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A B S T R A C T

We propose a new method to compute various impulse response functions (IRF) for a Markov
switching VAR model in terms of neat matrix expressions in closed form. The key is to derive
a suitable closed form representation for Markov switching VAR models using a state-space
representation. By this representation, the IRF analysis can be processed with respect to either
an asymmetric discrete or a symmetric continuous shocks. A simulation study demonstrates
the actual advantages of the proposed matrix methodology. To illustrate the feasibility and the
usefulness of our approach, we present empirical applications to oil and natural gas markets
showing the relevance of accommodating asymmetries in the relationship between their price
shocks and economic activities.

. Introduction

Since the seminal papers by Hamilton (1989, 1990), VAR models subject to Markov switching have been used actively in
conometrics and statistics to model various time series. Stationarity, existence of moments, geometric ergodicity, statistical
nference and asymptotic theory for Markov switching vector autoregressive (MS VAR) models have been studied by several authors
see, e.g., Krolzig, 1997; Yang, 2000; Francq & Zakoïan, 2001; Alvarez et al., 2018; Kasahara & Shimotsu, 2019; Stelzer, 2009).
esults on estimation, consistency, hypothesis testing and model selection of MS VAR models can be found in Zhang and Stine
2001), Breunig et al. (2003), Cavicchioli (2014a, 2014b, 2015, 2021), Fu and Wu (2022), Li and Kwok (2021), Qu and Zhuo (2021).
ethods to derive the spectral density of such models were proposed by Pataracchia (2011), Cavicchioli (2013) and Cheng (2016).
atrix expressions for higher order moments and asymptotic Fisher information matrix of MS VAR models have been provided by
avicchioli (2017a, 2017b), respectively.

For a survey on the literature on regime changes together with empirical applications in a number of areas of macroeconomics
ee, for example, Hamilton (1994, §22). See also Hamilton (2016). A nice investigation whether the US economy responds negatively
o oil price uncertainty using a MS GARCH-in-MeanVAR can be found in Serletis and Xu (2019). These authors find evidence of an
symmetric relationship between economic activity and oil price. Otranto (2016) proposes a MS model which provides oscillations
f the level of the time series within each state. This allows for consideration of extreme jumps in a parsimonious way, without the
doption of a large number of regimes. Pohle et al. (2021) provide a comprehensive overview of the techniques related to coupling
n MS models for modeling multiple observation sequences whose underlying state variables interact. Dufrénot and Keddad (2014)
mploy a time-varying transition probability MS framework to analyze the relationships between the business cycles in East Asia.

Some related interesting papers concern with the classes of MS bilinear models and doubly MS autoregressive models, introduced
y Bibi and Ghezal (2016) and Ghezal (2023b), respectively, in order to model economic series that exhibit structural breaks.
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One advantage of such models is their capability to take into account certain phenomena commonly observed in practice, such as
asymmetric distribution, leptokurtosis and leverage effect. Methods to derive the spectral and bispectral density functions of MS
bilinear models can be found in Ghezal (2023a) and Ghezal and Zemmouri (2023a). Some probabilistic and statistical properties
of MS asymmetric logGARCH processes and periodic Threshold GARCH models have been investigated by Ghezal (2021), Ghezal
and Zemmouri (2023b, 2023d), where conditions for strong consistency and asymptotic normality of the quasi-maximum likelihood
estimators (QMLE) are given. Finally, Ghezal and Zemmouri (2023c) propose a broad class of MS autoregressive stochastic volatility
models to capture the habitual changing behavior of volatility due to economic forces and abrupt abnormal events.

A popular tool for dynamics investigation in applied macroeconomics is based on the Impulse Response Functions (IRF hereafter).
It provides a global picture of what happens in a dynamic system hit by an exogenous shock within a given horizon. See, for
example, Koop et al. (1996). With nonlinear specifications, and particularly in the MS VAR literature, the IRF analysis deals with the
important question to capture state, sign and/or size asymmetries in the economic and financial mechanisms. Lin (1997) proposes IRF
for conditional volatility in GARCH models, and Guerron-Quintana et al. (2017) describe impulse response matching estimators for
DSGE models. Camacho (2005) postulates a MS common stochastic trends model to study both the short-run responses to permanent
shocks and the effects of recessions in the long-run growth. The obtained findings are used to explore the short- and long-run
asymmetric relationships among output, consumption and investment. Functional approximations of IRFs have been provided by
Barnichon and Matthes (2018).

Ehrmann et al. (2003) derive sets of regime-dependent impulse response functions (RD IRF hereafter) in a MS VAR that characterize
the different patterns of the economy in various regimes, and provide insights on the dynamics at stake within the regime in which
the shock occurs. Such functions are used by Qiao et al. (2011) to investigate the dynamic relationships among the stock markets
of three industrialized economies. Other impulse response functions in MS structural VARs have been proposed by Karamé (2010,
2012). More precisely, Karamé (2010) introduces a more general IRF, called exact IRF (EIRF hereafter) that captures the global
response of the system in the wake of an identified shock, whatever the states visited in the wake of the shock. Successively, Karamé
(2015) proposes a generalized IRF (GIRF hereafter) for MS VARs which serves to implement a test for sign and size asymmetries on
aggregate gross job flows. Structural VARs with Markov switching have been used in Lanne et al. (2010) to identify shocks when
the reduced form error covariance matrix varies across states. Such models serve to test restrictions which are just-identifying in a
standard structural VAR analysis.

