

Long non-coding RNA mitophagy and ALK- anaplastic lymphoma associated transcript: a novel regulator of mitophagy in T cell lymphoma

by Valentina Mularoni, Benedetta Donati, Annalisa Tameni, Veronica Manicardi, Francesca Reggiani, Elisabetta Sauta, Magda Zanelli, Marco Tigano, Emanuele Vitale, Federica Torricelli, Stefano Ascani, Giovanni Martino, Giorgio Inghirami, Francesca Sanguedolce, Alessia Ruffini, Alberto Bavieri, Stefano Luminari, Marco Pizzi, Angelo Paolo Dei Tos, Cinzia Fesce, Antonino Neri, Alessia Ciarrocchi, and Valentina Fragliasso

Received: December 14, 2022. Accepted: June 20, 2023.

Citation: Valentina Mularoni, Benedetta Donati, Annalisa Tameni, Veronica Manicardi, Francesca Reggiani, Elisabetta Sauta, Magda Zanelli, Marco Tigano, Emanuele Vitale, Federica Torricelli, Stefano Ascani, Giovanni Martino, Giorgio Inghirami, Francesca Sanguedolce, Alessia Ruffini, Alberto Bavieri, Stefano Luminari, Marco Pizzi, Angelo Paolo Dei Tos, Cinzia Fesce, Antonino Neri, Alessia Ciarrocchi, and Valentina Fragliasso. Long non-coding RNA mitophagy and ALK- anaplastic lymphoma associated transcript: a novel regulator of mitophagy in T cell lymphoma. Haematologica. 2023 June 29. doi: 10.3324/haematol.2022.282552 [Epub ahead of print]

Publisher's Disclaimer.

E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.

Long non-coding RNA mitophagy and ALK⁻ anaplastic lymphoma associated transcript: a novel regulator of mitophagy in T cell lymphoma

Valentina Mularoni¹, Benedetta Donati¹, Annalisa Tameni¹, Veronica Manicardi¹, Francesca Reggiani¹, Elisabetta Sauta², Magda Zanelli³, Marco Tigano⁴, Emanuele Vitale^{1, 5}, Federica Torricelli¹, Stefano Ascani⁶, Giovanni Martino^{6,7}, Giorgio Inghirami⁸, Francesca Sanguedolce⁹, Alessia Ruffini¹⁰, Alberto Bavieri¹⁰, Stefano Luminari¹⁰, Marco Pizzi¹¹, Angelo Paolo Dei Tos¹¹, Cinzia Fesce¹², Antonino Neri¹³, Alessia Ciarrocchi¹, Valentina Fragliasso^{1,#}

Affiliations

1 Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy

2 IRCCS Humanitas Clinical and Research Center, via Manzoni 56, 20089, Rozzano, Milan, Italy.

3 Pathology Unit, Department of Oncology, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy.

4 Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19144, USA

5 Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, Modena, 41125, Italy.

6 Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy.

7 Institute of Hematology and CREO, University of Perugia, Perugia 06129, Italy

8 Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.

9 Pathology Unit, Policlinico Riuniti, University of Foggia, 71122 Foggia, Italy.

10 Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy.

11 Surgical Pathology & Cytopathology Unit, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy.

12 Hematology Unit, University Hospital, 71122 Foggia, Italy

13 Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, Viale Umberto I 50, 42123, Reggio Emilia, Italy

Author's contributions

V.M. and A.T. performed experiments and analyzed data, B.D. performed gene expression and Nanostring analysis, V.M., F.T., E.S., E.V. performed RNA-seq, ChIP-seq, and bioinformatics analyses. F.R. performed FACS analyses and cell sorting experiments, M.Z., S.A., G.I., F.S. C.F., M.P., A.R., G.M, S.L., A.P.D.S., and A.B. provided tissue samples and lymphoma diagnosis. M.T. and A.N. provided important experimental and analytic support. A.C. interpreted the results and helped to discuss the results. V.F. designed the project, interpreted the results, and wrote the manuscript. All the authors read and approved the final version of the manuscripts.

Disclosures

No conflicts of interest to disclose.

Running head

Transcriptional role of IncRNA MTAAT in Lymphoma

#Corresponding author

Valentina Fragliasso, Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy. Phone: +39-0522295914; Email: Valentina.Fragliasso@ausl.re.it

Data sharing statement

All data generated and/or analyzed in this study are included in this article and its Online Supplementary Appendix. The MTAAT sequence has been deposited in the GenBank database with the accession number OM642832. Gene expression profile data are available at the Gene Expression Omnibus (GEO) repository (accession number: GSE217426). RNA-seq raw data in fastq.gz format are available in the ArrayExpress repository, dataset E-MTAB-12462 (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-12462).

Word count

Abstract: 145 words Main text: 3.650 words 6 main figures 1 supplementary file associated with the manuscript.

Acknowledgments

The authors are grateful to Marina Grassi, Ione Tamagnini, Gloria Venturini, and Riccardo Fuoco for technical help and to all the members of the laboratory for helpful discussion. V.M. and A.T. were supported by Fondazione AIRC per la Ricerca sul Cancro (AIRC). F.R. was supported by Fondazione Umberto Veronesi, V.M. and A.R. were supported by Fondazione GRADE Onlus. This study was funded by the Italian Ministry of Health through Ricerca Finalizzata (No. GR-2016-02364298, V.F.), Bando per la Valorizzazione della Ricerca

Istituzionale 2021- fondi 5 per Mille 2020 (V.F.) and Fondazione AIACE (V.F.). This study was partially supported by the Italian Ministry of Health-Ricerca Corrente Annual Program 2024.

Abstract

Long noncoding RNAs (IncRNAs) are emerging as powerful and versatile regulators of transcriptional programs and distinctive biomarkers of T-cell Lymphoma progression disease. Their role in the aggressive ALK Anaplastic Large Cell Lymphoma (ALCL) subtype has been only in part elucidated. Starting from our previously identified ALCL-associated IncRNA signature and performing digital gene expression profiling of a retrospective cohort of ALCLs, we defined an 11 IncRNA signature able to discriminate among ALCL subtypes. We selected a not previously characterized IncRNA, MTAAT, with an ALK ALCL preferential expression, for molecular and functional studies. We demonstrated that IncRNA MTAAT contributes to an aberrant mitochondrial turnover restraining mitophagy and promoting cellular proliferation. Functionally, IncRNA MTAAT acts as a repressor of a set of genes related to mitochondria quality control via chromatin reorganization.

Collectively, our work demonstrates the transcriptional role of IncRNA MTAAT in orchestrating a complex transcriptional program sustaining ALK⁻ ALCL progression.

Introduction

T-cell lymphoma (TCL) is a complex and heterogeneous group of neoplasms with different biology and outcome¹. Its diagnostic classification is still a challenge making its treatment sub-optimal. ALK⁻ Anaplastic Large cell Lymphoma (ALCL) is one of the most aggressive T-cell lymphoma subtypes characterized by dismal prognosis and high mortality^{2–4}. The molecular details of ALK⁻ ALCL pathogenesis are largely unknown, thus limiting the

development of targeted strategies⁵. Therefore, clarifying the mechanisms underlying this disease is of utmost importance. The fast and massive implementation of deep sequencing technologies has highlighted the role of the non-coding genome in regulating cancer proliferation, especially in complex tumors without a clear genetic driver^{6,7}. Particular attention has been paid to a family of transcripts of about 200bp with no coding potential known as long non-coding RNAs (lncRNAs)⁸. LncRNAs possess the striking ability to interact with protein-coding and non-coding transcripts regulating and integrating a complex network of processes simultaneously^{9–12}. Thanks to their peculiar and versatile features, lncRNAs are able to influence – in a context-dependent manner – several aspects of cancer biology like cellular proliferation, apoptosis, metabolic reprogramming, genomic instability, drug resistance, invasion, and metastasis^{13,14}. Thus, deregulating the expression of certain lncRNAs can directly influence the pathogenesis and/or progression of different types of cancers, including T-cell lymphoma¹⁵.

Previously, we investigated the contribution of IncRNAs to ALCL pathogenesis by performing deep transcriptomic profiling of a cohort of ALCLs. We identified a unique set of 18 IncRNAs overexpressed in neoplastic T-lymphocytes compared to normal T-lymphocytes¹⁶. We were able to show that among those, IncRNA *BlackMamba* acts as a major transcriptional regulator of neoplastic T-lymphocytes in the ALK⁻ALCL subtype, influencing lymphoma progression^{16,17}. Therefore, the identified IncRNAs are not only distinctive biomarkers of disease but play relevant functional roles in the biogenesis of ALCL.

In this work, we expand our knowledge regarding IncRNAs' functional relevance in the development and progression of ALCL. Starting from our previously identified IncRNA signature and integrating the gene expression profiles (GEPs) of a large cohort of ALCL patients with clinical information, we defined a powerful IncRNA signature that discriminates between ALK⁻ and ALK⁺ subtypes. Then, we focused on the XLOC_211989 transcript – which resulted specifically associated with the ALK⁻ ALCL subtype – and we characterized its

function by using multiple functional approaches. Our data suggest that this noncoding transcript coordinates the expression of a set of genes involved in mitochondrial homeostasis and mitophagy promoting lymphoma cell survival. We named this novel lncRNA <u>MiTophagy</u> and ALK <u>Anaplastic Lymphoma Associated Transcript</u> (MTAAT).

Methods

Patients' specimen

Fresh and viable cryopreserved cells and formalin-fixed paraffin-embedded (FFPE) sections of two retrospective cohorts of ALCL were isolated from diagnostic/relapsed primary lymphoma biopsies. Diagnoses were assigned according to the WHO classification¹. Tissues used for expression analyses were selected for their high tumor cell content (>50%). The FFPE cohort of ALCL included 54 cases whereas the freshly frozen cohort included 18 ALCL cases. Regarding clinicopathological characteristics of the FFPE cohort eligible for the analysis (n=44): among ALK⁻ ALCL, 17/29 (59%) patients were male and the median age was 70 years (range 31-88). Regarding ALK⁺ ALCL, 8/15 (53%) patients were male and the median age was 39 years (range 21-75). Considering follow-up data available for 29/44 patients, the median follow-up of the cohort was 44 months (range, 2.2-152 months). The 4-year progression-free survival (PFS) rate was 70.6% (95%CI 55.2 to 90.3). The freshly frozen cohort of ALCL and immunophenotypic features of resting and donor CD4+ T-lymphocytes have been previously described¹⁶.

The study was approved through institutional human ethics review boards of the Ethical Committee AVEN and AUSL-IRCCS di Reggio Emilia (287/2018/OSS/IRCCSRE), and patients provided written informed consent in accordance with the Declaration of Helsinki.

RNA extraction and quantitative PCR (RT-qPCR)

Total RNA from cells was extracted by TRIzol (Thermo Fisher Scientific) according to the manufacturer's instructions. One microgram of total RNA was retrotranscribed using the iScript cDNA kit, (Biorad). The amplified transcript level of each specific gene was normalized on the CHMP2A housekeeping gene. $\Delta\Delta$ Ct quantification method was used for RT-qPCR analyses. The list of primers used is provided in **supplementary table 1**.

Antisense LNA GapmeRs transfection

MAC2A and TLBR-2 cells (1×10⁶) were transfected with 50nM Antisense LNA GapmeRs concentration for a single KD. Antisense LNA GapmeR transfections were performed using the Cell Line Nucleofector Kit SF and Amaxa 4D Nucleofector (program DS-130 for TLBR-2, FI115 for MAC2A). Twenty-four hours after transfection, cells were harvested and plated 2.5×10⁵ cells/ml. Antisense LNA GapmeR Negative Control (Cat. No. / ID: 33951, Qiagen) was used as a negative control. For IncRNA_211989/MTAAT we used 2 different GapmeRs (Cat. No. / ID: 339511, Qiagen), and their sequences are provided in **supplementary table 2**.

Mitochondria staining

Mitochondria were stained with Mitotracker (Thermo Fisher Scientific) accordingly to manufacturer instructions. Cells were then harvested, fixed in 4% PFA in PBS 1X for 10 min at room temperature, and spotted on glass slides using Cytospin (Thermo Scientific) as previously reported¹⁸. Dots were washed in PBS 1X for three times and nuclei were stained with DAPI.

Tetramethylrhodamine Methyl Ester Perchlorate (TMRM) staining was performed accordingly to manufacturer instructions (Thermo Fisher Scientific) and without substantial changes. Cells were then harvested and washed one time in RPMI media without serum. Membrane potential was immediately measured by flow cytometry with FACSCanto[™] II Cell Analyzer (BD Biosciences).

Statistical analysis

Statistical analyses were performed using GraphPad Prism Software (GraphPad). Statistical significance was determined using Student's t-test. Each experiment was replicated multiple times (>3 up to 6). All analyses were performed using R software version 4.1.3.

Results

XLOC_211989 is a novel biomarker that stratifies ALK ALCL patients

We assessed whether the previously generated ALCL-associated lncRNA-signature¹⁶ might be used to distinguish ALCL subtypes in a retrospective cohort of 54 ALCL cases. Gene expression analyses were performed by digital multiplexing profiling using a custom panel of probes targeting the 17 previously identified lncRNAs and four additional genes used for the molecular classification of ALCL subtypes¹⁹.

Out of the 54 total samples, 44 ALCLs GEPs passed stringent quality controls and resulted eligible for the analysis (**Figure 1A**). 15/44 (34%) samples were classified as ALK⁺ALCL and 29/44 (66%) samples scored as ALK⁻ALCL (**Figure 1A**, **Supplementary Figures 1A-B**, **Supplementary Table 4**). Focusing on IncRNAs, we confirmed that 17/17 (100%) IncRNAs were expressed in the ALCL cohort. Principal Component Analysis (PCA) showed that IncRNA expression profiles well segregated ALK⁺ and ALK⁻ ALCL samples (**Figure 1B**) resulting in 11 of the 17 (65%) IncRNAs significantly deregulated between the two subtypes (**Figure 1C**, **Supplementary Figure 1C**). In particular: 7 IncRNAs were over-expressed in ALK⁻ ALCL patients while 4 IncRNAs were over-expressed in ALK⁺ ALCL patients (**Figure 1C**). According to our previously observations¹⁶, IncRNA *BlackMamba* showed a significant and negative correlation with ALK expression (**Figure 1C**).

