 , . . . , m y } do 

3: g i 
N 

= g i 
N−1 

− (1 − λ)�g i 
N 

+ ϕ 

i 
N 

y i 
N 

4: H 

i 
N 

= H 

i 
N−1 

− (1 − λ)�H 

i 
N 

+ ϕ 

i 
N 
ϕ 

i � 
N 

5: end for 

6: g N ← (g 1 
N 
, . . . , g 

m y 

N 
) 

7: H N ← (H 

1 
N , . . . , H 

m y 

N 
) 

8: θN ← θN−1 

9: while ‖G(θN , g N , H N ) ‖ > ε do 

0: θN ← θN − H(θN , g N , H N ) 
−1 G(θN , g N , H N ) 

11: end while 

2: return (θN , g N , H N ) 

3: end procedure 

f the vector y N and the tuple ϕ N = (ϕ 

1 
N , . . . , ϕ 

m y 

N 
) . 

For directional forgetting , the update is 

H 

i 
N = 

{ 

H i N−1 ϕ 
i (N) ϕ i � N H 

i 
N−1 

ϕ i � 
N 

H i 
N−1 

ϕ i 
N 

if ‖ ϕ 

i 
N ‖ ≥ ε

0 if ‖ ϕ 

i 
N ‖ < ε

(38) 
7 
g i N = �H 

i 
N (H 

i 
N−1 ) 

−1 g i N−1 . (39) 

ote that the exponential forgetting case can also be represented in 

his form by using the update 

H 

i 
N = H 

i 
N−1 , �g i N = g i N−1 . (40) 

hich can be interpreted as uniform forgetting in “all directions”

f H 

i 
N−1 

. 

. Input/output discrete time C/GMRES 

.1. Basic algorithm 

Nonlinear model predictive control has been attracting the at- 

ention of researchers already for decades. Correspondingly, there 

re very many available proposals we cannot review here for sake 

f space, see e.g. [12,15] and references therein. 

C/GMRES [21] is a somewhat different method because it es- 

entially concentrates on solving the Euler-Lagrange equations at 

ome time instants over a limited time horizon in a moving hori- 

on fashion. 

To recall the key idea, let us consider again the general system 

f (1a) under some equality constraints 

(x (t) , u (t) , p(t)) = 0 . (41) 

here p(t) ∈ R 

p denotes a measured disturbance. Inequality con- 

traints can also be transformed into the equality constraints by in- 

roducing quadratic slack variables and by adding linear penalties 

n the slack variables in the cost function [21] . Another practical 

ethod is to use barrier functions with fixed barrier parameters. It 

s well known that, with (2) a Hamiltonian can be defined as 

(x (t) , u (t) , λ(t) , μ(t) , p(t)) 

= ϕ(x (t) , u (t) , p(t)) + λT (t) f (x (t) , u (t) , p(t)) 

+ μT (t) C(x (t) , u (t) , p(t)) , (42) 

here λ(t) indicates the co-states and μ(t) the Lagrange multi- 

lier of the equality constraint. Over the chosen horizon, the nec- 

ssary conditions for an optimum at the sample times can be 

ewritten in vectorial form as 

x k +1 = x k + T s f (x (t) , u (t) , p(t)) 

x (k = 0) = x 0 

λ∗T 
k = λ∗T 

k +1 + 

∂H 

∂x ∗
k 

T s 

λ∗T 
K = 

∂ϕ 

∂x k 
| x k = x K + μ∗T 

K 

∂C 

∂x ∗
k 

| x ∗
k 
= x ∗

K 

 (U(t) , x (t) , t) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

∂H(x ∗0 ,u 
∗
0 ,λ

∗
1 ,μ

∗
0 ,p ∗0 ) 

∂u 0 
C(x ∗0 , u 

∗
0 , p 

∗
0 ) 

. . . 
∂H(x ∗K−1 ,u 

∗
K−1 ,λ

∗
K ,μ

∗
K−1 ,p ∗K−1 ) 

∂u K−1 

C(x ∗K−1 , u 

∗
K−1 , p 

∗
K−1 ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= 0 , (43) 

here U(t) indicates the sequence of inputs to the system over 

he prediction horizon. As finding the zeroes of the nonlinear 

unction F (U(t) , x (t) , t) is no easy task, the continuation method

24] can be used. It essentially consists in replacing (and relax- 

ng) the search of the zeros, which could be done, e.g., by New- 

on’s method, by enforcing F (U(t) , x (t) , t) to approach zero as time

ncreases. Of course, all problems related to the possible non- 

onvexity remain, e.g., the starting point must lie in space of at- 

raction of the solution. In order to use the continuation method, 
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n a first step, the product of Jacobians with vectors is rewritten 

s: 