A MS VAR approach and IRF analysis have been used in several applied papers to study the asymmetric shocks of macrovariables
on the stock market. Here we mention some of them which are related to our empirical applications. Shahrestani and Rafei (2020)
and Gong et al. (2021) analyze the impact relationship between different factors and global oil price fluctuations under different
regimes. The findings based on RD IRFs show that the effects of the oil shocks on the stock market are positive and negative in
various regimes. The impact of oil prices on gas prices has been discussed in Hou and Nguyen (2018), showing that it is relatively
small and regime dependent. Asymmetric evidence of gasoline price responses in France by using a Markov switching approach
can be found in Boroumand et al. (2016). Simo-Kengne et al. (2013), Chowdhury and MacLennan (2014), Matsuki et al. (2015),
and Papadamou and Markopoulos (2018) study the asymmetric effects of traditional monetary policy on the house prices, the bank
interest rates and the inflation rates, employing MS VARs and associated RD IRFs. The results suggest that the effect of traditional
monetary policy is not neutral and the impact varies significantly during boom and bust periods. The transmission mechanism of
monetary policy to macroeconomic variables in some European and American economies has been investigated by Darvas (2013),
Camacho and Perez-Quiros (2014), and Allen and Robinson (2015). Lange (2018) evaluates asymmetries in the systematic responses
of the Canadian economy to movements in the business cycle in the US economy. The findings of these authors lead to believe
that information asymmetry plays an important role in the economy and in monetary transmission mechanism. A comprehensive
picture of market behavior has been given by Oelschläger and Adam (2023) by using hierarchical hidden Markov models. Chevallier
(2011) shows that two-regime MS VAR models provide a sound statistical framework for a comprehensive analysis of the nonlinear
adjustment between industrial production and carbon prices. Liu, et al. (2022) provide evidence that the impacts of economic policy
uncertainty on oil-stock correlations are regime-dependent both at the aggregate and industry levels.

The goals of the present paper can be summarized as follows: (1) A unified framework for various concepts of IRFs and suitable
state space representations of MS VARs; (2) Explicit neat expressions in closed form for the RD IRFs and the EIRFs in terms of the
matrices involved in the state space representation of the model specification. The derived matrix formulas of impulse responses
are completely new, easily tractable, and cannot be found, to our best knowledge, in the literature, filling a gap on the considered
topic. Moreover, they are readily programmable in addition of greatly reducing the computational cost; (3) The RD IRF and EIRF
analysis can be processed with respect to either an asymmetric discrete shock or to a symmetric continuous shock; (4) Useful tools for
practitioners, illustrating them via empirical applications. In particular, we provide new methods to easily evaluate the responses to
shocks in different states of the economy, allowing asymmetric features and differentiated impacts. The proposed derivations of IRFs
based on very simple and tractable matrix formulas are the actual advantages of computing the impulse responses of measurements
to a shock following our approach over using Ehrmann et al. (2003) and Karamé (2010, 2012) directly.

The paper is organized as follows. Section 2 presents the econometric context (the model specification, assumptions, state space
and Markovian representations) concerning a MS VAR approach. Matrix formulas in closed form to easily calculate RD IRF and EIRF
for a MS VAR are derived in Section 3. Empirical applications are proposed in Section 4 to illustrate the usefulness and the actual
advantages of the proposed matrix methodology over the existing methods. Particularly, empirical applications to oil and natural gas
markets show the relevance of accommodating asymmetries in the relationship between their price shocks and economic activities.
Section 5 contains some concluding remarks. Proofs are given in Appendix.
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2. A Markov switching VAR approach

2.1. The model specification

Let y = (y𝑡) be a 𝐾-dimensional random vector with values in R𝐾 which satisfies a 𝑀-state Markov switching VAR(𝑝) model, in
hort MS(𝑀) VAR(𝑝):

A𝑠𝑡 (𝐿) 𝐲𝑡 = 𝝂𝑠𝑡 + u𝑡 (1)

here 𝝂𝑠𝑡 ∈ R𝐾 , A𝑠𝑡 (𝐿) = I𝐾 −
∑𝑝

𝑖=1 A𝑖,𝑠𝑡 𝐿
𝑖 is a (𝐾 × 𝐾) matrix polynomial in the lag operator 𝐿, u𝑡 = 𝜮𝑠𝑡 𝜼𝑡, 𝜮𝑠𝑡 non-singular

𝐾 × 𝐾) matrix, and 𝜼𝑡 ∼ IID(𝟎, I𝐾 ). Here I𝐾 denotes the (𝐾 × 𝐾) identity matrix, as usual. The model parameters 𝝂𝑠𝑡 , A𝑖,𝑠𝑡 , for
𝑖 = 1,… , 𝑝, and 𝜮𝑠𝑡 are regime-dependent, that is, they are driven by a Markov chain (𝑠𝑡) with values in the set 𝛯 = {1,… ,𝑀}.

ssumption 1. The process (𝑠𝑡) follows an 𝑀-state irreducible and aperiodic Markov chain with transition probability matrix
= (𝑝𝑖𝑗 ), where 𝑝𝑖𝑗 = 𝑃𝑟(𝑠𝑡 = 𝑗|𝑠𝑡−1 = 𝑖), for all 𝑖, 𝑗 = 1,… ,𝑀 , and unconditional (or steady state) probabilities 𝜋𝑖 = 𝑃𝑟(𝑠𝑡 = 𝑖), for

all 𝑖 = 1,… ,𝑀 .

Since the chain (𝑠𝑡) is finite, assuming it irreducible and aperiodic is enough for it to be ergodic (i.e., regular). Ergodicity implies
the existence of a stationary vector of probabilities 𝝅 = (𝜋1,… , 𝜋𝑀 )′ satisfying 𝝅 = P′ 𝝅 and i′𝑀 𝝅 = 1, where i𝑀 denotes the usual
(𝑀 × 1) vector of ones. Then the vector 𝝅 is defined as the eigenvector of P′ associated with the unit eigenvalue. Irreducibility
mplies that 𝜋𝑖 > 0, for 𝑖 ∈ 𝛯, meaning that all unobservable states are possible. It is also assumed that 𝜋1 ≥ 𝜋2 ≥ ⋯ ≥ 𝜋𝑀 for
dentifiability of regimes, and 𝝂𝑖 ≠ 𝝂𝑗 , for 𝑖, 𝑗 ∈ 𝛯, 𝑖 ≠ 𝑗. In order to clarify the definition of aperiodic Markov chain, we need some
reliminaries. The period 𝑑𝑖 of a state 𝑖 ∈ 𝛯 is given by 𝑑𝑖 ∶= gcd {𝑚 ≥ 1 ∶ 𝑝(𝑚)𝑖𝑖 > 0}, where gcd denotes the greatest common divisor

and 𝑝(𝑚)𝑖𝑖 = 𝑃𝑟(𝑠𝑡+𝑚 = 𝑖 | 𝑠𝑡 = 𝑖). Set 𝑑𝑖 = ∞ if 𝑝(𝑚)𝑖𝑖 = 0 for all 𝑚 ≥ 1. If 𝑑𝑖 = 1, then the state 𝑖 ∈ 𝛯 is called aperiodic. A Markov chain
is said to be aperiodic if all its states are aperiodic.