We focused our attention on the six uncharacterized IncRNAs that were significantly associated with ALK⁻ subtype (**Figure 1D**). First, we confirmed their association with the ALK⁻ subtype by targeted RT-qPCR performed in a previously published cohort of 15 freshly frozen ALCL¹⁶. From this analysis, XLOC_211989 – herein named IncRNA MTAAT – showed the strongest and most significant association with ALK⁻ALCL (**Figures 1D-E, Supplementary Figure 1D**). No detectable MTAAT expression was observed in donor resting or activated CD4+ cells (**Supplementary Figure 1E**) further confirming ALCL-restricted MTAAT expression.

To strengthen these observations, we explored the correlation between MTAAT and ALK expression in the retrospective cohort of ALCLs. Linear regression analysis showed that MTAAT was inversely correlated with ALK expression and positively correlated with IncRNA BlackMamba (**Figure 1F**). ROC curve for ALK subtype classification showed that MTAAT has a high capacity (70%) to discriminate between ALK⁻ and ALK⁺ patients (AUC 0.70 0.54-0.85) (**Figure 1G, Supplementary Figure 1F**).

MTAAT promoter is bound by RNA Polymerase II and enriched for active histone marks

Genomic annotation showed that the MTAAT sequence matches an uncharacterized intergenic transcript encoded on the plus strand of chromosome 3 with an estimated transcript length of 7,189 bp and no predicted alternative isoforms (**Figure 2A**). *In silico* analysis predicted four potential open reading frames (ORFs) with irrelevant coding potential within MTAAT sequence, confirming the non-coding nature of this transcript (**Supplementary Table 5**).

Given the specificity of MTAAT expression in the ALK⁻ALCL subtype, we sought to define *in vitro* the molecular mechanisms that control its expression. For this analysis, we chose the two ALK⁻ALCL cell lines – TLBR2 and MAC2A – displaying the highest levels of MTAAT

expression (Supplementary Figure 2A). To identify the promoter of MTAAT, we first analyzed RNAPII genomic occupancy and histone 3 trimethyl lysine 4 (H3K4me3) profile using the Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) in TLBR-2 cells. A high-density distribution of RNAPII within a 2000 bp region spanning the putative transcription start site (TSS) of MTAAT (P3-P6) was observed. This region was also enriched in H3K4me3 confirming the promoter-like nature of its sequence (Figure 2A). We confirmed the findings by ChIP-qPCR in both TLBR-2 and MAC2A cell lines (Figures 2B-C, Supplementary Figure 2B). We also showed that this region is marked by a high level of histone H3 acetyl-lysine 27 (H3K27ac) confirming that this locus is transcriptionally active in these cellular models (Figure 2D, Supplementary Figure 2B). Notably, ChIP-qPCR analysis did not show RNAPII or histone modifications enrichment in a cell line - CUTLL1 - negative for MTAAT expression (Supplementary Figure 2C), validating the specificity of our observations. To assess whether MTAAT putative promoter is able to transactivate transcription, we cloned the 2000bp DNA sequence spanning from -1,500bp to +500 □ bp of MTAAT-TSS upstream of a luciferase reporter cassette. In this "promoter-like" configuration, high luciferase activity was detected in both MAC2A and TLBR-2 cells (Figure 2E).

Next, we asked what are the signaling pathways underlying MTAAT expression. Based on the genomic profiles observed in ChIP-seq, we selected a 500bp region spanning the TSS of MTAAT and performed a motif search analysis to identify potential transcriptional factors (TFs) binding sites. For this, we used the FIMO analysis pipeline²⁰ and identified 117 hypothetical TFs (**Supplementary Table 6**). Notably, some TFs – including STATs, GATAs, and IRFs – were pertinent to signaling pathways known to be active and deregulated in ALK⁻ ALCL⁵ (**Figure 2F**). Specifically, we found a significant enrichment of several pathways related to the cellular response to cytokines, interferon, interleukins, and regulation of T-cell differentiation.

MTAAT is a chromatin-associated IncRNA essential for the transcriptional control of mitochondrial processes

To examine the biological role of MTAAT in T-cell lymphoma, we first studied MTAAT cellular localization performing sub-cellular fractionation. We found that MTAAT was enriched in the nucleus and strongly associated with the chromatin fraction of lymphoma cells (Figure 3A, Supplementary Figure 3A) suggesting a putative role in chromatin organization and gene expression regulation. To investigate the role of this IncRNA in regulating lymphoma transcription, we silenced MTAAT expression by targeting different regions - single or in combination – with gapmers technology. MTAAT expression was measured by RT-gPCR and the delivery of multiple gapmers by electroporation resulted in effective knockdown (KD) (>50%) of MTAAT across all ALK ALCL cell lines tested (Figure 3B). Next, we used nextgeneration RNA sequencing to evaluate the genome-wide transcriptional changes triggered by MTAAT silencing (MTAAT^{KD}). TLBR-2 cells were subjected to MTAAT^{KD} and RNA was collected 24h hours after. In parallel and as a control, a scrambled gapmer was also delivered. RNA-seq analysis revealed 2217 differentially expressed genes in MTAAT^{KD} compared to gapmer control. Among these, 67.5% - 1497 genes - were protein-coding. Specifically, we detected 524 downregulated and 937 upregulated genes upon IncRNA MTAAT^{KD} (FDR <= 0.1) (Figure 3C). These findings suggest a role for MTAAT in both the activation and the repression of transcription. Notably, the genomic regions of MTAAT targets are far beyond chromosome 3 (Figure 3D). This suggests that MTAAT could regulate ALK ALCL transcriptional programs *in trans* and at a genome-wide level.

Gene-set enrichment analysis revealed diverse biological processes associated with deregulated genes. Specifically, down-regulated transcripts showed significant enrichment in several gene sets related to mitochondrial respiratory chain complexes, DNA damage response, and chromatin organization. In contrast, up-regulated transcripts are mostly implicated in immune response, glycolytic process, integrated stress response as well as regulation of mitochondrion organization (**Figure 3E**). Using RT-qPCR, we validated a representative set of upregulated genes confirming the RNA-sequencing results (Figure **3F**). To exclude off-target effects of the gapmers designed for MTAAT^{KD}, we decided to corroborate the results by silencing MTAAT with a CRISPR-interference system, by using doxycycline-inducible dCas9-KRAB and two different single-guide RNAs (sgRNAs) targeting MTAAT promoter. Following lentiviral transduction of ALK⁻ALCL cells, we induced dCas9-KRAB for 48 hours with doxycycline and evaluated MTAAT expression. RT-qPCR confirmed that both sgRNAs repressed the level of MTAAT by $\geq 60\%$ (**Supplementary Figures 3B-D**). Importantly, the expression of 10/12 (83%) gene targets after dCas9-KRAB mediated MTAAT silencing was consistent with gapmer MTAAT^{KD}, ruling out any off-target effects (**Supplementary Figure 3E**). Collectively, the transcriptional changes that we observed upon MTAAT^{KD} indicated that this lncRNA acts as a repressor of a set of genes related to mitochondria quality control.

IncRNA MTAAT represses BNIP3 and BNIP3L via histone modifications

To understand how IncRNA MTAAT regulates the expression of mitochondria-related genes, we evaluated changes in the chromatin organization triggered upon MTAAT^{KD} investigating, by ChIP, the distribution of H3K4Me3, H3K27Ac, and RNAPII on BCL2 Interacting Protein 3 (BNIP3) and BCL2 Interacting Protein 3 Like (BNIP3L also known as NIX). These proteins resulted in target genes of IncRNA MTAAT and their loss has been implicated in the accumulation of dysfunctional mitochondria in the hematopoietic system ^{21,22}. After the depletion of MTAAT, H3K4Me3 and H3K27Ac levels increased significantly in BNIP3 and BNIP3L promoters (**Figures 4A-C**). Likewise, RNAPII was found to be dramatically enriched around the TSS of both genes upon MTAAT^{KD} (**Figure 4D**). Similar changes were observed in additional MTAAT target genes such as Activating Transcriptional Factor 4 (ATF4) and X-Box Binding Protein 1 (XBP1) (**Supplementary Figures 4A-D**). Concordantly with the gene

expression profile, no changes were observed in Optineurin (OPTN) gene (**Supplementary Figures 4A-E**). Furthermore, *in silico* analysis performed with catRAPID²³, showed a high interaction propensity of MTAAT with H3K27 methylation complex (**Supplementary Figure 4F**). Collectively, these data confirm that changes in chromatin markers are directly linked to MTAAT activity on its target genes.

To strengthen the clinical relevance of MTAAT regulation on these genes, we investigated the expression of BNIP3 and BNIP3L in the retrospective cohort of ALCLs included in this study. In line with the repressive effect of MTAAT, BNIP3 expression was lower in ALK⁻ALCL compared to ALK⁺ALCL patients (**Figure 4E**). A similar gene expression correlation was observed in a panel of non-TCL cell lines (**Supplementary Figure 4G**). By contrast, no significant differences were observed between ALCL subtypes for BNIP3L expression (**Figure 4E**).

MTAAT sustains ALCL growth by regulating mitophagy

The transcriptional changes observed upon MTAAT^{KD} are suggestive of specific disruptions in mitochondrial homeostasis, such as an aberrant increase in mitochondrial density or changes in mitochondrial morphology. We wondered if MTAAT promotes ALCL progression by controlling mitochondrial clearance. First, we asked if mitochondrial abundance changes in T-cell lymphoma upon dCas9-KRAB inducible MTAAT^{KD}. We evaluated mitochondrial mass by mitotracker staining and cytofluorimetric analysis. This analysis showed a timedependent reduction in mitotracker intensity signal upon MTAAT^{KD} (**Figure 5A**), whereas doxycycline treatment alone did not lead to changes (data not shown). Along the same line of evidence, we observed a strong reduction in mtDNA copy number, as determined by RTqPCR analysis on mitochondrial gene ND1 (**Figure 5B**). Furthermore, the steady-state level of several mitochondrial proteins (Cytochrome c oxidase subunit IV -COX IV, Superoxide dismutase -SOD1, Cytochrome C -CytC, and Prohibitin 1 -PHB1) assessed by western blot,

confirmed these findings (**Figure 5C**). Since the oxidative function is strictly linked to mitochondrial network dynamics, we evaluated the mitochondrial morphology of mitotrackerstained cells using immunofluorescence. In basal condition, ALK⁻ ALCL cells showed the mitochondrial network predominantly distributed around the perinuclear region. Upon depletion of MTAAT, mitochondria displayed a more apical/basal localization which is indicative of a less active mitochondrial state ²⁴ (**Figure 5D**). Concordantly, mitochondrial membrane potential – evaluated by TMRM staining – was reduced upon MTAAT^{KD}, suggesting mitochondrial dysfunction (**Figure 5E**). In line with these data, ALK⁻ALCL patients with high expression of MTAAT showed a high intensity and diffuse staining for SOD1 when compared to those expressing low levels of MTAAT (**Supplementary Figure 5A**).

Growing evidence points to a strong relationship between BNIP3 – which acts as an adaptor for tethering mitochondria to nascent autophagosomes – and the activation of a selective form of macroautophagy known as mitophagy²⁵. Having observed the overexpression of BNIP3 upon MTAAT^{KD}, we asked if the observed changes in mitochondrial mass were due to the activation of mitophagy. First, we assessed if canonical mitophagy markers are detected upon MTAAT silencing. Noticeably, MTAAT^{KD} induced a time-dependent decrease of LC3 and of the autophagy receptor SQSTM1/p62 in both cell lines, suggestive of increased autophagy flux. Supporting this, the treatment with chloroquine, an autophagy inhibitor that blocks the fusion of autophagosomes with lysosomes, blocked the MTAATdependent increase of the autophagic flux (**Supplementary Figure 5B**). To strengthen these results, we sought to analyze the co-localization of specific mitophagy adaptors with the autophagosomes. We co-transfected TLBR-2 cells with plasmids encoding LC3-GFP and BNIP3-Flag and analyzed their behavior upon MTAAT^{KD}. In control cells, both markers showed diffuse and homogeneous staining across the cytoplasm (**Figure 6A**). By contrast, upon MTAAT^{KD}, both LC3 and BNIP3 accumulated into bright cytoplasmic puncta suggestive of LC3 lipidation and BNIP3 recruitment. Importantly, LC3 and BNIP3 puncta colocalize upon MTAAT^{KD} (**Figure 6A**), indicating active mitophagy.

We hypothesized that tumor cells specifically block mitophagy to increase mitochondria mass and sustain proliferation. Therefore, we asked whether MTAAT^{KD} impacts ALK⁻ALCL cell viability. Noticeably, growth curve analysis and viability assays showed that depleting MTAAT significantly reduces cellular proliferation in both TLBR-2 and MAC2A cell lines (**Figure 6B**). No changes were recorded in cell cycle profiles and apoptosis was not induced upon MTAAT^{KD}, consistent with energy deprivation, rather than cell death (**Supplementary Figures 5C-D**).

Altogether, our data support a model where IncRNA MTAAT exerts its function by stimulating an increase in mitochondrial mass – and energy output – that is used by ALK⁻ ALCL cells to sustain cell proliferation (**Figure 6C**).

Discussion

The implementation of digital gene expression profiling paved the way for the implementation of the transcriptomics approach in the classification of TCL, increasing the precision of diagnosis over conventional methods²⁶. Progresses toward understanding the transcriptional complexity of tumors revealed how coding genes are not the only drivers of cancer progression, with non-coding transcripts – like lncRNAs – regulating essential transcriptional cascades during tumorigenesis^{9,27,28}. However, how lncRNAs drive cellular and clinical phenotypes of aggressive TCL subtypes remains unknown.

In this study, we identified a set of IncRNAs that act as molecular classifiers to distinguish ALK⁺ and ALK⁻ ALCL. We also reported the role of one of these IncRNAs, which we renamed MTAAT, in regulating mitochondrial turnover and progression of aggressive ALK⁻ALCL.

We identified MTAAT as significantly associated with ALK⁻ ALCL phenotype in two independent cohorts of ALCL patients: first from a cohort of FFPE diagnostic biopsies analyzed by digital expression profiling with the Nanostring nCounter platform and subsequently in a cohort of frozen tissues by RT-qPCR. We also demonstrated the high accuracy of MTAAT in predicting ALK⁻ subtypes in ALCL classification. Although the use of IncRNAs as biomarkers is still in its infancy, our results strongly suggest how digital IncRNA profiling could be integrated into diagnostic panels to improve the accuracy and precision of ALCL stratification.

We selected the IncRNAs MTAAT for functional studies based on its ALK ALCL association. Analysis of its regulatory elements showed MTAAT's intrinsic ability to regulate transcription. Transcriptional regulation by IncRNAs appears to be a mechanism widely used by hematological malignancies to control the transcription of selective pathways tuning aberrant proliferation and survival of B and T-cell ^{29–32}.