˙ 
 (U, x, t) = 

∂F 

∂U 

˙ U + 

∂F 

∂x 
˙ x + 

∂F 

∂t 

≈ F (U + 

˙ U h, x + 

˙ x h, t + h ) − F (U, x, t) 

h 

:= D h F (U, x, t; ˙ U , ˙ x , 1) , (44) 

ith a positive real number h . Using this leads to 

 h F (U, x + 

˙ x h, t + h ; ˙ U , 0 , 0) 

= A s F (U, x, t) − D h F (U, x, t; 0 , ˙ x , 1) . (45) 

his is a linear equation concerning ˙ U , which can be solved quite 

ast by using the GMRES algorithm. The algorithm is based on the 

rylov-subspace method, which is designed to solve a large linear 

quation. The advantage of this algorithm is that the residual is 

educed monotonically during iterations and a solution of a suffi- 

ient accuracy is obtained with a much less number of iterations 

han the dimension of the unknown quantity ˙ U (t) . 

.2. Algorithm for discrete-time I/O model 

In this paper, the system is assumed to have the form 

 k +1 = P (x k , x k −n a +1 , u k −n k 
, u k +1 −n k −n b 

, p k −n pk 
, u k +1 −n pk −n b 

) , (46)

here n a indicates the maximum number of time shifts of the out- 

uts, n k the delay time till the input effects the output and n b 
he maximum number of the inputs effecting the output. n pk in- 

icates the time shifts of the time dependent parameters of the 

ystem, till they occur at the output of the system and n p is 

he maximum number of the time dependent parameters effect- 

ng the output of the system. In the following, (46) is shortened to 

 k +1 = P (x k , x k −n a , u k −n k 
, u k −n k −n b +1 ) to improve readability, but the

ime dependent parameters of the system are still included in the 

alculations. 

The aim is again to minimize the performance index J over K

rediction steps to get the optimal control input u ∗
k 

for the system 

o be controlled. To solve this problem the principles of static op- 

imization can be used to get the necessary conditions. First, the 

agrange-function related to the equations stated above 

 

′ = J + μT 
k C(x k , u k , p k ) 

+ λT 
k +1 (P (x k , x k −n a , u k −n k 

, u k −n k −n b +1 ) − x k +1 ) (47) 

s introduced. 

By using the necessary conditions, the equations 

∂L ′ 
∂u k 

= 0 = 

∂L (x k , u k , p k ) 

u k 

+ μT 
k 

∂C(x k , u k , p k ) 

∂u k 

+ 

max (k + n k + n b ,K) ∑ 

i = k + n k 
λi +1 

∂P (x i , x i −n a , u i −n k 
, u i −n k −n b +1 ) 

∂u k 

(48a) 

∂L ′ 
∂x k 

= 0 = 

∂L (x k , u k , p k ) 

x k 
+ μT 

k 

∂C(x k , u k , p k ) 

∂x k 

+ 

max (k + n a ,K) ∑ 

i = k −1 

λi +1 

∂(P (x i , x i −n a , u i −n k 
, u i −n k −n b +1 ) − x i +1 ) 

∂x k 

(48b) 

∂L ′ 
∂x k 

| k = K = 0 = μT 
K 

∂C 

∂x k 
| k = K + 

∂ϕ 

∂x k 
| k = K (48c) 

old in an optimal point, where μ ∈ R 

p×K indicates the vector of 

he Lagrange-multipliers for the equality constraints and λ ∈ R 

n ×K 

he vector of the Lagrange-multipliers of the systems equations, 
8 
olds. These equations are similar to those of Pontryagin’s mini- 

um principle, but now, especially (48b) , for each k is linked to 

ome others. That means in general not only two equations are 

inked via the time shifted variables. So it is necessary, to have a 

loser look at them. Let’s start at the terminal equation for λK : 

K+1 = μT 
K 

∂C 

∂x k 
| k = K + 

∂ϕ 

∂x k 
| k = K (49) 

In this equation, all variables can be predicted. The backwards 

alculation should be no problem using (48b) , because it is legal 

o cut off the summation if the index exceeds K, because it is as- 

umed that K is chosen in a way making the system able to reach 

he desired output within. Otherwise, the costs of the penalty state 

re changing λK+1 . Due to this, in step K − 1 the summation only 

asts over two indices and again all variables can be calculated. To 

ake the equations fit to the C/GMRES algorithm, they have to be 

eformulated, 

x k +1 = P (x k , x k −n a , u k −n k 
, u k −n k −n b +1 ) 