Assumption 2. The pair (𝑠𝑡, 𝜼𝑡) is a strictly stationary process defined in some probability space, and the regime variable 𝑠𝑡 is
independent of 𝜼𝑡 for every 𝑡.

2.2. A state space representation

An useful representation for (𝑠𝑡) is obtained by letting 𝝃𝑡 denote a random (𝑀 × 1) vector whose 𝑖th element is equal to unity if
𝑠𝑡 = 𝑖 and zero otherwise. Then the Markov chain follows a VAR(1) process

𝝃𝑡 = P′ 𝝃𝑡−1 + v𝑡 (2)

where v𝑡 = 𝝃𝑡 − 𝐸[𝝃𝑡|𝝃𝑡−1] is a zero mean martingale difference sequence.
By direct computations, we have the following standard properties:

𝐸[𝝃𝑡] = 𝝅 𝐸[𝝃𝑡 𝝃′𝑡] = D
𝐸[𝝃𝑡 𝝃′𝑡+ℎ] = DP

ℎ v𝑡 ∼ IID(𝟎,𝜞 v)

where D = diag(𝜋1 …𝜋𝑀 ), 𝜞 v = D − P′DP, and ℎ > 0.
Define 𝜦 = (𝝂1 … 𝝂𝑀 ) ∈ R𝐾×𝑀 , A𝑖 = (A𝑖,1 … A𝑖,𝑀 ) ∈ R𝐾×(𝐾𝑀) for every 𝑖 = 1,… , 𝑝, and 𝜮 = (𝜮1 … 𝜮𝑀 ) ∈ R𝐾×(𝐾𝑀).
Then the process y = (y𝑡) in (1) admits the following state-space representation

{

y𝑡 = 𝜦𝝃𝑡 +
∑𝑝

𝑖=1 A𝑖 (𝝃𝑡 ⊗ I𝐾 )y𝑡−𝑖 + u𝑡
𝝃𝑡 = P′ 𝝃𝑡−1 + v𝑡

(3)

where

u𝑡 = 𝜮𝑠𝑡 𝜼𝑡 = 𝜮(𝝃𝑡 ⊗ I𝐾 ) 𝜼𝑡.

In Eq. (3), u𝑡 is the symmetric continuous shock of the time-series process, while v𝑡 is the asymmetric discrete shock of the latent
state variable 𝝃𝑡 ∈ R𝑀 .

2.3. The Markovian representation

Using (3), we get a Markovian vectorial form of the initial model (through the section, set 𝑛 = 𝑝𝐾 +𝑀):

z𝑡 = 𝜱𝑡 z𝑡−1 + e𝑡 (4)

where
′ ′ ′ ′ ′ 𝑛
3

z𝑡 = (y𝑡 y𝑡−1 ⋯ y𝑡−𝑝+1 𝝃𝑡+1) ∈ R
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e𝑡 = (u′𝑡 𝟎′ ⋯ 𝟎′ v′𝑡+1)
′ ∈ R𝑛

and

𝜱𝑡 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

A1,𝑠𝑡 A2,𝑠𝑡 ⋯ A𝑝−1,𝑠𝑡 A𝑝,𝑠𝑡 𝜦
I𝐾 𝟎 ⋯ 𝟎 𝟎 𝟎
𝟎 I𝐾 ⋯ 𝟎 𝟎 𝟎
⋮ ⋮ ⋮ ⋮ ⋮
𝟎 𝟎 ⋯ I𝐾 𝟎 𝟎
𝟎 𝟎 ⋯ 𝟎 𝟎 P′

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∈ R𝑛×𝑛

here A𝑖,𝑠𝑡 = A𝑖(𝝃𝑡 ⊗ I𝐾 ) for 𝑖 = 1,… , 𝑝. In this vectorial representation, it is implicitly assumed that 𝑝 ≥ 1 without loss of generality
ecause the matrix coefficient A𝑝,𝑠𝑡 can be equal to 𝟎 in A𝑠𝑡 (𝐿). In the sequel, let 𝜱𝑖 denote the matrix obtained by replacing 𝑠𝑡 by

𝑖 in 𝜱𝑡.

3. Impulse response functions

This section offers a derivation of impulse responses (IRs) of measurements to a shock in the MS VAR model based on its state-
space representation. There are two types of IRs to be computed in such a model. The first is state-specific, that is, conditional on
the states (presuming that the regime will not change over the period for which the IRs are computed). In this case, the formulas
for the IRs are the same as in the standard vector autoregressions. The other type is one takes into account the possibility of future
regime changes. The potential difficulty in computing these IRs is that they should account for the forecasted state probabilities that
are computed using the transition probability matrix. The given Markovian representation of the initial model is used to derive the
matrix formulas for the IRFs.

In (4) there are two independent (under Assumption 2) shocks: a symmetric continuous shock u𝑡 and an asymmetric discrete
hock v𝑡. See Appendix.

The results of Subsection (3.1) were first proved in Cavicchioli (2023), but we report them to make the reading self-contained
nd because the proposed matrix formulas for the RD IRF’s will be used in the empirical applications treated in the present paper.

New results on the Exact IRF’s are derived in Subsection (3.2), where the proposed matrix formulas are very neat and easy to
apply. They cannot be found in the existing theoretical literature and constitute a novel and different method with respect to Karamé
(2012, 2015), giving a substantial academic contribution on the topic.