By performing RNA-sequencing on MTAAT^{KD} cell lines, we highlighted how the transcriptional program supported by MTAAT converges on the regulation of mitochondrial pathways. Mechanistic investigations showed that the loss of MTAAT is linked to a unique phenotype characterized by an increased mitochondrial turnover through positive mitophagy stimulation, accompanied by a reduction in cell proliferation. Remarkably, lymphomas are characterized as oxidative tumors – indicating a requirement of mitochondrial function for tumor progression^{33,34}. Mitochondria work as metabolic hubs to support cell growth and proliferation, and act as sensors of intracellular stresses that could threaten survival^{35,36}. Although the role of mitophagy in lymphoid malignancies is still debated, some evidence indicates that the constitutive repression of autophagy/mitophagy contributes to lymphomagenesis^{37–41}. The increase in the mitochondrial pool in tumor cells is also emerging as a key factor in the success of immunotherapeutic treatments^{42–44}, like the chimeric antigen

receptor (CAR) expressing T-cells (CAR-T) strategy⁴⁵. CAR-T represents an incredible promise for the treatment of several malignancies and for this reason, further investigations aimed to elucidate the role of MTAAT are warranted.

Among the downstream targets of MTAAT, we identified BNIP3 whose expression is upregulated upon MTAAT^{KD} via chromatin reorganization. BNIP3 was originally reported to function as a BH3-only protein that induced programmed cell death^{46,47}. More recently, it has been shown to function as a stress-induced mitophagy receptor that interacts directly with LC3 to promote the turnover of otherwise healthy mitochondria ^{48,49}. Although various human solid cancers overexpress BNIP3 as they become hypoxic⁵⁰, its inactivation via promoter hypermethylation is a common feature of aggressive and advanced-stage cancers such as triple-negative breast cancer, hematological malignancies and advanced-stage pancreatic cancer^{51–54}. In these tumors, epigenetic silencing of BNIP3 correlates with high cancer cell proliferation, poor prognostic features, and chemoresistance^{55,56}. According to this finding, we found a significant reduction of BNIP3 expression in a cohort of ALK ALCL patients. This finding suggests a tumor-suppressive function of BNIP3 also in the context of ALCL. We speculate that the loss of BNIP3 associated with reduced mitophagy may create a more aggressive tumor phenotype and contribute - at least in part - to the chemoresistance observed in this malignancy. This evidence paves the way for the implementation of targeted therapeutics strategies able to re-express BNIP3 in this lymphoid malignancy.

In conclusion, we have characterized the novel IncRNA MTAAT as a new potential biomarker in ALCLs' patient stratification. Functionally, MTAAT acts as a transcriptional brake on mitophagy promoting the accumulation of mitochondria and supporting lymphoma progression. These findings corroborate our previous data showing a key role of IncRNA in the control of different transcriptional programs in ALK⁻ALCL.

References

- 1. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375-2390.
- 2. Ferreri AJM, Govi S, Pileri SA, Savage KJ. Anaplastic large cell lymphoma, ALK-negative. Crit Rev Oncol Hematol. 2013;85(2):206-215.
- 3. Parrilla Castellar ER, Jaffe ES, Said JW, et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood. 2014;124(9):1473-1480.
- 4. Savage KJ, Harris NL, Vose JM, et al. ALK– anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood. 2008;111(12):5496-5504.
- 5. Fiore D, Cappelli LV, Broccoli A, Zinzani PL, Chan WC, Inghirami G. Peripheral T cell lymphomas: from the bench to the clinic. Nat Rev Cancer. 2020;20(6):323-342.
- 6. PCAWG Drivers and Functional Interpretation Working Group, PCAWG Structural Variation Working Group, PCAWG Consortium, et al. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature. 2020;578(7793):102-111.
- 7. van Galen P. Decoding the Noncoding Cancer Genome. Cancer Discov. 2020;10(5):646-647.
- 8. Kapranov P, Cheng J, Dike S, et al. RNA Maps Reveal New RNA Classes and a Possible Function for Pervasive Transcription. Science. 2007;316(5830):1484-1488.
- 9. Statello L, Guo C-J, Chen L-L, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96-118.
- 10. Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 2017;18(1):206.
- 11. Goff LA, Rinn JL. Linking RNA biology to lncRNAs. Genome Res 2015;25(10):1456-1465.
- 12. Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic noncoding RNA. Nat Rev Mol Cell Biol. 2018;19(3):143-157.
- 13. Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21(11):1253-1261.
- 14. Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18(1):5-18.
- 15. Iannello A, Ciarrocchi A, Fragliasso V, Vaisitti T. Lift the curtain on long non-coding RNAs in hematological malignancies: Pathogenic elements and potential targets. Cancer Lett. 2022;536:215645.
- 16. Fragliasso V, Verma A, Manzotti G, et al. The novel lncRNA BlackMamba controls the neoplastic phenotype of ALK– anaplastic large cell lymphoma by regulating the DNA helicase HELLS. Leukemia. 2020;34(11):2964-2980.

- Tameni A, Sauta E, Mularoni V, et al. The DNA-helicase HELLS drives ALK- ALCL proliferation by the transcriptional control of a cytokinesis-related program. Cell Death Dis. 2021;12(1):130.
- Fragliasso V, Chiodo Y, Ferrari-Amorotti G, et al. Phosphorylation of serine 21 modulates the proliferation inhibitory more than the differentiation inducing effects of C/EBPα in K562 cells. J Cell Biochem. 2012;113(5):1704-1713.
- 19. Agnelli L, Mereu E, Pellegrino E, et al. Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative anaplastic large-cell lymphoma. Blood. 2012;120(6):1274-1281.
- 20. Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011;27(7):1017-1018.
- 21. Sandoval H, Thiagarajan P, Dasgupta SK, et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature. 2008;454(7201):232-235.
- 22. O'Sullivan TE, Johnson LR, Kang HH, Sun JC. BNIP3- and BNIP3L-Mediated Mitophagy Promotes the Generation of Natural Killer Cell Memory. Immunity. 2015;43(2):331-342.
- 23. Bellucci M, Agostini F, Masin M, Tartaglia GG. Predicting protein associations with long noncoding RNAs. Nat Methods. 2011;8(6):444-445.
- 24. Facucho-Oliveira JM, St. John JC. The Relationship Between Pluripotency and Mitochondrial DNA Proliferation During Early Embryo Development and Embryonic Stem Cell Differentiation. Stem Cell Rev Rep. 2009;5(2):140-158.
- 25. Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12(1):9-14.
- 26. Amador C, Bouska A, Wright G, et al. Gene Expression Signatures for the Accurate Diagnosis of Peripheral T-Cell Lymphoma Entities in the Routine Clinical Practice. J Clin Oncol. 2022;40(36):4261-4275.
- 27. Palazzo AF, Koonin EV. Functional Long Non-coding RNAs Evolve from Junk Transcripts. Cell. 2020;183(5):1151-1161.
- 28. Schmitt AM, Chang HY. Long Noncoding RNAs in Cancer Pathways. Cancer Cell. 2016;29(4):452-463.
- 29. Doose G, Haake A, Bernhart SH, et al. MINCR is a MYC-induced lncRNA able to modulate MYC's transcriptional network in Burkitt lymphoma cells. Proc Natl Acad Sci U S A. 2015;112(38):E5261-5270.
- 30. Zhao P, Ji M-M, Fang Y, et al. A novel lncRNA TCLlnc1 promotes peripheral T cell lymphoma progression through acting as a modular scaffold of HNRNPD and YBX1 complexes. Cell Death Dis. 2021;12(4):321.
- 31. Zhao C-C, Jiao Y, Zhang Y-Y, et al. Lnc SMAD 5-AS1 as ceRNA inhibit proliferation of diffuse large B cell lymphoma via Wnt/ β -catenin pathway by sponging miR-135b-5p to elevate expression of APC. Cell Death Dis. 2019;10(4):252.

- 32. Cui Y, Xu H, Yang Y, et al. The regulation of miR-320a/XBP1 axis through LINC00963 for endoplasmic reticulum stress and autophagy in diffuse large B-cell lymphoma. Cancer Cell Int. 2021;21(1):305.
- 33. Li M, Teater MR, Hong JY, et al. Translational Activation of ATF4 through Mitochondrial Anaplerotic Metabolic Pathways Is Required for DLBCL Growth and Survival. Blood Cancer Discov. 2022;3(1):50-65.
- Bhalla K, Jaber S, Nahid MN, et al. Role of hypoxia in Diffuse Large B-cell Lymphoma: Metabolic repression and selective translation of HK2 facilitates development of DLBCL. Sci Rep. 2018;8(1):744.
- 35. Giacomello M, Pyakurel A, Glytsou C, Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 2020;21(4):204-224.
- 36. Eisner V, Picard M, Hajnóczky G. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat Cell Biol. 2018;20(7):755-765.
- 37. Bertolo C, Roa S, Sagardoy A, et al. *LITAF*, a BCL6 target gene, regulates autophagy in mature B-cell lymphomas. Br J Haematol. 2013;162(5):621-630.
- 38. Wang Z, Xu F, Yuan N, et al. Rapamycin inhibits pre-B acute lymphoblastic leukemia cells by downregulating DNA and RNA polymerases. Leuk Res. 2014;38(8):940-947.
- 39. Cheng C, Wang T, Song Z, et al. Induction of autophagy and autophagy-dependent apoptosis in diffuse large B-cell lymphoma by a new antimalarial artemisinin derivative, SM1044. Cancer Med. 2018;7(2):380-396.
- 40. Nahimana A, Attinger A, Aubry D, et al. The NAD biosynthesis inhibitor AP0866 has potent antitumor activity against hematologic malignancies. Blood. 2009;113(14):3276-3286.
- 41. Torossian A, Broin N, Frentzel J, et al. Blockade of crizotinib-induced BCL2 elevation in ALKpositive anaplastic large cell lymphoma triggers autophagy associated with cell death. Haematologica. 2019;104(7):1428-1439.
- 42. Sainero-Alcolado L, Liaño-Pons J, Ruiz-Pérez MV, Arsenian-Henriksson M. Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death Differ. 2022;29(7):1304-1317.
- 43. Missiroli S, Perrone M, Genovese I, Pinton P, Giorgi C. Cancer metabolism and mitochondria: Finding novel mechanisms to fight tumours. eBioMedicine 2020;59:102943.
- 44. Porporato PE, Filigheddu N, Pedro JMB-S, Kroemer G, Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28(3):265-280.
- 45. Zhang L, Zhang W, Li Z, et al. Mitochondria dysfunction in CD8+ T cells as an important contributing factor for cancer development and a potential target for cancer treatment: a review. J Exp Clin Cancer Res. 2022;41(1):227.
- 46. Chen G, Ray R, Dubik D, et al. The E1B 19K/Bcl-2–binding Protein Nip3 is a Dimeric Mitochondrial Protein that Activates Apoptosis. J Exp Med. 1997;186(12):1975-1983.

- 47. Ray R, Chen G, Vande Velde C, et al. BNIP3 Heterodimerizes with Bcl-2/Bcl-XL and Induces Cell Death Independent of a Bcl-2 Homology 3 (BH3) Domain at Both Mitochondrial and Nonmitochondrial Sites. J Biol Chem. 2000;275(2):1439-1448.
- 48. Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson ÅB. Microtubule-associated Protein 1 Light Chain 3 (LC3) Interacts with Bnip3 Protein to Selectively Remove Endoplasmic Reticulum and Mitochondria via Autophagy. J Biol Chem. 2012;287(23):19094-19104.
- 49. Glick D, Zhang W, Beaton M, et al. BNip3 Regulates Mitochondrial Function and Lipid Metabolism in the Liver. Mol Cell Biol. 2012;32(13):2570-2584.
- 50. Sowter HM, Ferguson M, Pym C, et al. Expression of the cell death genes BNip3 and NIX in ductal carcinomain situ of the breast; correlation of BNip3 levels with necrosis and grade. J Pathol. 2003;201(4):573-580.
- 51. Chourasia AH, Tracy K, Frankenberger C, et al. Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis. EMBO Rep. 2015;16(9):1145-1163.
- 52. Koop EA, van Laar T, van Wichen DF, de Weger RA, Wall E van der, van Diest PJ. Expression of BNIP3 in invasive breast cancer: correlations with the hypoxic response and clinicopathological features. BMC Cancer. 2009;9(1):175.
- 53. Murai M, Toyota M, Satoh A, et al. Aberrant DNA methylation associated with silencing BNIP3 gene expression in haematopoietic tumours. Br J Cancer. 2005;92(6):1165-1172.
- 54. Okami J, Simeone DM, Logsdon CD. Silencing of the Hypoxia-Inducible Cell Death Protein BNIP3 in Pancreatic Cancer. Cancer Res. 2004;64(15):5338-5346.
- 55. Akada M, Crnogorac-Jurcevic T, Lattimore S, et al. Intrinsic Chemoresistance to Gemcitabine Is Associated with Decreased Expression of BNIP3 in Pancreatic Cancer. Clin Cancer Res. 2005;11(8):3094-3101.
- 56. Erkan M, Kleeff J, Esposito I, et al. Loss of BNIP3 expression is a late event in pancreatic cancer contributing to chemoresistance and worsened prognosis. Oncogene. 2005;24(27):4421-4432.

Figure Legends

Figure 1. XLOC_211989 stratifies ALK⁻ ALCL patients

(A) Outline of the study workflow for the FFPE training cohort to classify ALCL patients based on transcriptomic profiles. Created with BioRender.com. (B) Principal component analysis (PCA) shows the variance between ALK⁺ ALCL (red dots) and ALK⁻ ALCL (grey dots) samples of the FFPE training cohort explained by the expression level of the 17 lncRNAs. (C) Dot plots show gene expression counts distribution of the 11 statistically significant IncRNAs among ALK⁺ ALCL (red dots) and ALK⁻ ALCL (black dots) of the FFPE training cohort. Comparisons were considered significant for p≤0.05 (*). (D) The alluvial plot shows the workflow for the identification and validation of XLOC_211989. (E) Boxplot representing the expression of XLOC_211989 among ALK⁺ (red) and ALK⁻ (grey) ALCL evaluated by RTqPCR in the validation cohort. The comparison was considered significant for $p \le 0.05$ (*). (F) Correlation plot between ALK and XLOC_211989 normalized and log2 transformed gene counts in the FFPE training cohort (left panel). Correlation plot between BlackMamba and XLOC_211989 normalized and log2 transformed gene counts training cohort (right panel). (G) ROC curve showing the performance of XLOC 211989-based scoring system in the training cohort of ALCL patients. The curve is colored according to XLOC 211989 adjusted values, the relation between colors and different values is represented by the bar on the right. The formula has been generated by the generalized linear regression model.