λk + k ′ = 

∂L ′ 
∂x k + k ′ 

λk + K = 

∂ϕ 

∂x ∗
k ′ 
| k ′ = k + K + μ∗T 

k ′ 
∂C 

∂x ∗
k ′ 
| k ′ = k + K 

 (U k , x k , k ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂L ′ (x ∗
k 
,u ∗

k 
,λ∗

k +1 
,μ∗

k 
,p ∗

k 
) 

∂u k 
C(x ∗

k 
, u 

∗
k 
, p ∗

k 
) 

. . . 
∂L ′ (x ∗

k + K−1 
,u ∗

k + K−1 
,λ∗

k + K ,μ
∗
k + K−1 

,p ∗
k + K−1 

) 

∂u ∗
k + K−1 

C(x ∗
k + K−1 

, u 

∗
k + K−1 

, p ∗
k + K−1 

) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 0 . (50) 

ased on (50) , the equation F (U k , x k , k ) = 0 can still be solved us-

ng the continuation method, as proposed in [5] for a discrete-time 

tate equation. To this end, it is necessary to introduce the differ- 

nce between two time steps using the sampling time T s 

�x k = 

x k +1 − x k 
T s 

U k = 

U k +1 − U k 

T s 
(51) 

y means of a forward differentiation. This results in 

F (U k , x k , k ) = A s F (U k , x k , k ) = 

= 

∂F (U k , x k , k ) 

∂x k 
�x k + 

∂F (U k , x k , k ) 

∂U k 

�U k 

+ 

F (U k , x k , k + 1) − F (U k , x k , k ) 

T s 
. (52) 

ompared to (44) and (45) this is equal to D h F (U, x, t;W, w, ω) ,

f W = 

∂U k 
∂k 

, w = 

∂x k 
∂k 

and ω = 1 is assumed. Under these assump-

ions, the C/GMRES algorithm can be executed similarly to the 

ontinuous-time case. The necessary modifications are: 

• D h F (U, x + h ̇ x , t + h ; ˙ U , 0 , 0) becomes 
F (U k +�U k T s ,x k +1 , (k +1) T s ) −F (U k ,x k +1 , (k +1) T s ) 

T s 
• A s F (U, x, t) − D h F (U, x, t; 0 , ˙ x , 1) becomes 

A s F (U k , x k , k ) − F (U k ,x k +1 , (k +1) T s ) −F (U k ,x k ,kT s ) 

T s 

It is possible to determine these quantities within each sam- 

ling step, if the prediction for U in the former timestep was ac- 

urate enough. Since the nonlinear model predictive control algo- 

ithm realizes feedback control, it inherently suppresses the influ- 

nce of noises. The overall method works satisfactorily even under 

easurement noises in the real experiment, as shown in Section 6 . 
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Fig. 7. Comparison of the application of the algorithm with artificial trajectory. 
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. Results 

.1. Offline method 

A sensible approach to test the performance of the method 

onsists in comparing it to the standard production implementa- 

ion, which is the result of an enormous experimental optimization 

ork using dedicated tools like AVL CAMEO [1] . Engine control is 

ainly a feed-forward control, and in particular air path control is 

raditionally separated in two steps: first suitable reference values 

re defined, which achieve the overall requirements, like consump- 

ion and emissions, and then a lower level feedback mainly on the 

ctuators is used to enforce them. In dynamic transients, it is crit- 

cally to track the references as precisely as possible. Fig. 7 shows 

he performance of the production version (ECU) and of the sug- 

ested non adaptive algorithm (Discr IO) in time domain. Fig. 8 

hows the distance from the estimated Pareto front. It may sur- 

rise that the distance from the Pareto front is roughly the same. 

ctually, the opposite would be true, behind the performance of 

he ECU there are may working years of optimization work while 

he Discr IO results derive from a few hours tuning. Indeed, if the 

roblem is left unchanged, the optimum will be the same, so no 

mprovement in performance can be expected, the optimum is just 

he same, whatever method is used to approximate it. 

Both figures, however, show also other three cases, meant to 

ssess the impact of the method, of the discretization, and of 

he use of a input/output form instead of a state space one. Our 

NARX model can be linearized at every step and used for a stan- 

ard sequential quadratic programming (SQP). The time plot in 

ig. 7 shows a slower behavior, but the Pareto plot is clearly show- 

ng a substantial drop in performance. The PNARX model can be 

ransformed into a higher dimensional state space form [11] and 

 very fast Euler approximation can be used for control. The re- 

ults are given as Cont SS in both plots. The performance (in terms 

f distance from the Pareto front), is the same as the production 

orm. 