3.1. Regime dependent impulse response analysis

Given (4) we derive the closed-form matrix expressions of the Regime Dependent Impulse Response Functions (RD IRFs) with
respect to these shocks. Below we always assume that 𝑝 ≥ ℎ since otherwise zeros of A𝑝,𝑠𝑡 can be filled in.

Theorem 1. Let (y𝑡) be the process driven by the MS(𝑀) VAR(𝑝) model in (1). Under Assumptions 1–2, the RD IRFs for (y𝑡) with respect
to the symmetric continuous shock u𝑡 or 𝜼𝑡 are given by

𝜕 𝐸𝑡[y𝑡+ℎ]
𝜕 u′𝑡

|𝑠𝑡=𝑖0 ,…,𝑠𝑡+ℎ=𝑖ℎ = L𝜱𝑖ℎ ⋯𝜱𝑖1 L
′

nd
𝜕 𝐸𝑡[y𝑡+ℎ]

𝜕 𝜼′𝑡
|𝑠𝑡=𝑖0 ,…,𝑠𝑡+ℎ=𝑖ℎ = L𝜱𝑖ℎ ⋯𝜱𝑖1 L

′ 𝜮𝑖0

or all ℎ > 0, where 𝐸𝑡[y𝑡+ℎ] ∶= 𝐸[y𝑡+ℎ|Y𝑡], being Y𝑡 the information set up to time 𝑡, that is, Y𝑡 = {y𝑡, y𝑡−1,…}, and L = (I𝐾 𝟎 ⋯ 𝟎) ∈
𝐾×𝑛. If ℎ = 0, the first resp. second matrix function equals I𝐾 resp. 𝜮𝑖0 . The same formulas also work replacing 𝐸𝑡[y𝑡+ℎ] by y𝑡+ℎ.

Corollary 1. Under the assumptions of Theorem 1, it follows that
𝜕 𝐸𝑡[y𝑡+ℎ]

𝜕 u′𝑡
|𝑠𝑡=⋯=𝑠𝑡+ℎ=𝑖 = L𝜱ℎ

𝑖 L
′

nd
𝜕 𝐸𝑡[y𝑡+ℎ]

𝜕 𝜼′𝑡
|𝑠𝑡=⋯=𝑠𝑡+ℎ=𝑖 = L𝜱ℎ

𝑖 L
′ 𝜮𝑖 ∶= 𝜣𝑖,ℎ

where

𝜣𝑖,0 = 𝜮𝑖 𝜣𝑖,1 = A1,𝑖 𝜣𝑖,0 = A1,𝑖 𝜮𝑖

and in general

𝜣𝑖,ℎ = A1,𝑖 𝜣𝑖,ℎ−1 + A2,𝑖 𝜣𝑖,ℎ−2 + … + A𝑝,𝑖 𝜣𝑖,ℎ−𝑝
4

for every 𝑖 = 1,… ,𝑀 and ℎ = 1, 2,… , with 𝜣𝑖,ℎ = 𝟎 if ℎ < 0.
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Theorem 2. Let (y𝑡) be the process driven by the MS(𝑀) VAR(𝑝) model in (1). Under Assumptions 1–2, the RD IRF for (y𝑡) with respect
o the discrete asymmetric shock v𝑡 is given by

𝜕 y𝑡+ℎ
𝜕 v′𝑡+1

|𝑠𝑡=𝑖0 ,…,𝑠𝑡+ℎ=𝑖ℎ = L𝜱𝑖ℎ ⋯𝜱𝑖1 R
′

here L is as in Theorem 1, and R = (𝟎 ⋯ 𝟎 I𝑀 ) ∈ R𝑀×𝑛.

orollary 2. Under the assumptions of Theorem 1, we have
𝜕 y𝑡+ℎ
𝜕 v′𝑡+1

|𝑠𝑡=⋯=𝑠𝑡+ℎ=𝑖 = L𝜱ℎ
𝑖 R

′ ∶= 𝜳 𝑖,ℎ

where

𝜳 𝑖,ℎ =
ℎ−1
∑

𝑗=1
𝜣𝑖,𝑗 𝜮−1

𝑖 𝜦 (P′)ℎ−𝑗−1 + 𝜦 (P′)ℎ−1

for 𝑖 = 1,… ,𝑀 and ℎ = 2,…, 𝜳 𝑖,1 = 𝜦, and 𝜳 𝑖,ℎ = 𝟎 if ℎ ≤ 0. Here for a (𝑀 ×𝑀) matrix X, set X𝑘 = I𝑀 if 𝑘 = 0.

3.2. Exact impulse response analysis

To get matrix expressions in closed form for the Exact Impulse Response Functions (EIRFs) of the process with respect to the
shocks u𝑡 and v𝑡, we need the following (𝑀𝑛) × (𝑀𝑛) matrix, with 𝑛 = 𝑝𝐾 +𝑀 :

𝜱 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑝11 𝜱1 𝑝21 𝜱1 ⋯ 𝑝𝑀1 𝜱1
𝑝12 𝜱2 𝑝22 𝜱2 ⋯ 𝑝𝑀2 𝜱2

⋮ ⋮ ⋮
𝑝1𝑀 𝜱𝑀 𝑝2𝑀 𝜱𝑀 ⋯ 𝑝𝑀𝑀 𝜱𝑀

⎞

⎟

⎟

⎟

⎟

⎠

where 𝜱𝑖 is obtained from the above-defined matrix 𝜱𝑡 replacing 𝑠𝑡 by 𝑖, for 𝑖 = 1,… ,𝑀 .

heorem 3. Let (y𝑡) be the process driven by the initial MS(𝑀) VAR(𝑝) model. Under Assumptions 1–2, the EIRFs for (y𝑡) with respect to
he symmetric continuous shock u𝑡 or 𝜼𝑡 are given by

𝜕 𝐸𝑡[y𝑡+ℎ]
𝜕 u′𝑡

= (L⊗ i′𝑀 )𝜱ℎ (L′ ⊗ 𝝅)

nd
𝜕 𝐸𝑡[y𝑡+ℎ]