Figure 2. MTAAT is a novel IncRNA

(A) Schematic representation of locus and structure of MTAAT showing the position and enrichment level of active marks of transcription assessed by ChIP-seq in TLBR-2 cells. ChIP-RT-qPCR detection of RNAPII (B), H3K4me3 (C), and H3K27Ac (D) markers on MTAAT fragments in ALK⁻ALCL cell lines. GAPDH promoter was used as CTR+ whereas a non-coding intergenic region (CTR-) served as a negative control. The values are

representative of three independent experiments. (**E**) Luciferase activity of MTAAT-fragment into pGL3 vector. Data are represented as a normalized ratio of firefly-Renilla luciferase activities and are expressed as mean values \pm SD (n = 3). ** $p \le 0.01$. (**F**) Graphs show the most representative enriched TFs-related pathways. For each pathway, the TF with the major number of interactions was colored in yellow. These graphs were created using cytoskape software.

Figure 3. MTAAT KD results in transcriptional changes

(A) Relative expression of MTAAT in cytoplasm, nucleus, and chromatin fraction of ALK-ALCL cell lines (average of three independent experiments ± S.D.). One-tailed-t-test. **, p ≤ 0.01. (B) RT-qPCR analysis of MTAAT expression 24 hours after gapmers nucleofection in MAC2A and TLBR-2 cells. One-tailed-t-test. **, $p \leq 0.01$. (C) The heatmap depicts hierarchical clustering based on 2217 differentially expressed genes, whose read counts are Z-score normalized. Unsupervised hierarchical clustering was performed between gapmer control and gapmers #1+#2 samples (as indicated by the colored bar on columns) with a complete linkage method. Color intensity for each gene shows Z-score values ranging from red for upregulation to green for downregulation (left panel). The graph shows the number and the category of deregulated genes after RNA-seg in TLBR-2 nucleofected with gapmers #1+#2 compared to gapmer control. (D) The circular plot displays the genomic location of MTAAT (highlighted with a red line) and the protein-coding genes differentially expressed upon its knockdown. Red links connect IncRNA MTAAT to upregulated genes, green links connect IncRNA MTAAT to downregulated genes (right panel). (E) Most significant enriched pathways (adjusted p-value<0.05) are represented showing the up and the down-regulated number of DE genes mapped in each considered pathway (left panel). The heatmap depicts validated significantly downregulated genes. The orange-red color bar shows the fold difference on the Log₂ scale calculated between DOX and CTR samples. Lighter orange

represents the most downregulated genes (right panel). (**F**) RT-qPCR validation of significantly upregulated genes obtained from RNA-sequencing in TLBR-2 cells after nucleofection with gapmers (24 \square hours). Each data represents the mean ± SEM (*n* = 3). Two-tailed *t*-test. **p*<0.05; ***p*<0.01.

Figure 4. MTAAT KD modifies active transcriptional markers on regulatory elements of its gene targets

(A) Graphs show the TSS and fragments around the TSS of BNIP3 and BNIP3L. ChIPqPCR detection of H3K4me3 (B), H3K27Ac (C), and RNAPII (D) on MTAAT-genes target fragments in TLBR-2 MTAAT^{KD} cell lines. The values are representative of three independent experiments. (E) Box plots show the expression level of BNIP3 and BNIP3L in the FFPE-ALCL cohort. One-tailed-t-test. *, $p \le 0.01$

Figure 5. MTAAT inactivation impairs mitochondria homeostasis.

(A) Histograms of FACS analysis show a left shift of mitotracker red fluorescence in MTAAT^{KD} cell lines (red and yellow) compared to control (grey) at 48 and 72 hours after doxycycline treatment. Bar plots show the mean fluorescence intensity (MFI) of cells stained with mitotracker-red and analyzed by FACS. Each data represents the mean \pm SEM (n= 3). Two-tailed *t*-test. **p*<0.05; ***p*<0.01 relative to CTR. (B) Copy number analysis of mitochondrial gene ND1 normalized on nuclear gene β -actin (48 and 72 hours after doxycycline treatment). Each data represents the mean \pm SEM (n= 3). Two-tailed *t*-test. **p*<0.05; ***p*<0.01 relative to CTR. (B) Copy number analysis of mitochondrial gene ND1 normalized on nuclear gene β -actin (48 and 72 hours after doxycycline treatment). Each data represents the mean \pm SEM (n= 3). Two-tailed *t*-test. **p*<0.05; ***p*<0.01 relative to CTR. (C) Western blots show the expression of a set of mitochondrial proteins after MTAAT KD in TLBR-2 and MAC2A cells (72 hours). (D) Immunofluorescences show the localization of mitochondria in MTAAT^{KD} cells. Cells were stained with mitotracker-red dye and DAPI. The white scale bar represents 10 µm. Relative bar plots indicate the percentage of mitotracker-red stained cells with apical/basal

mitochondria (n=500 cells). Each data represents the mean \pm SEM (n= 3). Two-tailed *t*-test. **p*<0.05; ***p*<0.01 relative to CTR. (**E**) Histograms of FACS analysis show a right shift of TMRM fluorescence in MTAAT^{KD} cell lines (red and yellow) compared to the control (grey). Bar plots show the mean fluorescence intensity (MFI) of cells stained with TMRM and analyzed by FACS. Each data represents the mean \pm SEM (n= 3). Two-tailed *t*-test. **p*<0.05; ***p*<0.01 relative to CTR.

Figure 6. MTAAT KD promotes mitophagy and reduces cellular proliferation

(**A**) Immunofluorescence images of TLBR-2 MTAAT^{KD} cells after 48 h of doxycycline (DOX) induction. Cells were stained with DAPI and FLAG antibodies for BNIP3 detection. The white scale bar represents 10 μ m. (**B**) Growth curves show the proliferation of cells after MTAAT depletion. Each data represents the mean ± SEM (n= 3). Two-tailed *t*-test. ***p*<0.01 relative to CTR. (**C**) Graphical model of MTAAT function in lymphoma. Created with BioRender.com

Figure 3

mitochondrial stress

glycolisis

Figure 6

Β

Long non-coding RNA mitophagy and ALK⁻ anaplastic lymphoma associated transcript: a novel regulator of mitophagy in T cell Lymphoma

Supplementary Methods

Cell culture and treatments

The human ALK⁻ and ALK⁺ALCL cell lines MAC2A, FePD, L82, SUPM2, SUDHL1, and KARPAS299 were a kind gift of Dr. Giorgio Inghirami. The human Breast Implanted Associated (BIA)-ALCL cell lines TLBR-2 and TLBR-3 were a kind gift of Dr. Alain Epstein. The human CUTLL1 were a kind gift from Dr. Iannis Aifantis while human K562, MJ, and KCL22 cell lines were a kind gift from Dr. Bruno Calabretta. The human cell lines TPC1, BCPAP, 8505, CAL62, H1299, H1975, H1650, MB231, OCI-LY10, OCI-LY13 and NUDUL1 were a kind gift of Dr. Ciarrocchi. Cell identity was determined yearly. All cell lines were genotyped and routinely tested for Mycoplasma contamination. Cell lines were cultured in RPMI-1640 medium (Gibco) supplemented with 10% FBS at 37 °C in an atmosphere of 5% CO₂. TLBR-2 cells were supplemented with IL2 (20U/ml). Doxycycline hyclate was purchased from Sigma and dissolved in H₂O.

Chloroquine was purchased from Sigma and dissolved in H₂O.

Cytoplasm/Nucleus fractionation

ALCL cells were resuspended in hypotonic buffer (20mM tris-HCl pH 7; 10mM NaCl; 3mN MgCl2; 0.3% NP40) supplemented with SUPERase•In (Ambion) for 15 min on ice. After a centrifugation at 800*g* for 10 min, the supernatant was collected as the cytoplasmic fraction. The pellet was resuspended in cell extraction buffer (10mM Tris pH 7.4; 2mM Na3VO4; 100mM NaCl; 1% Triton-x100; 1mM EDTA; 10% glycerol; 1mM EGTA; 0.1% SDS; 1mM NaF; 0.5% Na-deoxycholate; 20mM Na4P2O7) supplemented with RNase inhibitors for 30 min on ice. After a centrifugation at 14,000*g* for 30 min, the supernatant was collected as the nuclear

fraction. Chromatin was pelleted at maximum speed for 3 min. All fractions were resuspended in TRIzol (Invitrogen) and RNA was extracted following the standard protocol. All fractions were resuspended in TRIzol (Invitrogen) and RNA was extracted following the standard protocol.

Generation of TLBR-2 and MAC2A dCas9-KRAB MTAAT^{KD} cell lines

pHAGE TRE dCas9-KRAB was a gift from Rene Maehr & Scot Wolfe (Addgene plasmid # 50917; http://n2t.net/addgene:50917; RRID:Addgene_50917). Vector was packaged into lentiviral particles HEK 293T-cell line and used for infection of low passages MAC2A or TLBR-2. Cells were selected with 0.5 mg/ml of Geneticin[™] Selective Antibiotic (G418 Sulfate, Gibco), for 3 days (both MAC2A and TLBR-2).

Annealed sgRNA oligomers were ligated into BsmB1 digested LRG2.1 plasmid (a gift from Christopher Vakoc, addgene plasmid #108098; http://n2t.net/addgene:108098; RRID:Addgene_108098) and lentiviral particles were created as previously described¹⁶. Viral particles were used to infect TLBR-2 dCas9-KRAB and MAC2A dCas9-KRAB previously derived cell lines. Infected cells were then purified by gating GFP+ cells using BD FACS Melody cell sorter. The list of sgRNA sequences is provided in **supplementary table 2**.

Gene Expression Profiling (GEP) by Nanostring

Total RNA was extracted by Maxwell® RSC RNA FFPE kit (Promega) starting from 5 slides of 5µm FFPE tissue. RNA quantity and quality were assessed by NanoDrop2000 (Thermo Fisher Scientific). For samples that reached the quality standards (A260/A280 \geq 1.7 and A260/A230 \geq 1.8), we evaluated the gene expression profile (GEP) by nCounter platform (NanoString Technologies) using a custom panel. This panel includes a total of 39 transcripts: 17/18 lncRNAs from the non coding-signature previously generated by RNA-seq platform¹⁶, that showed a suitable sequence to generate unique and specific nCounter

probes, 4 ALCL-restricted coding transcripts (ALK, TMOD1, BATF, TNFRSF8), 1 ALCLspecific non-coding transcript (ERBB4)²⁰, BNIP3, BNIP3L and 15 housekeeping (supplementary table 3). Analysis of detected gene counts was performed by nSolver Analysis Software 4.0 (NanoString Technologies) as previously described²¹. Briefly, for samples that passed imaging quality controls, raw counts of coding genes were subjected to background subtraction as mean counts of negative controls plus two standard deviation and then normalized on synthetic positive controls. On the contrary, no background subtraction was applied to non coding transcript that were normalized on synthetic positive controls only. After that, counts normalized on technical controls were further normalized on the 3 housekeeping genes with the lowest coefficient of variation (COG7, DNAJC14, ERCC3) and log2 transformed. Applying the 3 gene model²² and considering the lack of ALK expression, 29 patients were classified as ALK- ALCL. Almost all these patients (n=26, 90%) showed the expression of at least one among TMOD, BATF and TNFRSF8 genes (supplementary table 4). On the contrary, 14 patients were classified as ALK⁺ ALCL because of high ALK expression. This group included 3 ALK⁻ ALCL that were re-classified as ALK+ because of their high level of ALK mRNA. Moreover, one patient that showed a low level of both ALK and 3 genes model was classified as ALK⁺ ALCL according to the current WHO diagnostic criteria classification ¹.

Positive expression of the genes included in the 3 genes model (TMOD, BATF and TNFRSF8) was considered for level of expression over the 1st quartile of normalized gene counts distribution.

To investigate IncRNAs differential expression a build ratio analysis was performed by comparing the transcriptomic profiles of ALK⁻ and ALK⁺ samples. For each comparison, the p-value was calculated as Kruskal-Wallis test since data were not normal distributed. Correlation between normalized gene counts was evaluated by Pearson correlation coefficient. ERBB4, was used as positive technical control for IncRNA detection.

To evaluate the performance of MTAAT in predicting ALCL subtypes, we constructed the receiver operating characteristic (ROC) curve and calculated the area under the ROC curve (AUC) and the relative accuracy of prediction. Bioinformatic analyses on GEP were conducted by R Software v4.1.3 using the following R packages: ggplot2, ggbiplot (function prcomp), corrplot, pROC and ROCR.

Chromatin immunoprecipitation (ChIP) and ChIP-sequencing

TLBR-2 cells (15*10⁶/IP) were crosslinked for 15 min with 1% formaldehyde, lysed and sonicated for 15 cycles (30 min ON, 30 min OFF) using Bioruptor Pico Sonicator (Diagenode, Denville, NJ, USA) to obtain 100-200 bp chromatin fragments. Chromatin was precipitated overnight using Dynabeads Protein G magnetic beads (Thermo Fisher Scientific) and 1,5ug of H3K4me3 (Rabbit Polyclonal, Abcam), 1,5ug of H3K27Ac (ab4729, Rabbit Polyclonal, Abcam), 2,5ug of RNAPII (Rabbit Monoclonal, #14958, Cell Signaling Technology), or IgG-isotype control (#66362, Cell Signaling Technology). A fraction equal to 0.25% of total chromatin was used as input. For Chip, each RT-qPCR value was normalized over the appropriate input control and reported in graphs as a % of input. The list of primers used is provided in **supplementary table 1**.

For ChIP-seq, samples were quantified with Qubit (Thermo Fisher Scientific), and the quality was evaluated by Bioanalyzer (Agilent Technologies). Library for sequencing was obtained following the NEBNext Ultra II DNA Library Prep Kit for Illumina (New England BioLabs, Ipswich, MA, USA) using 3-10 ng ChIP DNA as starting material. Triplicates were sequenced on Illumina NextSeq500 high-output cartridge (single stranded, reads length 75 bp-1 × 75).

Library preparation and RNA-sequencing
RNA-seq libraries were obtained starting from 100 ng of total RNA following Illumina Stranded TotalRNA Prep Ligation with Ribo-zero Plus protocol. Sequencing was performed using Illumina NEXTSeq high-output cartridge (double-stranded, reads length 75bp-2 ×75).