Finally, this very state space form can be discretized in a stan- 

ard way. This leads to the performance of Discr SS. 

Following conclusions seem important: 

• Using a nonlinear control method (C/GMRES) proves better than 

a linearized one. 
9 
• Discrete time approximation leads to a loss of performance, but 

the form state space or input/output does not make a substan- 

tial difference. 

• The work amount form problem to solution goes from hours to 

person years. 

Of course, it is an example, but consistent with our general ex- 

erience, and gives a good reason to suggest this method. 

.2. Nominal control 

A nonlinear model predictive control (NMPC) for tracking refer- 

nce profiles of MAF and MAP (which is a standard approach and 

lso done e.g. in the former works [5,11,28] ) is designed using the 

dentified 2-step model. The previously described C/GMRES is used 

o efficiently solve the receding-horizon optimal control problem. 

he NMPC controls only the inputs u c = [ X EGR , X VGT ] 
� , while the

easured disturbances p = [ n e , m f ] 
� are given by the requirement

f the driver. 

We use a similar scenario as in [28] , given by (almost) constant 

ignals n e = 20 0 0 rpm and m f = 20 mg/cycle shown in Fig. 10 and 

eference trajectories for MAF and MAP as filtered step sequences 

hown in Fig. 9 . The controller is applied to the identified model 

n simulation and in the nominal setting described in this subsec- 

ion the controller has perfect model parameter knowledge. The 

nput to the plant is denoted u = [ u c , p] � (including measured dis-

urbances), the output is denoted y = [ MAF , MAP ] � and the refer- 

nce signals denoted r = [ MAF ref , MAP ref ] 
� . The cost function of the 

ontroller at time step k ′ is defined as 

 MPC = ϕ(�y (k ′ + n PH )) + T s 

k ′ + n PH ∑ 

k = k ′ 
L (�y (k ) , �u (k )) (53) 

ith �y (k ) = y (k ) − r(k ) , �u (k ) = u c (k ) − u c (k − 1) , the terminal

ost function 

(�y ) = �y � S�y, (54) 

nd the running cost function 

 (�y, �u ) = �y � Q�y + �u 

� R �u, (55) 
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Fig. 8. Performance in terms of distance from the Pareto optimal solution. 
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here the weighting matrices of this quadratic cost function have 

een set to 

 = 

[
1 0 

0 1 

]
, R = 

[
0 . 5 0 

0 0 . 5 

]
, S = 

[
0 . 1 0 

0 0 . 1 

]
. (56) 

or evaluating the control performance over the whole scenario of 

 = 40 s the evaluation cost function is defined as 

 = T s 

T/T s ∑ 

k =0 

L (�y (k ) , �u (k )) . (57) 

The following parameters have been used for the C/GMRES al- 

orithm: prediction horizon n PH = 10 , max. iterations of GMRES 

 max = 10 , step size h = 0 . 002 , stabilization parameter ζ = 1 /h , rel-

tive tolerance r tol = 1 × 10 −6 , no pr econditioning, no look-ahead. 

This nominal control, where the model parameters in the pre- 

iction model ˆ θ are the same as the plant model parameters θ ∗, 

eads to the results depicted in Figs. 9 and 10 . As expected, the

ontrolled outputs fit really well to the provided reference. 
10 
.3. Perturbation of the model used in controller 

Now the sensitivity of the control performance with respect 

o a deviation in model parameters (used only in the prediction 

odel of the NMPC) is examined. With this trick, the contrary –

amely the behavior of the controller in case of an arbitrary devi- 

tion in system parameters can be emulated. This is not realized 

irectly, as the plant with optimal parameter set θ ∗ realizes a re- 

listic air path behavior (as visible in Fig. 6 ) and the parameter set 

n the NMPC should always converge to such a realistic parame- 

er set (even if they are disturbed to represent an unrealistic be- 

avior) – which is shown in the following. The plant remains the 

ame (parameters θ ∗), but the prediction model parameters ˆ θ in 

he controller are disturbed 

ˆ = θ ∗(1 + ε�θ ) (58) 

here �θ is a random parameter vector from a uniform distribu- 

ion in [ −1 , 1] and ε is the gain of the disturbance. Variations up

o 5% of the nominal value have been made, i.e. ε ∈ [ −0 . 05 , 0 . 05] .

he resulting loss in control performance is shown by evaluation 
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Fig. 9. Reference signals (blue) and system outputs (red) of the nominal controller applied to the identified model in simulation. 

Fig. 10. Measured disturbances ( n e , m f ) feedforward-applied to the plant and control inputs ( X EGR , X VGT ) resulting from the nominal NMPC control. 