𝜕 𝜼′𝑡
= (L⊗ i′𝑀 )𝜱ℎ (L′ ⊗ D)𝜮′

or all ℎ > 0, where i𝑀 is the (𝑀×1) vector of ones, 𝝅 = (𝜋1,… , 𝜋𝑀 )′ is the stationary vector of the Markov chain, and L is as in Theorem 1.

heorem 4. Let (y𝑡) be the process driven by the initial MS(𝑀) VAR(𝑝) model. Under Assumptions 1–2, the EIRFs for (y𝑡) with respect to
he asymmetric discrete shock v𝑡 is given by

𝜕 𝐸𝑡[y𝑡+ℎ]
𝜕 v′𝑡+1

= (L⊗ i′𝑀 )𝜱ℎ (R′ ⊗ i𝑀 )

for all ℎ > 0, where i𝑀 is the (𝑀 × 1) vector of ones, 𝝅 = (𝜋1,… , 𝜋𝑀 )′ is the stationary vector of the Markov chain, and L and R are as
in Theorems 1 and 2.

For practical inference purposes, the matrices involved in the statements of the above theorems are replaced by their maximum
likelihood (ML) estimates which can be obtained by using the ML estimates of the model parameters. See, for example, Cavicchioli
(2014b, 2021). This gives a convenient plug-in approach to approximate the regime-dependent impulse response functions
theoretically derived in this paper. The obtained matrix formulas display exponentially increasing complexity as regards the
prediction horizon. This agrees with the usual findings in the existing literature.

4. Applications

4.1. Oil price shocks from Shahrestani and Rafei (2020)

We first depict the regime dependent and the exact impulse response functions for the two-state bivariate MS VAR model
estimated in Table 6, p.6, from Shahrestani and Rafei (2020), which we report in Table 1 to make the reading self-contained.
Such authors study the impulse responses of the Tehran stock market to world oil price shocks. The used data consists of monthly
prices of the world price of oil (West Texas Intermediate, WTI) and Tehran Stock Exchange Index (Tehran Price Index, TPI) covering
5

the period from 2002/04/01 to 2017/02/31. Particularly, these authors consider a bivariate MS(2) VAR(1) model as in (1), namely



The Journal of Economic Asymmetries 29 (2024) e00349M. Cavicchioli
Table 1
Parameter estimations (approximated up to the fourth decimal number) for the bivariate MS(2) VAR(1) model
from Shahrestani and Rafei (2020, Table 6, p.6) and sufficient conditions for the second-order stationarity (bottom
line).

𝜈𝑠𝑡 𝐴𝑠𝑡 Ω𝑠𝑡 𝑃

Regime 1
(

0.0242
−0.0157

) (

0.4040 0.1905
0.0773 0.5304

) (

0.0028 0
0 0.0065

)

(

0.8940 0.1060
0.0939 0.9061

)

Regime 2
(

0.0008
0.0229

) (

0.3201 −0.0758
0.5270 0.0671

) (

0.0008 0
0 0.0039

)

Stationarity Regime 1:𝜌(A1) = 0.604 Regime 2:𝜌(A2) = 0.248 Global:𝜌(A) = 0.548

Fig. 1. Regime-dependent impulse response functions for the bivariate MS(2) VAR(1) model in Table 1: continuous shock in regime 1.

y𝑡 = 𝝂𝑠𝑡 + A𝑠𝑡y𝑡−1 + u𝑡, u𝑡 = 𝜮𝑠𝑡𝜼𝑡, 𝜼𝑡 ∼ IID(𝟎, I2) and 𝑠𝑡 ∈ {1, 2}. To verify the global stationarity we apply the sufficient condition
given in Theorem 2 of Francq and Zakoïan (2001), that is, 𝜌(A) < 1, where the matrix A is defined by

A =
(

𝑝11 A1 (1 − 𝑝22)A1
(1 − 𝑝11)A2 𝑝22 A2

)

and 𝜌( ⋅ ) denotes the spectral radius. As shown in the last line of Table 1, the two regimes are second-order stationary and the model
is globally stationary as well.

Using the proposed matrix expressions for the IRFs, the findings in Shahrestani and Rafei (2020) are confirmed with respect to
the regime-dependent continuous shocks in both regimes (see Figs. 1 and 2). Particularly, with respect to the effect of oil price on
stock market, we see that in regime 1 the effect is positive and declines from the second month; in regime 2 the immediate effect
is opposite and becomes stable from the fourth month. We complete this example including the impulse responses with respect to
the discrete shocks (Fig. 3). Moreover, we report the exact impulse response functions that show the global response of the system
whatever the states visited by the shock (see Fig. 4). Here we note that shock 1 only affects the first variable, which is reasonable
given that a shock in Tehran market has no impact on the world oil price. On the contrary, a drop in the world oil price has a global
effect, which is positive for the considered stock market.

4.2. US gas market

Motivated by the last relevant changes in gas prices, we model the US natural gas market using a two-state MS VAR(1) to
allow for possible recurrent structural shifts and capture asymmetric responses to shocks. We focus on a trivariate system including
gas production, a variable describing demand for natural gas and its price. Concerning the production side, we use monthly gas
withdrawals from the US Department of Energy (EIA), which is seasonally adjusted and transformed using the first difference of
the logs. With regards to the demand side, we proxy the US economic activity with the monthly US industrial production index,
6
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Fig. 2. Regime-dependent impulse response functions for the bivariate MS(2) VAR(1) model in Table 1: continuous shock in regime 2.

Fig. 3. Regime-dependent impulse response functions for the bivariate MS(2) VAR(1) model in Table 1: discrete shock in regime 1 (left plot) and discrete shock
in regime 2 (right plot) .

seasonally adjusted and taken from FRED database (the same transformation applies). Finally, we consider the real gas price obtained
as the ratio between the nominal price series (wellhead price) taken from EIA and the US CPI from FRED. This time series is also
transformed by using the first difference of the logs. The time span runs from January 1980 to September 2022 and the considered
series are reported in Fig. 5.