Sequencing data processing

Sequencing data quality was assessed using the FastQC v0.11.8 software (www.bioinformatics.babraham.ac.uk/projects/fastqc/), low quality reads were discarded, and where residual adapters were present, they were removed using Trimmomatic (v.0.39) software.

For ChIP-seq, filtered reads were aligned to the human reference genome (GRCh38/hg38 assembly) by using Bowtie2 version 2.3.5.1. Picard tool (http://broadinstitute.github.io/picard) and samtools 1.9v (http://samtools.sourceforge.net/) were used to remove duplicates and unmapped reads and to retain uniquely aligned reads for downstream analyses. Peak calling was performed using MACS2 (v.2.1.3.3). Significant peaks (q < 0.05) were merged, and high confidence peaks enriched in at least 2 of 3 replicates were retained for the analysis.

ChIPseeker R package was used for assigning peaks to the nearest genes, according to GRCh38/hg38 annotation, using a transcription start site (TSS) window of ±3 kb.

For RNA-seq, filtered paired-end reads were aligned to the human reference transcriptome (GRCh38, Gencode release 30 using STAR version 2.7), and gene abundances were estimated with RSEM algorithm (v1.3.1). Differential analysis was performed with R package DESeq2, considering a false discovery rate (FDR) of 10% and excluding genes with low read counts. Significantly deregulated genes underwent enrichment analysis, performed through enrichR package on Gene Ontology biological processes using a significance threshold of 0.05 on P value adjusted for multiple testing using the Benjamini–Hochberg correction.

Prediction of TF binding sites

5

TFs binding sites prediction was performed applying FIMO algorithm on a selected region of 500bp around MTAAT TSS. HOCOMOCO and JASPAR were used as reference motifs databases and q-value <0.1 was considered for significant motif enrichment.

Western blot

Western blot analysis was performed using standard techniques. The primary antibodies were: Caspase-3 (#9662, Rabbit Monoclonal, Cell Signaling Technology), PARP-1 (ab137653, Rabbit Polyclonal, Abcam), p62/SQSTM (ab91526, Rabbit Polyclonal, Abcam), LC3 A/B (#4108, Rabbit Monoclonal, Cell Signaling Technology), HA (C29FA, Rabbit, Cell Signaling Technology), B-Actin (AC-15, Mouse, Sigma-Aldrich). All secondary antibodies (rabbit and mouse) were HRPconjugated (GE Healthcare) and diluted 1:3000. Densitometric analysis was performed using ImageJ software.

Cell cycle analysis

For cell cycle analysis, the hypotonic propidium iodide (PI) method was used. All flow cytometry analyses were performed with FACSCanto[™] II Cell Analyzer (BD Biosciences).

Generation of promoter and enhancer plasmids

pGL3 basic and pGL3 promoter plasmids (Promega) with the selected putative promoter/enhancer region of MTAAT were generated as follow: the selected region was amplified by PCR from genomic DNA of TLBR-2 using PhusionTM Plus DNA Polymerase kit (Thermo Fisher Scientific) with an upstream oligomer containing a 5'-Kpnl site and a downstream oligomer containing a 3'-Xhol site (**supplementary table1**). PCR product of the right length was isolated from a 1% agarose gel, purified, and finally cloned into Kpnl-Xhol-digested pGL3 basic/ pGL3 promoter vectors. The plasmids were sequenced and checked for right sequence.

Plasmid transfection

p3XFlagCMV10_BNIP3 was obtained cloning the gBlock Gene Fragment (IDT) for BNIP3 into the p3XflagCMV10 (Sigma Aldrich). For EGFP-LC3 expression, gBlock Gene Fragment (Integrated DNA Technologies, IDT) for LC3 was cloned into the pEGFP-C3 (Diatech Lab Line). 48 hours after induction with doxycycline, cells were nucleofected with a total of 400ng of plasmids and the co-localization of the two proteins was evaluated by immunofluorescence 24 hours after nucleofection.

Luciferase Assay

MAC2A and TLBR-2 cells (1 × 10⁶) were transfected with 400 ng of reporter pGL3-luciferase plasmids using the Cell Line Nucleofector Kit SF and 4D Amaxa Nucleofector (program FI115 for MAC2A, DS-130 for TLBR-2). Twenty-four hours after transfection, cells were harvested, and luciferase activity was measured using the Dual-Luciferase Reporter Assay System (Promega) in a GloMax Discover Luminometer (Promega) according to the manufacturer's instructions. For each sample, firefly luciferase activity was normalized on *Renilla* luciferase activity and transactivation of the various reporter constructs was expressed as fold induction on empty vector (pGL3-basic or pGL3-promoter) activity.

Immunohistochemistry (IHC)

Formalin-fixed paraffin-embedded (FFPE) tissue sections were stored and classified by the Pathology Division of the Arcispedale S. Maria Nuova IRCCS, Reggio Emilia, Italy. IHC was performed on 4 µm-thick formalin-fixed, paraffin-embedded sections of 3 ALK⁻ ALCL using anti-SOD1 (#37385, Rabbit Monoclonal, Cell Signaling Technology, 1:800) monoclonal primary antibody. The immunohistochemical staining was developed on platform Ventana Bench-ULTRA using the OptiView DAB Detection Kit (Ventana-Roche,Tucson, Az) and

amplified with OptiView Amplification Kit (Ventana-Roche,Tucson Az). Slides were counterstained with Hematoxylin II counterstain and Bluing Reagent. The IHC have been evaluated independently by two Pathologists (M.Z and S.A.). ALK⁻ ALCL FFPE sections were considered SOD1-positive when at least 50% of the cells expressed this antigen. Diagnoses were assigned according to the WHO classification¹.

Supplementary Figure Legends

Supplementary Figure 1. Coding and non-coding profiling of ALCLs

(**A**) Boxplots representing the expression of ALK, BATF3, TMOD1, TNFRSF8 among ALK⁺ (red) and ALK⁻ (grey) ALCL evaluated by nCounter platform in the FFPE cohort. Comparisons were considered significant for $p \le 0.05$ (*). (**B**) Boxplot representing the expression of ERBB4 among ALK⁺ (red) and ALK⁻ (grey) ALCL evaluated by nCounter platform in the FFPE cohort. Comparison was considered significant for $p \le 0.05$ (*). (**C**) Dot plots show gene expression counts distribution of the six not statistically significant lncRNAs among ALK⁺ ALCL (red dots) and ALK⁻ ALCL (black dots) of the FFPE training cohort. (**D**) Graphs show the expression of lncRNAs among ALK⁺ (red) and ALK⁻ (grey) ALCL evaluated by RT-qPCR in the validation cohort. (**E**) RT-qPCR analysis expression of MTAAT level in donor resting (n=3) and activated (n=3) CD4+ T-lymphocytes. (**F**) Graph shows the high discriminatory accuracy (70%) of the ROC curve.

Supplementary Figure 2. Regulatory features of MTAAT

(A) RT-qPCR analysis expression of MTAAT level in a panel of cell lines. (**B**) ChIP-PCR detection of IgG on MTAAT fragments in ALK⁻ ALCL cell lines. GAPDH promoter was used as CTR+ whereas a non-coding intergenic region (CTR-) served as negative control. The values are representative of three independent experiments. (**C**) ChIP-PCR detection of RNAPII, H3K4me3, and H3K27Ac markers on MTAAT fragments in MTAAT-negative cell line

CUTLL1. GAPDH promoter was used as CTR+ whereas a noncoding intergenic region (CTR-) served as negative control. The values are representative of three independent experiments.

Supplementary Figure 3. Functional validation of MTAAT KD through CRISPR dCAS9-KRAB system

(A) Relative expression of OIPS5-AS1, DANCR, NEAT1, and KCNQ1OT1 used as controls for cytoplasmic, nucleic, and chromatinic fractions, respectively (representative three independent experiment). (B) Dot plots show physical parameters and setting strategy to sort ALCL dCas9-KRAB cells expressing MTAAT-sgRNA-GFP guides. (C) Western blot shows time course expression of dCAS9-KRAB-HA after doxycycline treatment. (D) RT-qPCR analysis of MTAAT expression 48 hours after doxycycline treatment in TLBR-2 dCAS9-KRAB (MTAAT^{KD}) and MAC2A dCAS9-KRAB (MTAAT^{KD}). Comparison was considered significant for p<0.01 (**). (E) RT-qPCR expression analysis of a panel of MTAAT-target genes in ALCL dCas9-KRAB cells expressing sgRNA#3 (48 hours after doxycycline treatment). Comparison was considered significant for p<0.05 (*) and p<0.01 (**).

Supplementary Figure 4. Loss of MTAAT promotes RNAPII recruitment on its target genes.

(A) Graphs show the TSS and fragments around TSS of a set of genes deregulated after MTAAT^{KD} ChIP-qPCR detection of H3K4me3 (B), H3K27Ac (C) and RNAPII (D) on MTAAT-genes target fragments in TLBR-2 MTAAT^{KD} cell lines. The values are representative of three independent experiments. (E) RT-qPCR analysis of OPTN expression after MTAAT-KD (48 hours after doxycycline treatment) in TLBR-2 dCAS9-KRAB cells. (F) Graph shows interaction propensities of MTAAT with a set of chromatin modifier enzyme. In red, a representative group of H3K4-modifier proteins and in blue, a representative group of H3K9-

modifier proteins. In green, the most important catalytic subunit of RNAPII. The interaction propensity between EZH2 and HOTTIP was used as CTR+ whereases the interaction propensity between Wdr5 and HYMAI was set as CTR-. (**G**) RT-qPCR expression analysis of MTAAT and BNIP3 expression in a panel of non-TCL cell lines (thyroid cancer, purple; lung cancer, blue; breast, red; diffuse large B cell lymphoma, green).

Supplementary Figure 5. Loss of MTAAT does not affect cell cycle nor apoptosis

(**A**) Representative immunohistochemistry analysis of SOD1 in FFPE section of ALK-ALCL patients expressing different level of MTAAT. Magnification 200X. (**B**) Western blots show the expression of autophagic markers after 48hr of MTAAT KD in TLBR-2 and MAC2A dCas9-KRAB sgRNA#3 cells. Densitometric analysis of LC3 refers to LC3II band. Cloroquine (CQ) was added to cells for the last for 2 hours of doxycycline -DOX- treatment (20µM for TLBR-2 and 40µM for MAC2A). (**C**) Histograms show the percentage of cell in each cell cycle phase (72 hours after doxycycline -DOX- treatment). (**D**) Western blot shows the expression of CASP3 and PARP-1 in TLBR-2 MTAAT^{KD} (72 hours after doxycycline treatment).

Supplementary Table

Supplementary Table 1. List of primers used in this study

Primer qPCR MTAAT Promoter	
Kpnl_MTAAT Prom F	atcaaggtaccggtaccGTGTCTCCTCAACAGC
	TGTG
Xhol_MTAAT Prom R	gttcactcgagctcgagACAACGTGCCAGAATCT
	GTG

Primer IncRNAs	Sequence (5'-3')
XLOC_115902 F	TGGGTCACCAGTTCTGCTCT
XLOC_115902 R	AAGGGTGCTGTTTTGAGTGC
XLOC_066584 F	AGGAACTCTACTCAAGATTCTGGG
XLOC_066584 R	TCACTGTAAGTTAGATCAACGGGT
XLOC_211989 F	ATTTGACCCCTCTGCACCTG
XLOC_211989 R	TGCCAGGATGTATGGGTTCTG
XLOC_215396 F	GGATGCACTTGTCAGGGTAGG
XLOC_215396 R	GGTACTTGTCCCTACACCCCC
XLOC_261766 F	ACATACCTTTCCGTAGAGCAGT
XLOC_261766 R	CAAAGGTCTCAAAGCGGTCC
XLOC_136653 F	ATGCCAAACTGTACCCTGCC
XLOC_136653 R	TGCTTTTGTGTCCAAGGGGT
DANCR F	GAAGTGCAGCTGCCTCAGTTCTTA
DANCR R	AATGGCTTGTGCCTGTAGTTGTC
NEAT1 F	CTTCTTCCCTTTAACTTATCCATTCAC
NEAT1 R	CTCTTCCTCCACCATTACCAACAATAC
KCNQ1OT1 F	GGCTACGACCACAGGTGAAA
KCNQ10T1 R	GTCTGCTGGCTTGTGTGTTG
OIP5-AS1 F	TTTCCTTGACCTTTAGGTGCTTT
OIP5-AS1 R	GAAGCAGGACTACCCACTCTAGG

Primers RNAseq validation	Sequence (5'-3')
BNIP3 F	CGGGATGCAGGAGGAGAG
BNIP3 R	TAGAAACCGAGGCTGGAACG

BNIP3L F	CAGCAGGGACCATAGCTCTC
BNIP3L R	TGATACCCAGTCCGCACTTT
MAP1LC3B F	TTCAGGTTCACAAAACCCGC
MAP1LC3B R	TCTCACACAGCCCGTTTACC
GABARAP F	CGAAAGAAATACCCGGACCG
GABARAP R	GAGATCAGAAGGCACCAGGT
XBP1 F	CTGGAGCTATGGTGGTGGTG
XBP1 R	CCCCGACAGAAGCAGAACTT
TRIB3 F	CAGCGGATGCAGAGGAGAGA
TRIB3 R	GCCGTCTGATGCCCTCG
ATF4 F	GAAGCGATTTAACGAGCGCC
ATF4 R	ATCTTGGTTCCTGCCACGTT
ALDOC F	GGGCGCTTACCTTCTCCTAT
ALDOC R	ACTGCCTTCATACTTGCCCT
PGM1 F	TGGGAAAGCAGCAGTTTGAC
PGM1 R	CCCACAACTCCATGCATAGC
PFKB3 F	CACTTGCATTACCGTCCCTG
PFKB3 R	ACTCTTCCGACCTTCCCAAG
TPI1 F	GGGGCTTTTACTGGGGAGAT
TPI1 R	CCAATGCAGGCGATTACTCC
GPI F	AAGACAATAGTGGGGTGGGG
GPI R	TTGTCCAGGAATTCACCCGA
MPI F	AGGAAAGGGAAAGGGTAGGC
MPI R	TGTAGGGAGGGCTCTTTTGG
OPTN F	TTGGAGTGACTTTTCCACAGGA