11 



D. Adelberger, L. Giarré, T. Ohtsuka et al. European Journal of Control 64 (2022) 100606 

Fig. 11. Sensitivity analysis of the control performance with respect to a perturbation of the prediction model parameters in the controller, represented by a gain ε. 

Fig. 12. Comparison of performance of online identification with nominal control (best case). 

12 
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Fig. 13. Tracking signals comparison without and with adaptation ( n = 2 ). 
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he cost function J with respect to ε, which is shown in Fig. 11 .

t can be seen that there is a high sensitivity and at the maxi- 

um performance loss (where ε = −0 . 05 ) the cost function value

s J = 7779 , about 6 times higher as in the nominal case. 

.4. Adaptive expansion 

The previously defined NMPC is now combined with the multi- 

tep recursive L S (MS-RL S) algorithm with directional forgetting 

 Algorithm 1 ) in order to get an adaptive, self-tuning NMPC con- 

roller that is able to react to initially wrong model parameters 

r slowly changing system parameters over time. Directional for- 

etting is used in order to cope with the low information of the 

dentification signals typically appearing in a tracking closed-loop 

pplication, as discussed in [29] . A comparison between n = 1 and 

 = 2 for the parameter estimation in the MS-RLS algorithm is 

ade. The control scheme is depicted in Fig. 1 . 

The scenario (reference signals r and disturbance p from 

igs. 9 and 10 ) has been repeated 5 times while applying the self-

uning NMPC continuously for this longer scenario. In this way the 

ost function J can be evaluated 5 times. The result of this simula- 

ion is shown in Fig. 12 , where MS-RLS settings of n = 1 and n = 2

re compared to the nominal case cost (flat line). 

A parameter deviation with ε = −0 . 05 was used as initial pa-

ameters in the C/GMRES prediction model and MS-RLS (for which 

o adaptation leads to a cost function value of J = 7779 ). The fol-

owing settings were used in the MS-RLS algorithm: forgetting fac- 

or λ = 0 . 999 , directional forgetting threshold ε = 1 × 10 −3 [29, Eq. 

28)] , tolerance ( ε in Algorithm 1 of [29] ) of 1 × 10 −6 , maximum 

terations 100. 

Fig. 13 shows exemplary results of the tracking outputs: the 

eference is compared with the case no adaptation ( ̂  θ constant 

ith ε = −0 . 05 ), and the first and fifth repetition of the case with

daptation (MS-RLS with n = 2 and settings described above). It is 
13 
hown that the tracking performs better with adaptation and after 

everal repetitions the performance is close to the nominal case. 

In the presented closed-loop case, however, the parameters es- 

imated by MS-RLS do not yet converge to the true parameters of 

he plant, because the signals n e and m f are in a very narrow range

nd the algorithm with directional forgetting has too little infor- 

ation to estimate the parameters correctly. 

. Conclusions 

Optimality is a common requirement for most industrial sys- 

ems, and optimal control a key element for it. While the theory is 

ell established, its practical application is mostly limited to lin- 

ar system as there is no sufficiently general approach for non- 

inear optimal control. Approximations are always needed, either 

he model needs to be simplified or the control task, most both of 

hem. 

Control design is usually based on models, for nonlinear sys- 

ems as well, and the key suggestion of this paper is to tailor the 

odel to a suitable control system design method. What this pa- 

er shows is that the combination of PNARX models and C/GMRES 

oes provide such an environment for many practical cases, and 

hat this environment can be extended in direction of adaptive 

ontrol. Of course, approximations are still needed, but they hap- 

en in a systematic way which requires little or no intervention by 

he user. 

As every control method, physical boundaries are not moved. 

he modeling phase will come to a limit as soon as stochastic 

spects become important – something very relevant in the ex- 

mples mentioned here. The optimum will be the same indepen- 

ently on the way is reached – the control performance of the op- 

imal tracking of the MAP / MAF in the example is not significantly 

ifferent from the production solution. The difference, however, is 

he price: behind the industrial example we have huge amounts of 
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uning work on an extremely complex control structure, the same 

esults are achieved in few hours with a simple structure in our 

ase. The difference becomes even more important for the large 

umber of applications for which the tuning effort of an engine 

ontrol unit would not be affordable – engines are produced in 

illions – so that the optimal performance would not be reached. 

he key price to be paid is the curse of dimensionality, which in 

ractice means that a completely adaptive version will hardly be 

easible, as no input will be exciting enough. We also need access 

o the plant, and the ability to perform some experiments – most 

edical applications, for instance, would exclude it. Still, the ap- 

roach should bring substantial benefits for most industrial appli- 

ations. 
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