Model selection of the regime number and VAR lag order is performed by using the methods proposed in Cavicchioli (2014a,
2015) based on the associated stable VARMA representation of the considered model. Then the system is modeled as a trivariate
MS(2) VAR(1), and it is estimated by ML (resp. OLS) approach as described in Cavicchioli (2014b, 2021). The two obtained regimes
can also be supported by some empirical arguments. Since including the periods of crisis change the results significantly, it follows
that natural gas price uncertainty may give rise to asymmetric effects on output with respect to expansions and contractions in real
economic activity. Therefore, two regimes should be able to describe the dynamic interactions between the real price of natural gas
and the real output growth rate across contractionary and expansionary phases of the business cycle.

ML point estimates and relative standard errors in parentheses are given in Table 2. The second regime shows periods of lower
gas production and higher price together with economic contraction and high volatility. Whereas the first regime is much persistent
than the second one, and it is related to normal times. Moreover, expected durations of the first and second regimes are 41 months
(about 3 years) and 2.5 months, respectively, so that the economy visits most in regime 1. To check local and global stationarity of
7
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Fig. 4. Exact impulse response functions for the bivariate MS(2) VAR(1) model in Table 1.

Fig. 5. US gas production, economic activity and gas price from January 1980 to September 2022; details are described in Section 4.2.

the system, we compute the spectral radius of the matrices 𝜱1, 𝜱2 and 𝜱, which correspond to the first regime, the second regime
and the global level, respectively. The obtained values are 𝜌(𝜱1) = 0.9995, 𝜌(𝜱2) = 0.5887 and 𝜌(𝜱) = 0.9275. In particular, it is
satisfied the sufficient condition for the second-order stationarity of the process. See Theorem 2 from Francq and Zakoïan (2001).
The smoothed probabilities of regime 2 are depicted in Fig. 6. They generally correspond to turbulent periods with higher gas prices
and contractions in the business cycle. Furthermore, to understand the dynamic responses of the variables in the system, we depict
exact impulse response functions, together with one-standard error bands, in Fig. 7. The relevant facts are the following: first, gas
demand and price shocks have marginal impact on the gas supply; second, price shocks shrink the gas demand; third, the gas price
8
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Table 2
Parameter ML estimates for the trivariate MS(2) VAR(1) in the log difference of US gas production, economic activity and gas
price from January 1980 to September 2022. Standard errors are in parentheses.

Parameter Regime 1 Regime 2

𝝂𝑠𝑡

⎛

⎜

⎜

⎝

0.349 (.069)
0.116 (.021)
1.616 (.487)

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

−0.247 (.082)
0.087 (.013)
2.404 (.741)

⎞

⎟

⎟

⎠

A𝑠𝑡

⎛

⎜

⎜

⎝

0.417(.088) −0.153(.056) 0.015(.003)
0.037(.014) 0.504(.024) −0.017(.013)
1.271(.168) −0.939(.341) 0.924(.415)

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

0.586(.262) −0.533(.098) −0.012(.052)
0.014(.077) −0.209(.054) −0.007(.002)
−0.190(.008) −0.266(.0.086) 0.468(.153)

⎞

⎟

⎟

⎠

𝜮𝑠𝑡

⎛

⎜

⎜

⎝

4.651(.887) 0.363(.074) 0.037(.006)
− 0.793(.043) −0.896(.153)
− − 6.999(.954)

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

6.494(1.035) 0.483(.781) 1.010(.633)
− 0.932(.549) 0.103(.099)
− − 8.854(1.486)

⎞

⎟

⎟

⎠

P
(

0.976 (.011) 0.398 (.015)
0.024 (.004) 0.602 (.013)

)

Fig. 6. Smoothed probabilities of regime 2 for the empirical application described in Section 4.2.

is mainly guided by demand shocks rather than production side. The investigation of the global responses (taking into consideration
asymmetric effects of the economic activity) guides us to a comprehensive understanding of the price and demand dynamics.

Our findings agree with those obtained in Rubaszek et al. (2021) and Wiggins and Etienne (2017). The first paper investigates
the role of structural shocks for the dynamics of the US natural gas market within the Bayesian structural VAR framework. There,
the short-term price elasticity of natural gas supply and demand can be estimated. The results indicate that the former is slow,
whereas the latter is higher than the average estimate in the literature. Moreover, Wiggins and Etienne (2017) investigate supply
and demand shocks in the US natural gas market, focusing on how the effects of these shocks have changed over time. Such authors
find that supply and demand shocks are the main drivers of natural gas price fluctuations during 1993–2015, with speculative
activities playing a minor role during a portion of the sample period.

5. Conclusion

In this paper we investigate various concepts of impulse response functions (IRFs) in Markov switching vector autoregressions
(MS VAR). Representing the considered model in a VAR(1) form and casting it into a state-space representation is useful to derive
impulse responses of measurements to a shock in the system. Then we derive neat matrix formulas in closed form to compute the
regime-dependent and the exact IRFs in MS VARs. Using such formulas, the impulse response function analysis can be directly
processed with respect to symmetric continuous shocks and asymmetric discrete shocks. Empirical applications are proposed to
illustrate the usefulness and the actual advantages of the proposed matrix methodology over the existing methods. In particular, we
apply our matrix methods to identify the link between the pass-through of world oil price to Tehran stock exchange using a two-state
MS VAR(1) model. We confirm the results in Shahrestani and Rafei (2020) and deepen the understanding of such mechanisms based
on a different impulse response approach. A further investigation examines whether regime switching exists in the US gas market
9
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Fig. 7. Exact impulse response functions along with one-standard error bands for the empirical application described in Section 4.2.

and analyzes reactions to shocks across various regimes. Our findings show the importance of regime switching modeling to evaluate
asymmetric features of responses.
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Appendix