OPTN R	GGGGCTGTCCTCCTTTTCAG
CHMP2A F	ATGGACCTATTGTTCGGGCG
CHMP2A R	TCTCTAGTTTCTGTCGCTCGC

Primer ChIP	Sequence (5'-3')
P6 MTAAT F	TACTGGGGGAAACAGCAAAC
P6 MTAAT R	TGTGGGACACAGCTAAAGCA
P3 MTAAT F	GCCTCTGCCATGCCCTAATA
P3 MTAAT R	GATTCTTTATCTGCTGTCTGTGC
P4 MTAAT F	TCTCACCATTGTTCAAACTGCT
P4 MTAAT R	GGGTCTTGAGCTATGTGACG
P5 MTAAT F	TCCTCTGAATGATCTCTGTCTGT
P5 MTAAT R	TTGCTGCTCTGACTGTTCCA
P1 BNIP3 F	CTCTCCTCCTGCATCCCG
P1 BNIP3 R	CTGCCCTGTGAGTTCCTCC
P2 BNIP3 F	TGCTAGTGGGGAAACTGAGG
P2 BNIP3 R	TCCCGAGACGCTCAGCTC
P3 BNIP3 F	TCCCGAGACGCTCAGCTC
P3 BNIP3 R	GACCCCGGTTCAGCTTCT
P4 BNIP3 F	ACCGCCAGAGATACATAGCA
P4 BNIP3 R	GGAGTCTTTCTGTGTTGCCA
P1 BNIP3L F	TCCCCAAGACACCTATTGCA
P1 BNIP3L R	GCAGTGGGAGAGAGGATGAG
P2 BNIP3L F	GCGAGGAAAATGAGCAGTCT
P2 BNIP3L R	GCCAATGAGCTGCCTTCTC

P3 BNIP3L F	TCGTCTAGGGTTGGCTTCAG
P3 BNIP3L R	ATCTTGGGTGGTTCAGGAGG
P1 ATF4 F	GCACTTGAGCCGGATGAAAA
P1 ATF4 R	TTTCCAGAGGCCCCATTCAT
P2 ATF4 F	CAGGCCACAAATCACCACC
P2 ATF4 R	GGTCGCTGCTAGTCCTCAG
P3 ATF4 F	CGTCCTCGGCCTTCACAATA
P3 ATF4 R	TCACGAAAGGAGAGAGGTGT
P1 XBP1 F	CCAAACCGAGAGCTTTCCAG
P1 XBP1 R	GTCTTTTCGAACCCAAGGCC
P2 XBP1 F	GTTTCAGGACCGTGGCTATG
P2 XBP1 R	TCAGTCTGGAAAGCTCTCGG
P1 OPTN F	GCCTGGCATTCTCCTCTTTC
P1 OPTN R	GCTCTAAGGCGTCACTGTGA
P2 OPTN F	ATGGGCGGGGTATGGGAT
P2 OPTN R	GTCACTGTTTCCTCGGCATC
P3 OPTN F	GCGGCCTGAAAACGGTAC
P3 OPTN R	ACGTCACCTCCAAGTCTCTG
GAPDH Exon1 F	AAGACCTTGGGCTGGGACT
GAPDH Exon1 R	GCTGCGGGCTCAATTTATAG
RUNX2 Upstream F	TCTCAAGGTGCCTGTCTGC
RUNX2 Upstream R	TGAAGTTTGGCCTCTGGTCT
D17Z1 (α-Sat) F	CTTTGGATGGAGCAGGTTTGAGAC
D17Z1 (α-Sat) R	CCGTTTAGTTAGGTGCAGTTATCC

Supplementary Table 2. List of sgRNA and GapmeRs sequences

sg_RNA	Primer Forward	Primer Reverse
sgRNA_MTAA	CACCGTAATCTTCTGAGGTTGCT	AAACTCAGCAACCTCAGAAGATT
Т #2	GA	AC
sgRNA_MTAA	CACCGGCACCTACTGTGTATTTC	AAACTCAGCAACCTCAGAAGATT
Т #3	СТ	AC

GapmeR	Sequence	Cat.no. * Qiagen
Negative control	AACACGTCTATACGC	339515
IncRNA_MTAAT #1	TCATTAGCTAGGAGTA	339511
IncRNA_MTAAT #2	TCAATAAAGCGGGATC	339511

Supplementary Table 3. List of genes analysed by nCounter platform

Gene	Туре
XLOC_043524	IncRNA
XLOC_066584	IncRNA
XLOC_080485	IncRNA
XLOC_098415	IncRNA
XLOC_115902	IncRNA
XLOC_163319	IncRNA

XLOC_169868	IncRNA
XLOC_136653	IncRNA
XLOC_169876	IncRNA
XLOC_177839	IncRNA
XLOC_211989	IncRNA
XLOC_215396	IncRNA
XLOC_261766	IncRNA
XLOC_286804	IncRNA
XLOC_330767	IncRNA
XLOC_330840	IncRNA
XLOC_334219	IncRNA
ERBB4	IncRNA
ALK	Coding gene
TMOD	Coding gene
BATF3	Coding gene
TNFRSF8	Coding gene
BNIP3	Coding gene
BNIP3L	Coding gene
CHMP2A	Coding
	gene/housekeeping
REEP5	Coding
	gene/housekeeping
EMC7	Coding
	gene/housekeeping

COG7	Coding
	gene/housekeeping
DNAJC14	Coding
	gene/housekeeping
EIF2B4	Coding
	gene/housekeeping
ERCC3	Coding
	gene/housekeeping
G6PD	Coding
	gene/housekeeping
GUSB	Coding
	gene/housekeeping
MRPS5	Coding
	gene/housekeeping
PPIA	Coding
	gene/housekeeping
MTMR14	Coding
	gene/housekeeping
HPRT1	Coding
	gene/housekeeping
SF3A3	Coding
	gene/housekeeping
TLK2	Coding
	gene/housekeeping

	ALK				Other	ALCL
	traslocatio				translocati	Classificat
Sample	n	BATF3	TMOD1	TNFRSF8	on	ion
lt2	+	-	-	-	-	ALK+
lt3	+	+	-	+	-	ALK+
lt4	+	+	+	+	-	ALK-
lt5	+	+	+	+	-	ALK-
lt6	-	+	+	+	-	ALK-
lt7	+	+	+	+	-	ALK+
lt8	-	+	-	+	-	ALK-
It9	+	+	+	+	-	ALK+
lt10	-	-	-	-	-	ALK-
lt11	+	+	+	+	-	ALK-
lt12	+	+	+	+	-	ALK-
lt13	+	-	-	-	-	ALK+
lt14	-	+	-	+	-	ALK-
lt15	+	+	+	+	-	ALK-
lt17	_	+	+	-	-	ALK-
lt19	+	+	+	+	-	ALK+
lt20	-	-	-	-	-	ALK-
lt21	+	+	+	+	-	AI K+
lt22	+	+	+	+	-	AI K-
lt23	+	+	+	+	-	AI K+
lt24	-	-	-	-	+	AI K+
lt25	+	+	-	+	_	ALK+
lt26	+	+	+	+	-	ALK+
lt27	+	+	+	+	-	ALK-
lt28	+	+	+	+	-	ALK+
lt29	_	_	-	_	-	ALK-
lt30	_	_	+	+	-	ALK-
lt31	+	+	+	+	_	ALK-
lt32	+	+	+	+	_	ALK-
lt34	+	+	+	+	_	ALK-
lt35	+	+	+	+	_	
lt36	+	+	+	+	_	ALK-
lt37	+	+	+	+	_	
lt38	+	+	+	+	_	
1:39	+	+		+	_	
lt40	+			+		
lt40			+	+		
	+	+	· +	· +	_	
lt45		-	+		_	
It40	_ _	-	· ·	_ _	_	
	· ·	+	· ·	· ·	_	
1150	· ·	+	· ·	· ·	_	
1150	· ·	· ·	· ·	· ·	_	
1157	_	-	· ·	_	_	
1152	-	-	т	-	-	

					Lenght
Label	Strand	Frame	Start	Stop	(nt aa)
ORF1	+	1	4012	4182	171 56
ORF2	+	3	2127	2285	159 52
ORF3	-	1	5266	5072	195 64
ORF4	-	1	2620	2429	192 63

Supplementary Table 5. In silico analysis of MTAAT open reading frames (ORFs)

Supplementary Table 6. TF binding sites prediction by FIMO algorithm

motif	sequence	start	stop	scor	p.valu	q.val	matched_sequenc	databa
				е	е	ue	е	se
IRF3	chr3:18033	347	366	18,53	2,04E	0,00	GAAGAGGAAAGG	НОСО
	2773-			72	-07	0171	AAAAGGGT	мосо
	180333239							
ZKSC1	chr3:18033	270	288	17,34	6,69E	0,00	TAAGCACCTACTG	НОСО
	2773-			38	-07	0589	TGTATT	мосо
	180333239							
ZFP82	chr3:18033	347	370	16,38	0,000	0,00	TTCCACCCTTTTC	НОСО
	2773-			33	00119	0984	стттсстсттс	мосо
	180333239							
IRF3	chr3:18033	346	365	16,07	0,000	0,00	AGAAGAGGAAAG	НОСО
	2773-			44	00155	0648	GAAAAGGG	мосо

	180333239							
ZN467	chr3:18033	347	368	13,73	0,000	0,00	GAAGAGGAAAGG	НОСО
	2773-			4	00235	15	AAAAGGGTGG	мосо
	180333239							
MAZ	chr3:18033	361	382	14,55	0,000	0,00	AAGGGTGGAACA	НОСО
	2773-			08	00282	236	GTCAGAGCAG	мосо
	180333239							
NR1H3	chr3:18033	165	183	14,84	0,000	0,00	CTGAGGTTGCTGA	HOCO
	2773-			56	00313	275	AGGCCC	мосо
	180333239							
FLI1	chr3:18033	350	367	15,17	0,000	0,00	GAGGAAAGGAAA	НОСО
	2773-			19	00316	267	AGGGTG	мосо
	180333239							
ZN467	chr3:18033	350	371	12,88	0,000	0,00	GAGGAAAGGAAA	НОСО
	2773-			3	00358	15	AGGGTGGAAC	мосо
	180333239							
ETS2	chr3:18033	353	365	13,95	0,000	0,00	GAAAGGAAAAGG	НОСО
	2773-			31	00376	324	G	мосо
	180333239							
ETV5	chr3:18033	352	365	14,04	0,000	0,00	GGAAAGGAAAAG	HOCO
	2773-			76	00569	264	GG	мосо
	180333239							
ZN394	chr3:18033	352	371	13,36	0,000	0,00	GGAAAGGAAAAG	НОСО
	2773-			62	00604	43	GGTGGAAC	мосо
	180333239							

ETV5	chr3:18033	347	360	13,95	0,000	0,00	GAAGAGGAAAGG	НОСО
	2773-			24	0062	264	AA	мосо
	180333239							
BC11A	chr3:18033	346	362	13,89	0,000	0,00	AGAAGAGGAAAG	носо
	2773-			17	00624	526	GAAAA	мосо
	180333239							
CRX	chr3:18033	226	238	13,87	0,000	0,00	TCAGAGGATTAAG	НОСО
	2773-			5	00633	55		мосо
	180333239							
IRF1	chr3:18033	70	89	14,09	0,000	0,00	AAAAATGAAAATG	НОСО
	2773-			38	00675	585	AAAATGT	мосо
	180333239							
OTX2	chr3:18033	226	236	13,69	0,000	0,00	AGAGGATTAAG	НОСО
	2773-			47	00678	593		мосо
	180333239							
KLF3	chr3:18033	357	375	12,92	0,000	0,00	GGAAAAGGGTGG	НОСО
	2773-			19	00718	615	AACAGTC	мосо
	180333239							
ANDR	chr3:18033	46	63	13,85	0,000	0,00	AGTTCTGTCAAGT	НОСО
	2773-			12	00723	631	ттөст	мосо
	180333239							
ZFX	chr3:18033	163	172	14,32	0,000	0,00	GAAGGCCCCA	НОСО
	2773-			81	00851	771		мосо
	180333239							
ZN341	chr3:18033	353	374	13,07	0,000	0,00	GAAAGGAAAAGG	НОСО

	2773-			69	00881	348	GTGGAACAGT	MOCO
	180333239							
ZN341	chr3:18033	362	383	13,05	0,000	0,00	AGGGTGGAACAG	НОСО
	2773-			13	00894	348	TCAGAGCAGC	мосо
	180333239							
VEZF1	chr3:18033	348	369	13,01	0,000	0,00	AAGAGGAAAGGA	НОСО
	2773-			48	00902	482	AAAGGGTGGA	мосо
	180333239							
CDX2	chr3:18033	379	390	13,06	0,000	0,00	CTTTATTGCTGC	НОСО
	2773-			67	0091	828		мосо
	180333239							
ZN394	chr3:18033	347	366	12,81	0,000	0,00	GAAGAGGAAAGG	НОСО
	2773-			69	0103	43	AAAAGGGT	мосо
	180333239							
KLF15	chr3:18033	350	368	11,25	0,000	0,00	GAGGAAAGGAAA	HOCO
	2773-				0104	904	AGGGTGG	мосо
	180333239							
SP4	chr3:18033	356	375	12,75	0,000	0,00	AGGAAAAGGGTG	НОСО
	2773-			21	0107	915	GAACAGTC	мосо
	180333239							
MAZ	chr3:18033	346	367	12,04	0,000	0,00	AGAAGAGGAAAG	НОСО
	2773-			24	0115	479	GAAAAGGGTG	мосо
	180333239							
VEZF1	chr3:18033	344	365	12,59	0,000	0,00	GCAGAAGAGGAA	HOCO
	2773-			26	0116	482	AGGAAAAGGG	мосо

	180333239							
ZN467	chr3:18033	344	365	10,39	0,000	0,00	GCAGAAGAGGAA	НОСО
	2773-			36	0117	324	AGGAAAAGGG	мосо
	180333239							
ZN350	chr3:18033	350	367	12,93	0,000	0,01	CACCCTTTTCCTT	НОСО
	2773-			94	012	01	тсстс	мосо
	180333239							
IRF9	chr3:18033	410	421	13,47	0,000	0,01	AAAAGAGAAATT	НОСО
	2773-			11	0121	1		мосо
	180333239							
ZN341	chr3:18033	343	364	12,46	0,000	0,00	TGCAGAAGAGGA	НОСО
	2773-			15	0126	348	AAGGAAAAGG	мосо
	180333239							
LYL1	chr3:18033	158	171	12,46	0,000	0,01	CCTTCTGGGGCC	НОСО
	2773-			15	0146	27	тт	мосо
	180333239							
LEF1	chr3:18033	346	359	12,15	0,000	0,01	тсстттсстсттс	HOCO
	2773-			15	0168	46	т	мосо
	180333239							
SPI1	chr3:18033	345	361	12,42	0,000	0,01	CAGAAGAGGAAA	НОСО
	2773-			19	0169	44	GGAAA	мосо
	180333239							
VEZF1	chr3:18033	343	364	11,71	0,000	0,00	TGCAGAAGAGGA	НОСО
	2773-			11	0195	538	AAGGAAAAGG	мосо
	180333239							

ZN257	chr3:18033	349	360	12,51	0,000	0,01	ттсстттсстст	HOCO
	2773-			56	0208	82		мосо
	180333239							
IRF2	chr3:18033	70	89	11,39	0,000	0,01	AAAAATGAAAATG	НОСО
	2773-			06	0209	81	AAAATGT	мосо
	180333239							
FLI1	chr3:18033	345	362	11,89	0,000	0,00	CAGAAGAGGAAA	НОСО
	2773-			06	0214	903	GGAAAA	мосо
	180333239							
FOXJ3	chr3:18033	103	115	13,04	0,000	0,01	ATGTTTTTGTTTG	НОСО
	2773-			69	0214	88		мосо
	180333239							
BC11A	chr3:18033	423	439	12,26	0,000	0,00	GATACAGGAACTC	НОСО
	2773-			67	0234	988	AGAA	мосо
	180333239							
STAT6	chr3:18033	261	271	12,56	0,000	0,02	TGCCCAGGAAA	НОСО
	2773-			19	0235	06		мосо
	180333239							
PRDM1	chr3:18033	353	366	12,43	0,000	0,02	GAAAGGAAAAGG	НОСО
	2773-			75	0239	07	GT	мосо
	180333239							
ERG	chr3:18033	347	359	12,57	0,000	0,01	GAAGAGGAAAGG	НОСО
	2773-			81	0239	69	А	мосо
	180333239							
PATZ1	chr3:18033	350	371	10,84	0,000	0,02	GAGGAAAGGAAA	НОСО

	2773-			03	0256	16	AGGGTGGAAC	MOCO
	180333239							
ZN140	chr3:18033	360	383	9	0,000	0,02	GCTGCTCTGACTG	НОСО
	2773-				0262	27	TTCCACCCTTT	мосо
	180333239							
MAZ	chr3:18033	349	370	10,41	0,000	0,00	AGAGGAAAGGAA	НОСО
	2773-			53	0269	748	AAGGGTGGAA	мосо
	180333239							
SPIB	chr3:18033	345	361	10,62	0,000	0,01	CAGAAGAGGAAA	НОСО
	2773-			5	0273	49	GGAAA	мосо
	180333239							
ETV4	chr3:18033	348	358	12,39	0,000	0,02	AAGAGGAAAGG	НОСО
	2773-			06	0274	39		мосо
	180333239							
ETV2	chr3:18033	350	365	11,54	0,000	0,02	GAGGAAAGGAAA	НОСО
	2773-			41	028	44	AGGG	мосо
	180333239							
IRF4	chr3:18033	422	439	11,35	0,000	0,01	GATACAGGAACTC	НОСО
	2773-			79	0294	36	AGAAT	мосо
	180333239							
ZN341	chr3:18033	344	365	10,82	0,000	0,00	GCAGAAGAGGAA	НОСО
	2773-			91	0312	647	AGGAAAAGGG	мосо
	180333239							
BATF3	chr3:18033	415	431	12,04	0,000	0,02	CTCTTTTATTCTG	НОСО
	2773-			62	0312	77	AGTT	мосо

	180333239							
ZIC3	chr3:18033	273	287	11,02	0,000	0,02	AAGCACCTACTGT	НОСО
	2773-			74	0314	8	GT	мосо
	180333239							
IRF4	chr3:18033	346	363	11,18	0,000	0,01	AGAAGAGGAAAG	НОСО
	2773-			95	032	36	GAAAAG	мосо
	180333239							
COE1	chr3:18033	155	169	11,04	0,000	0,02	AATCCTTCTGGGG	НОСО
	2773-			69	0336	94	СС	мосо
	180333239							
KLF6	chr3:18033	359	377	10,92	0,000	0,02	AAAAGGGTGGAA	НОСО
	2773-			19	0337	95	CAGTCAG	мосо
	180333239							
SPIB	chr3:18033	424	440	10,03	0,000	0,01	TGATACAGGAACT	НОСО
	2773-			12	0348	49	CAGA	мосо
	180333239							
STAT2	chr3:18033	68	86	11,17	0,000	0,02	ΤΤΑΑΑΑΑΤGΑΑΑΑ	НОСО
	2773-			19	0366	53	TGAAAA	мосо
	180333239							
STF1	chr3:18033	165	175	11,75	0,000	0,03	GCTGAAGGCCC	НОСО
	2773-			24	0372	33		мосо
	180333239							
ZBT17	chr3:18033	355	373	10,93	0,000	0,01	AAGGAAAAGGGT	НОСО
	2773-			4	0384	14	GGAACAG	мосо
	180333239							

ZBT17	chr3:18033	350	368	10,87	0,000	0,01	GAGGAAAGGAAA	НОСО
	2773-			74	0396	14	AGGGTGG	мосо
	180333239							
ERG	chr3:18033	352	364	11,70	0,000	0,01	GGAAAGGAAAAG	носо
	2773-			31	04	69	G	мосо
	180333239							
ETS1	chr3:18033	352	364	11,56	0,000	0,03	GGAAAGGAAAAG	НОСО
	2773-			25	0405	51	G	мосо
	180333239							
ZBT17	chr3:18033	344	362	10,83	0,000	0,01	GCAGAAGAGGAA	НОСО
	2773-			02	0407	14	AGGAAAA	мосо
	180333239							
MAZ	chr3:18033	344	365	9,508	0,000	0,00	GCAGAAGAGGAA	НОСО
	2773-			47	0423	884	AGGAAAAGGG	мосо
	180333239							
ZN502	chr3:18033	353	372	2,904	0,000	0,03	GAAAGGAAAAGG	НОСО
	2773-			11	0425	73	GTGGAACA	мосо
	180333239							
NR4A2	chr3:18033	114	122	11,91	0,000	0,03	AAAGGTCAT	НОСО
	2773-			95	0432	94		мосо
	180333239							
SMCA5	chr3:18033	38	52	11,33	0,000	0,03	GAAGAGAGAGCA	НОСО
	2773-			9	0433	79	AAC	мосо
	180333239							
NR4A1	chr3:18033	114	122	11,15	0,000	0,03	AAAGGTCAT	НОСО

	2773-			33	0448	92		MOCO
	180333239							
HXC9	chr3:18033	381	390	11,63	0,000	0,04	CTTTATTGCT	НОСО
	2773-			55	0458	16		мосо
	180333239							
ZN467	chr3:18033	351	372	7,244	0,000	0,00	AGGAAAGGAAAA	НОСО
	2773-			68	0461	914	GGGTGGAACA	мосо
	180333239							
BATF	chr3:18033	97	114	11,52	0,000	0,04	TGTTTTTGTTTGA	НОСО
	2773-			31	0462	11	СТААТ	мосо
	180333239							
VEZF1	chr3:18033	349	370	10,17	0,000	0,00	AGAGGAAAGGAA	HOCO
	2773-			04	0462	789	AAGGGTGGAA	мосо
	180333239							
RXRG	chr3:18033	114	126	8,796	0,000	0,04	CTTAAAAGGTCAT	НОСО
	2773-			88	0469	19		мосо
	180333239							
VEZF1	chr3:18033	358	379	10,11	0,000	0,00	GAAAAGGGTGGA	HOCO
	2773-			85	0475	789	ACAGTCAGAG	мосо
	180333239							
ZN350	chr3:18033	388	405	11,26	0,000	0,02	GAGTTCATTTCTT	НОСО
	2773-			26	0481	03	ACCTT	мосо
	180333239							
LEF1	chr3:18033	351	364	11,12	0,000	0,02	CCTTTTCCTTTCC	НОСО
	2773-			12	0498	17	т	мосо

	180333239							
ZN143	chr3:18033	139	160	7,151	0,000	0,04	AGGATTTGGGTAG	НОСО
	2773-			16	05	45	ATGTATTTC	мосо
	180333239							
PRDM6	chr3:18033	353	365	11,54	0,000	0,04	GAAAGGAAAAGG	НОСО
	2773-			69	0513	13	G	мосо
	180333239							
ZN274	chr3:18033	32	51	9,865	0,000	0,02	GCCACTGAAGAG	НОСО
	2773-			55	0515	89	AGAGCAAA	мосо
	180333239							
IRF1	chr3:18033	408	427	10,21	0,000	0,01	CAGAATAAAAGAG	НОСО
	2773-			88	0522	54	ΑΑΑΤΤΑΤ	мосо
	180333239							
IRF1	chr3:18033	347	366	10,17	0,000	0,01	GAAGAGGAAAGG	НОСО
	2773-			19	0534	54	AAAAGGGT	мосо
	180333239							
SPI1	chr3:18033	424	440	9,953	0,000	0,02	TGATACAGGAACT	НОСО
	2773-			12	0545	32	CAGA	мосо
	180333239							
ZN467	chr3:18033	362	383	6,829	0,000	0,00	AGGGTGGAACAG	НОСО
	2773-			79	0548	914	TCAGAGCAGC	мосо
	180333239							
BC11A	chr3:18033	351	367	11,10	0,000	0,01	AGGAAAGGAAAA	НОСО
	2773-			83	0553	55	GGGTG	мосо
	180333239							

NR6A1	chr3:18033	109	121	9,372	0,000	0,04	AAGGTCATGTTTT	НОСО
	2773-			09	0562	99		мосо
	180333239							
NR1I2	chr3:18033	398	416	10,69	0,000	0,05	AGAAATTATAAGA	НОСО
	2773-			77	0588	2	GTTCAT	мосо
	180333239							
IRF3	chr3:18033	70	89	10,56	0,000	0,01	AAAAATGAAAATG	НОСО
	2773-			2	0589	65	AAAATGT	мосо
	180333239							
RFX1	chr3:18033	163	184	7,578	0,000	0,05	TCTGAGGTTGCTG	НОСО
	2773-			12	0592	11	AAGGCCCCA	мосо
	180333239							
STAT2	chr3:18033	350	368	10,20	0,000	0,02	GAGGAAAGGAAA	НОСО
	2773-			31	0592	53	AGGGTGG	мосо
	180333239							
ELF5	chr3:18033	345	359	10,89	0,000	0,05	CAGAAGAGGAAA	НОСО
	2773-			06	0597	15	GGA	мосо
	180333239							
PATZ1	chr3:18033	362	383	9,134	0,000	0,02	AGGGTGGAACAG	НОСО
	2773-			45	0623	63	TCAGAGCAGC	мосо
	180333239							
ZN816	chr3:18033	359	379	8,078	0,000	0,03	AAAAGGGTGGAA	НОСО
	2773-			12	0628	24	CAGTCAGAG	мосо
	180333239							
ZN121	chr3:18033	162	181	5,095	0,000	0,05	CTGGGGCCTTCA	носо

	2773-			24	0632	53	GCAACCTC	MOCO
	180333239							
ZN263	chr3:18033	366	385	8,437	0,000	0,05	TGGAACAGTCAGA	НОСО
	2773-			5	0657	66	GCAGCAA	мосо
	180333239							
ZN335	chr3:18033	354	375	8,675	0,000	0,05	GACTGTTCCACCC	НОСО
	2773-			68	0657	6	ттттссттт	мосо
	180333239							
ZN490	chr3:18033	332	355	-	0,000	0,05	TTCCTCTTCTGCA	НОСО
	2773-			8,625	0665	71	GGCAAAAGATA	мосо
	180333239							
ZN274	chr3:18033	341	360	9,369	0,000	0,02	CCTGCAGAAGAG	НОСО
	2773-			75	0665	89	GAAAGGAA	мосо
	180333239							
NFAC1	chr3:18033	350	364	11,07	0,000	0,05	GAGGAAAGGAAA	НОСО
	2773-			62	0689	91	AGG	мосо
	180333239							
ZN341	chr3:18033	359	380	9,264	0,000	0,01	AAAAGGGTGGAA	НОСО
	2773-			96	0706	17	CAGTCAGAGC	мосо
	180333239							
ETS2	chr3:18033	348	360	10,98	0,000	0,03	AAGAGGAAAGGA	НОСО
	2773-			44	0708	05	А	мосо
	180333239							
ETV4	chr3:18033	263	273	11,15	0,000	0,03	CCCAGGAAATA	НОСО
	2773-			62	0715	12		мосо

	180333239							
NR2C1	chr3:18033	114	126	10,04	0,000	0,06	CTTAAAAGGTCAT	НОСО
	2773-			26	0721	33		мосо
	180333239							
IRF2	chr3:18033	408	427	8,515	0,000	0,02	CAGAATAAAAGAG	НОСО
	2773-			62	0735	7	ΑΑΑΤΤΑΤ	мосо
	180333239							
PAX6	chr3:18033	1	12	10,85	0,000	0,06	TCTCACTTGAGT	НОСО
	2773-			95	0738	6		мосо
	180333239							
COT2	chr3:18033	111	123	10,84	0,000	0,06	AAAAGGTCATGTT	НОСО
	2773-			38	0749	67		мосо
	180333239							
AP2A	chr3:18033	164	178	9,656	0,000	0,06	GGGGCCTTCAGC	НОСО
	2773-			25	0753	64	AAC	мосо
	180333239							
ZN816	chr3:18033	358	378	7,625	0,000	0,03	GAAAAGGGTGGA	НОСО
	2773-				0758	24	ACAGTCAGA	мосо
	180333239							
KLF15	chr3:18033	362	380	6,609	0,000	0,02	AGGGTGGAACAG	НОСО
	2773-			38	0761	22	TCAGAGC	мосо
	180333239							
KLF15	chr3:18033	351	369	6,593	0,000	0,02	AGGAAAGGAAAA	НОСО
	2773-			75	0766	22	GGGTGGA	мосо
	180333239							