I. The shock u𝑡 is independent of v𝜏 for all 𝑡 and 𝜏. In fact, we have

𝐸[u𝑡 v′𝜏 ] = 𝐸[𝜮(𝝃𝑡 ⊗ I𝐾 ) 𝜼𝑡 (𝝃𝜏 − P′ 𝝃𝜏−1)′]
= 𝜮

{

𝐸[𝝃𝑡 𝝃′𝜏 ]⊗ I𝐾 − 𝐸[𝝃𝑡 𝝃′𝜏−1 P]⊗ I𝐾
}

𝐸[𝜼𝑡]⊗ I𝑀 = 𝟎

as 𝐸[𝜼𝑡] = 𝟎 and 𝜼𝑡 is independent of 𝝃𝜏 for all 𝑡 and 𝜏 by Assumption 2.
(II) Proof of Theorem 1. The law of iterated expectation implies that

𝐸𝑡[z𝑡+ℎ]|𝑠𝑡=𝑖0 ,…,𝑠𝑡+ℎ=𝑖ℎ = 𝐸[𝐸[z𝑡+ℎ|Y𝑡, 𝑠𝑡+ℎ = 𝑖ℎ]|𝑠𝑡 = 𝑖0,… , 𝑠𝑡+ℎ−1 = 𝑖ℎ−1]

= 𝜱𝑖ℎ 𝐸[𝐸[z𝑡+ℎ−1|Y𝑡, 𝑠𝑡+ℎ−1 = 𝑖ℎ−1)|𝑠𝑡 = 𝑖0,… , 𝑠𝑡+ℎ−2 = 𝑖ℎ−2]

= 𝜱𝑖ℎ 𝜱𝑖ℎ−1 … 𝜱𝑖1 𝐸𝑡[z𝑡]|𝑠𝑡=𝑖0
where

𝐸𝑡[z𝑡] = (y′𝑡 y′𝑡−1 ⋯ y′𝑡−𝑝+1 𝝃′𝑡+1|𝑡)
′

and 𝝃𝑡+1|𝑡 = P′ 𝝃𝑡|𝑡. Here 𝝃𝑡|𝑡 = 𝐸[𝝃𝑡|Y𝑡] denotes the conditional mean of 𝝃𝑡 given Y𝑡. The components of 𝝃𝑡|𝑡 are called filtered regime
probabilities. A fast iterative algorithm to compute 𝝃𝑡|𝑡 can be found in Hamilton (1994), §22, or Krolzig (1997), §5, given the initial
value 𝝃0|0 = 𝝅.

Since y𝑡+ℎ is the first component of z𝑡+ℎ, we have

𝐸𝑡[y𝑡+ℎ]|𝑠𝑡=𝑖0 ,…,𝑠𝑡+ℎ=𝑖ℎ = L𝜱𝑖ℎ 𝜱𝑖ℎ−1 … 𝜱𝑖1 𝐸𝑡[z𝑡]|𝑠𝑡=𝑖0 .

Taking the first derivative of this (𝐾 × 1) vector with respect to u𝑡 gives the (𝐾 ×𝐾) matrix function
𝜕 𝐸𝑡[y𝑡+ℎ]

𝜕 u′𝑡
|𝑠𝑡=𝑖0 ,…,𝑠𝑡+ℎ=𝑖ℎ = L𝜱𝑖ℎ 𝜱𝑖ℎ−1 … 𝜱𝑖1

𝜕 𝐸𝑡[z𝑡]
𝜕 u′𝑡

|𝑠𝑡=𝑖0

= L𝜱𝑖ℎ 𝜱𝑖ℎ−1 … 𝜱𝑖1 L
′.

his proves the first formula in Theorem 1. The second one easily follows as 𝜕 u𝑡
𝜕 𝜼′𝑡

|𝑠𝑡=𝑖0 = 𝜮𝑖0 .
(III) Proof of Theorem 2. Taking the first derivative of the (𝐾 × 1) vector y𝑡+ℎ with respect to v𝑡+1 given the regimes yields the

𝐾 ×𝑀) matrix function
𝜕 y𝑡+ℎ
𝜕 v′𝑡+1

|𝑠𝑡=𝑖0 ,…,𝑠𝑡+ℎ=𝑖ℎ = L𝜱𝑖ℎ 𝜱𝑖ℎ−1 … 𝜱𝑖1
𝜕 z𝑡
𝜕 v′𝑡+1

|𝑠𝑡=𝑖0

= L𝜱𝑖ℎ 𝜱𝑖ℎ−1 … 𝜱𝑖1
𝜕 e𝑡
𝜕 v′𝑡+1

|𝑠𝑡=𝑖0

= L𝜱𝑖ℎ 𝜱𝑖ℎ−1 … 𝜱𝑖1 R
′.

he formulas in the statement of Corollary 2 follow from standard matrix calculus.
(IV) Proof of Theorem 3 . From (4) with ℎ > 0, we get