GCR	chr3:18033	367	381	10,46	0,000	0,06	TGCTCTGACTGTT	НОСО
	2773-			88	0779	79	сс	мосо
	180333239							
ZN214	chr3:18033	221	242	10,36	0,000	0,06	CAGATCTTAATCC	носо
	2773-				0783	87	TCTGAATGA	мосо
	180333239							
SMAD3	chr3:18033	36	47	10,67	0,000	0,07	CTCTCTCTTCAG	НОСО
	2773-			8	0806	18		мосо
	180333239							
PTF1A	chr3:18033	158	175	9,704	0,000	0,07	CCTTCTGGGGCC	НОСО
	2773-			76	0812	01	TTCAGC	мосо
	180333239							
PRDM1	chr3:18033	347	360	10,23	0,000	0,02	GAAGAGGAAAGG	НОСО
	2773-			44	0815	8	АА	мосо
	180333239							
IRF7	chr3:18033	353	362	10,91	0,000	0,03	GAAAGGAAAA	НОСО
	2773-			11	082	98		мосо
	180333239							
ETV2	chr3:18033	260	275	8,985	0,000	0,03	GTGCCCAGGAAA	НОСО
	2773-			29	0826	6	ТАСА	мосо
	180333239							
IRF3	chr3:18033	414	433	9,900	0,000	0,01	GGAACTCAGAATA	НОСО
	2773-			83	0854	79	AAAGAGA	мосо
	180333239							
ZNF76	chr3:18033	154	175	7,282	0,000	0,07	AAATCCTTCTGGG	НОСО

	2773-			05	0859	58	GCCTTCAGC	MOCO
	180333239							
BCL6	chr3:18033	197	209	10,47	0,000	0,07	TGTTGTCTAGGGA	НОСО
	2773-			69	0864	72		мосо
	180333239							
HSF1	chr3:18033	160	174	9,75	0,000	0,07	CTGAAGGCCCCA	НОСО
	2773-				0873	72	GAA	мосо
	180333239							
NR5A2	chr3:18033	165	175	10,14	0,000	0,07	GCTGAAGGCCC	НОСО
	2773-			06	0876	87		мосо
	180333239							
IRF7	chr3:18033	76	85	10,84	0,000	0,03	GAAAATGAAA	носо
	2773-			44	0883	98		мосо
	180333239							
STAT2	chr3:18033	74	92	9,296	0,000	0,02	ATGAAAATGAAAA	HOCO
	2773-			88	0908	59	TGTACT	мосо
	180333239							
MAZ	chr3:18033	350	371	7,923	0,000	0,01	GAGGAAAGGAAA	НОСО
	2773-			73	0909	52	AGGGTGGAAC	мосо
	180333239							
KLF5	chr3:18033	362	375	8,953	0,000	0,08	AGGGTGGAACAG	НОСО
	2773-			12	092	22	тс	мосо
	180333239							
ZN467	chr3:18033	352	373	5,542	0,000	0,01	GGAAAGGAAAAG	НОСО
	2773-			55	0923	28	GGTGGAACAG	мосо

	180333239							
PRDM6	chr3:18033	348	360	10,87	0,000	0,04	AAGAGGAAAGGA	НОСО
	2773-			5	0929	13	А	мосо
	180333239							
IRF2	chr3:18033	347	366	7,906	0,000	0,02	GAAGAGGAAAGG	НОСО
	2773-			25	094	7	AAAAGGGT	мосо
	180333239							
IRF8	chr3:18033	420	439	8,609	0,000	0,04	GATACAGGAACTC	НОСО
	2773-			38	0967	21	AGAATAA	мосо
	180333239							
PRDM1	chr3:18033	352	365	9,890	0,000	0,02	GGAAAGGAAAAG	НОСО
	2773-			62	0968	8	GG	мосо
	180333239							
ELF3	chr3:18033	346	359	10,03	0,000	0,08	AGAAGAGGAAAG	НОСО
	2773-			12	0971	4	GA	мосо
	180333239							
IRF8	chr3:18033	70	89	8,562	0,000	0,04	AAAAATGAAAATG	НОСО
	2773-			5	0987	21	AAAATGT	мосо
	180333239							
ZFP28	chr3:18033	342	361	7,312	0,000	0,04	тттсстттсстстт	НОСО
	2773-			5	0994	22	CTGCAG	мосо
	180333239							
ZFP28	chr3:18033	413	432	7,312	0,000	0,04	TTCTCTTTTATTCT	НОСО
	2773-			5	0994	22	GAGTTC	мосо
	180333239							

ZNF263	chr3:18033	349	369	13,5	0,000	0,00	AGAGGAAAGGAA	JASPA
	2773-				0054	458	AAGGGTGGA	R
	180333239							
HIC2	chr3:18033	260	268	13,67	0,000	0,00	GTGCCCAGG	JASPA
	2773-			92	00814	726		R
	180333239							
IRF1	chr3:18033	71	91	13,7	0,000	0,00	GTACATTTTCATTT	JASPA
	2773-				00837	715	TCATTTT	R
	180333239							
SP2	chr3:18033	357	371	12,41	0,000	0,00	GTTCCACCCTTTT	JASPA
	2773-			07	0108	916	СС	R
	180333239							
DMRT3	chr3:18033	432	442	12,78	0,000	0,01	CCTGTATCAAC	JASPA
	2773-			33	0116	03		R
	180333239							
CRX	chr3:18033	227	237	13,58	0,000	0,01	CAGAGGATTAA	JASPA
	2773-			93	0136	2		R
	180333239							
ZFX	chr3:18033	158	171	12,23	0,000	0,01	CCTTCTGGGGCC	JASPA
	2773-			44	0145	25	ТТ	R
	180333239							
IRF7	chr3:18033	74	87	12,45	0,000	0,01	ATGAAAATGAAAA	JASPA
	2773-				0148	31	т	R
	180333239							
ZNF263	chr3:18033	346	366	11,60	0,000	0,00	AGAAGAGGAAAG	JASPA

	2773-			42	015	634	GAAAAGGGT	R
	180333239							
IRF3	chr3:18033	345	365	7,547	0,000	0,01	CAGAAGAGGAAA	JASPA
	2773-			95	0155	09	GGAAAAGGG	R
	180333239							
NR4A1	chr3:18033	114	123	13,88	0,000	0,01	AAAAGGTCAT	JASPA
	2773-			24	0165	5		R
	180333239							
ZNF24	chr3:18033	453	465	12,24	0,000	0,01	AATTCATTTATTC	JASPA
	2773-			76	0167	48		R
	180333239							
NR2F6(chr3:18033	115	129	-	0,000	0,01	CTGCTTAAAAGGT	JASPA
VAR.2)	2773-			0,205	0175	56	СА	R
	180333239			882				
NR2F2	chr3:18033	113	123	13,35	0,000	0,01	AAAAGGTCATG	JASPA
	2773-			9	0196	77		R
	180333239							
GSC2	chr3:18033	226	235	11,60	0,000	0,01	СТТААТССТС	JASPA
	2773-			34	0211	86		R
	180333239							
CDX2	chr3:18033	380	390	13,17	0,000	0,01	CAGCAATAAAG	JASPA
	2773-			74	0215	95		R
	180333239							
GATA1:	chr3:18033	330	347	12,69	0,000	0,01	CATATCTTTTGCC	JASPA
:TAL1	2773-			81	0216	91	TGCAG	R

	180333239							
IRF3	chr3:18033	68	88	6,191	0,000	0,01	TTAAAAATGAAAA	JASPA
	2773-			78	0249	09	TGAAAATG	R
	180333239							
BCL6	chr3:18033	196	209	12,33	0,000	0,02	GTCCCTAGACAAC	JASPA
	2773-			33	026	33	A	R
	180333239							
KLF5	chr3:18033	362	371	11,18	0,000	0,02	GTTCCACCCT	JASPA
	2773-			75	0301	65		R
	180333239							
SP1	chr3:18033	361	371	10,33	0,000	0,02	GTTCCACCCTT	JASPA
	2773-			33	0332	92		R
	180333239							
IRF1	chr3:18033	348	368	10,85	0,000	0,01	CCACCCTTTTCCT	JASPA
	2773-				0348	49	ттсстстт	R
	180333239							
IRF9	chr3:18033	73	87	0,660	0,000	0,03	AATGAAAATGAAA	JASPA
	2773-			377	0359	17	АТ	R
	180333239							
ZNF263	chr3:18033	350	370	9,645	0,000	0,01	GAGGAAAGGAAA	JASPA
	2773-			83	0399	13	AGGGTGGAA	R
	180333239							
IRF8	chr3:18033	74	87	-	0,000	0,03	ATGAAAATGAAAA	JASPA
	2773-			0,056	0435	92	Т	R
	180333239			6038				

GSC	chr3:18033	226	235	11,5	0,000	0,04	CTTAATCCTC	JASPA
	2773-				0475	31		R
	180333239							
NR1H2:	chr3:18033	113	129	-	0,000	0,04	CTGCTTAAAAGGT	JASPA
:RXRA	2773-			4,829	0506	4	CATG	R
	180333239			79				
CDX1	chr3:18033	382	390	10,83	0,000	0,04	GCAATAAAG	JASPA
	2773-			02	0507	64		R
	180333239							
ZIC1	chr3:18033	274	287	3,739	0,000	0,04	AAGCACCTACTGT	JASPA
	2773-			13	0532	64	G	R
	180333239							
FOXH1	chr3:18033	267	277	11,58	0,000	0,04	GGAAATACACA	JASPA
	2773-			82	0534	74		R
	180333239							
ELF1	chr3:18033	262	273	8,226	0,000	0,05	GCCCAGGAAATA	JASPA
	2773-			42	0574	13		R
	180333239							
ZNF263	chr3:18033	376	396	8,666	0,000	0,01	AGAGCAGCAATAA	JASPA
	2773-			67	0634	34	AGGTAAGA	R
	180333239							
RORA	chr3:18033	115	124	12,03	0,000	0,05	TAAAAGGTCA	JASPA
	2773-			19	0663	99		R
	180333239							
ESRRA	chr3:18033	114	124	6,647	0,000	0,06	TAAAAGGTCAT	JASPA

	2773-			06	0742	75		R
	180333239							
TCF7	chr3:18033	347	358	9,333	0,000	0,06	GAAGAGGAAAGG	JASPA
	2773-			33	0751	62		R
	180333239							
MEIS2	chr3:18033	53	60	11,12	0,000	0,06	TTGACAGA	JASPA
	2773-			5	0769	93		R
	180333239							
KLF1	chr3:18033	362	372	8,859	0,000	0,06	TGTTCCACCCT	JASPA
	2773-			38	0774	93		R
	180333239							
IRF4	chr3:18033	74	88	0,156	0,000	0,06	ATGAAAATGAAAA	JASPA
	2773-			25	0776	99	TG	R
	180333239							
POU2F	chr3:18033	72	84	10,69	0,000	0,07	TTCATTTTCATTT	JASPA
2	2773-			64	0799			R
	180333239							
NR2F1	chr3:18033	111	123	10,14	0,000	0,07	AAAAGGTCATGTT	JASPA
	2773-			58	0806	31		R
	180333239							
VDR	chr3:18033	399	406	10,66	0,000	0,07	AGAGTTCA	JASPA
	2773-			42	0815	46		R
	180333239							
SMAD4	chr3:18033	199	206	12,13	0,000	0,07	TGTCTAGG	JASPA
	2773-			33	0817	41		R
	180333239							
-------	------------	-----	-----	-------	-------	------	----------------	-------
IRF2	chr3:18033	75	92	4,701	0,000	0,07	TGAAAATGAAAAT	JASPA
	2773-			92	0818	29	GTACT	R
	180333239							
IRF1	chr3:18033	406	426	8,883	0,000	0,02	TTATAATTTCTCTT	JASPA
	2773-			33	0818	33	ТТАТТСТ	R
	180333239							
RXRB	chr3:18033	115	128	-	0,000	0,07	TGCTTAAAAGGTC	JASPA
	2773-			0,924	0821	29	А	R
	180333239			528				
GFI1B	chr3:18033	175	185	10,67	0,000	0,07	CAACCTCAGAA	JASPA
	2773-			86	0844	35		R
	180333239							
HLTF	chr3:18033	357	366	9,093	0,000	0,07	ACCCTTTTCC	JASPA
	2773-			02	0859	76		R
	180333239							
ELK4	chr3:18033	264	274	9,490	0,000	0,07	GTATTTCCTGG	JASPA
	2773-			57	0862	62		R
	180333239							
PITX3	chr3:18033	226	234	10,81	0,000	0,07	СТТААТССТ	JASPA
	2773-			48	0862	9		R
	180333239							
MEIS1	chr3:18033	53	59	10,45	0,000	0,07	TTGACAG	JASPA
	2773-			45	0863	93		R
	180333239							

SPIB	chr3:18033	349	355	11,41	0,000	0,07	AGAGGAA	JASPA
	2773-			86	0863	77		R
	180333239							
ELF4	chr3:18033	262	273	7,2	0,000	0,08	GCCCAGGAAATA	JASPA
	2773-				0926	29		R
	180333239							
EHF	chr3:18033	262	273	8,816	0,000	0,08	GCCCAGGAAATA	JASPA
	2773-			67	0945	44		R
	180333239							

Figure S2

Figure S3

Figure S5

TLBR-2 MTAAT ^{KD}					MAC2A MTAAT ^{KD}						
72h		72h+CQ			60h		72h		72h+CQ		
-	+	-	+	-	+	-	+	-	+		
1	0.4	1.0	1.1	1.0	1.3	1.0	0.7	1.0	1.0	_	
_	_	-	-			-		-	-	LC3 I LC3 II	
1.0	0.6	1.0	1.2	1.0	1.1	1.0	0.6	1.0	1.1	-	
	-	-	-	-	-	-	-	_	-	p62	
-	-	ALCONTRACTOR OF	ale state	-	-	-	-			β-actin	
	3R-2 7: 1 1.0	3R-2 MT/ 72h - + 1 0.4 1.0 0.6	3R-2 MTAATKi 72h 72h 1 0.4 1.0 <td>3R-2 MTAAT^{KD} 72h 72h+CQ - + 1 0.4 1.0 1.1 1.0 0.6 1.0 1.2</td> <td>3R-2 MTAATKD 72h 72h+CQ - + 1 0.4 1.0 1.1 1.0 0.6 1.0 1.2 1.0 1.0</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	3R-2 MTAAT ^{KD} 72h 72h+CQ - + 1 0.4 1.0 1.1 1.0 0.6 1.0 1.2	3R-2 MTAATKD 72h 72h+CQ - + 1 0.4 1.0 1.1 1.0 0.6 1.0 1.2 1.0 1.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

TLBR-2 MTAATKD

МАС2А МТААТКО