𝐸𝑡[z𝑡+ℎ] = 𝐸[z𝑡+ℎ|Y𝑡] =
𝑀
∑

𝑖ℎ=1
𝐸𝑡[z𝑡+ℎ, 𝑠𝑡+ℎ = 𝑖ℎ] =

𝑀
∑

𝑖ℎ=1
𝐸𝑡[z𝑡+ℎ| 𝑠𝑡+ℎ = 𝑖ℎ]𝜋𝑖ℎ

=
𝑀
∑

𝑖ℎ=1
𝜱𝑖ℎ 𝐸𝑡[z𝑡+ℎ−1|𝑠𝑡+ℎ = 𝑖ℎ]𝜋𝑖ℎ

=
𝑀
∑

𝑖ℎ=1

𝑀
∑

𝑖ℎ−1=1
𝜱𝑖ℎ 𝐸𝑡[z𝑡+ℎ−1, 𝑠𝑡+ℎ−1 = 𝑖ℎ−1|𝑠𝑡+ℎ = 𝑖ℎ]𝜋𝑖ℎ

=
𝑀
∑

𝑖ℎ=1

𝑀
∑

𝑖ℎ−1=1
𝜱𝑖ℎ 𝐸𝑡[z𝑡+ℎ−1|𝑠𝑡+ℎ−1 = 𝑖ℎ−1]𝑃𝑟(𝑠𝑡+ℎ = 𝑖ℎ|𝑠𝑡+ℎ−1 = 𝑖ℎ−1)𝜋𝑖ℎ

=
𝑀
∑

𝑖ℎ=1

𝑀
∑

𝑖ℎ−1=1
𝜱𝑖ℎ 𝜱𝑖ℎ−1 𝐸𝑡[z𝑡+ℎ−2|𝑠𝑡+ℎ−1 = 𝑖ℎ−1] 𝑝𝑖ℎ−1 ,𝑖ℎ 𝜋𝑖ℎ

=
𝑀
∑

𝑖0=1

𝑀
∑

𝑖1=1
…

𝑀
∑

𝑖ℎ−1=1

𝑀
∑

𝑖ℎ=1
𝜱𝑖1 … 𝜱𝑖ℎ−1 𝜱𝑖ℎ 𝑝𝑖0 ,𝑖1 … 𝑝𝑖ℎ−2 ,𝑖ℎ−1 𝑝𝑖ℎ−1 ,𝑖ℎ

× 𝜋𝑖ℎ 𝐸𝑡[z𝑡|𝑠𝑡 = 𝑖0]

hence

𝜕 𝐸𝑡[z𝑡+ℎ]
𝜕 u′

=
𝑀
∑

𝑀
∑

…
𝑀
∑

𝑀
∑

𝜱𝑖1 … 𝜱𝑖ℎ−1 𝜱𝑖ℎ 𝑝𝑖0 ,𝑖1 … 𝑝𝑖ℎ−2 ,𝑖ℎ−1 𝑝𝑖ℎ−1 ,𝑖ℎ 𝜋𝑖ℎ L
′

11

𝑡 𝑖0=1 𝑖1=1 𝑖ℎ−1=1 𝑖ℎ=1



The Journal of Economic Asymmetries 29 (2024) e00349M. Cavicchioli

b

I
c
T

a

a

b

I

R

A
A

B
B
B

B
C
C

C
C
C
C

C
C

as
𝜕 𝐸𝑡[z𝑡|𝑠𝑡 = 𝑖0]

𝜕 u′𝑡
= L′,

eing L = (I𝐾 𝟎 ⋯ 𝟎) ∈ R𝐾×𝑛. This implies

𝜕 𝐸𝑡[y𝑡+ℎ]
𝜕 u′𝑡

= L
𝑀
∑

𝑖0=1

𝑀
∑

𝑖1=1
…

𝑀
∑

𝑖ℎ−1=1

𝑀
∑

𝑖ℎ=1
𝜱𝑖1 … 𝜱𝑖ℎ−1 𝜱𝑖ℎ

× 𝑝𝑖0 ,𝑖1 … 𝑝𝑖ℎ−2 ,𝑖ℎ−1 𝑝𝑖ℎ−1 ,𝑖ℎ 𝜋𝑖ℎ L
′.

n matrix form the first formula in Theorem 3 holds. In fact, we see that a typical element of the power matrix 𝜱ℎ is a linear
ombination of products 𝜱𝑖1 … 𝜱𝑖ℎ−1 𝜱𝑖ℎ with coefficients 𝑝𝑖0 ,𝑖1 … 𝑝𝑖ℎ−2 ,𝑖ℎ−1 𝑝𝑖ℎ−1 ,𝑖ℎ . Finally, the second formula in the statement of
heorem 3 follows from

𝜕 𝐸𝑡[y𝑡+ℎ]
𝜕 𝜼′𝑡

= L
𝑀
∑

𝑖0=1

𝑀
∑

𝑖1=1
…

𝑀
∑

𝑖ℎ−1=1

𝑀
∑

𝑖ℎ=1
𝜱𝑖1 … 𝜱𝑖ℎ−1 𝜱𝑖ℎ

× 𝑝𝑖0 ,𝑖1 … 𝑝𝑖ℎ−2 ,𝑖ℎ−1 𝑝𝑖ℎ−1 ,𝑖ℎ 𝜋𝑖ℎ L
′ 𝜮𝑖0

s
𝜕 u𝑡
𝜕 𝜼′𝑡

|𝑠𝑡=𝑖0 = 𝜮𝑖0 .

(V) Proof of Theorem 4 . Reasoning in the same manner, we derive the matrix expression in the statement of Theorem 4. In fact,
we have

𝜕 𝐸𝑡[z𝑡+ℎ]
𝜕 v′𝑡+1

=
𝑀
∑

𝑖0=1

𝑀
∑

𝑖1=1
…

𝑀
∑

𝑖ℎ−1=1

𝑀
∑

𝑖ℎ=1
𝜱𝑖1 … 𝜱𝑖ℎ−1 𝜱𝑖ℎ 𝑝𝑖0 ,𝑖1 … 𝑝𝑖ℎ−2 ,𝑖ℎ−1 𝑝𝑖ℎ−1 ,𝑖ℎ 𝜋𝑖ℎ R

′

s
𝜕 𝐸𝑡[z𝑡|𝑠𝑡 = 𝑖0]

𝜕 v′𝑡+1
= R′,

eing R = (𝟎 ⋯ 𝟎 I𝑀 ) ∈ R𝑀×𝑛. This implies

𝜕 𝐸𝑡[y𝑡+ℎ]
𝜕 v′𝑡+1

= L
𝑀
∑

𝑖0=1

𝑀
∑

𝑖1=1
…

𝑀
∑

𝑖ℎ−1=1

𝑀
∑

𝑖ℎ=1
𝜱𝑖1 … 𝜱𝑖ℎ−1 𝜱𝑖ℎ

× 𝑝𝑖0 ,𝑖1 … 𝑝𝑖ℎ−2 ,𝑖ℎ−1 𝑝𝑖ℎ−1 ,𝑖ℎ 𝜋𝑖ℎ R
′.

n matrix form the last expression yields the formula in the statement of Theorem 4.
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