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Abstract. Last-mile delivery problems where trucks and drones collab-
orate to deliver goods to final customers are considered. We focus on
settings where a fleet with several homogeneous trucks work in paral-
lel to collaborative drones, able to combine with each other to optimize
speed and power consumption for deliveries. A heuristic for the min-max
vehicle routing problem is coupled with constraint programming models,
leading to an effective method able to provide several state-of-the-art
solutions for the instances commonly adopted in the literature.
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1 Introduction

The first optimization problems involving distribution with trucks and drones
were introduced in Murray and Chu [5], where the concept of a new distribu-
tion problem where a truck and a drone make deliveries in a collaborative way,
was introduced. In the Parallel Drone Scheduling Traveling Salesman Problem
(PDSTSP) there is a truck making a tour to service some customers. In parallel,
a set of drones is also employed, and each drone can leave the depot, serve a cus-
tomer, return to the depot, and repeating several times for different customers.
The objective of the optimization is to minimize the makespan required to ser-
vice all the customers and having all the vehicles back to the depot. Models,
exact and heuristic algorithms for the problem have been discussed, e.g., in [3]
and [7]. Recently, Amazon Technologies Inc. filed a patent [8] where a new distri-
bution paradigm, taking advantage of a so-called “Collective Drone” (c-drone), is
introduced. Multiple drones can be connected and fly as a single drone, to serve a
customer. The c-drone is able to transport larger and heavier goods with respect
to the single drone, and can also modulate its speed more flexibly in order to
increase its range [4]. In the work [6], the authors optimized a problem where
collective drones and a truck are used to distribute goods, and the resulting
problem is named the PDSTSP-c, where c stands for collective. An extension
of the problem, where multiple trucks are considered, called PDSVRP-c, was
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recently introduced in [4]. An example of a PDSVRP-c instance is provided in
Fig. 1. Without considering the use of the drones, the problem reduces to a clas-
sic Vehicle Routing Problems (VRP) [10] characterized by a min-max objective
function calculated over the lengths of the different tours, which translates into
completing all the deliveries in the shortest possible time. Both exact and heuris-
tic methods have been presented for this problem, that is normally more difficult
than a traditional VRP [1].

Fig. 1. Example of a PDSVRP-c instance.
Node 0 is the depot, while the other nodes
are customers. The black and grey continu-
ous arcs represent the tours of the two trucks
(0, 2, 3, 0) and (0, 6, 5, 0). The dashed arcs
depict instead the missions of the drones,
with each colour representing a different one.
Notice how for some of the missions mul-
tiple drones are collaborating (Color figure
online).

We investigate how two Con-
straint Programming models recently
proposed for the PDSVRP-c perform
once a solution only using trucks
(VRP) is fed to the solver as a hint-
solution.

2 Problem Description

Given a graph G(V,E) with a set of
vertices V = {0, 1, . . . , n}, where ver-
tex 0 is the depot and the remaining
vertices represent the customers (set
C = V \{0}). A customer i requests a
parcel of weight wi to be delivered to
its address from the depot. A set S
of s driver-operated delivery trucks,
each with unlimited range and capac-
ity, and a set D of m homogeneous
drones form the fleet available for deliveries. All the vehicles are based at the
depot and the drones have batteries of a given capacity that is installed before
each mission. Each truck performs a single delivery tour and no collaboration
among trucks is implemented. The deterministic travel time between two vertices
i, j ∈ V is given as tij for the trucks. The drones instead operate in a back-and-
forth fashion from the depot, delivering one parcel at a time. Travel times and
maximum ranges of drone missions depend on factors such as the number of
drones cooperating and the traveling speed selected. The energy consumption
model from [9] is adopted here to calculate battery draining and discharge peaks
in order to estimate feasible mission settings. In the configuration considered,
characterized by collaborative drones, the weight carried is evenly distributed
among the k drones participating in the mission. As described in [6], given a
number of drones involved k and a target customer j, the optimal cruise speed
that minimizes the time required for the mission itself, while fulfilling the con-
straints on the batteries (power consumption is used here) can be pre-calculated
by inspection. The time τk

j required to service customer j with k drones can
therefore be pre-calculated as described in [6], with τk

i = +∞ if it is not possible
to service customer i with k drones. The set of customers that cannot be ser-
viced by drones is referred to as CT ⊂ C. Let CF = C\CT be the set of customers
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that can be served by drones, and let qj and pj be the minimum and maximum
number of drones that can be used to serve j ∈ CF . The target of the PDSVRP-c
is to find truck tours and drones scheduling that minimize the makespan, i.e.
to complete all the deliveries in the shortest possible time, given the resources
available.

3 Constraint Programming Models

We present two Constraint Programming models introduced in [4], based on the
Google OR-Tools CP-SAT solver [2] and representing the state-of-the-art.

Model M2: The model revolves on the following variables: xij is 1 if edge (i, j),
with i, j ∈ V , is traveled by a truck, 0 otherwise. If xjj = 1 means that customer
j is served by drones; zkj is 1 if k drones serve customer j ∈ CF , 0 otherwise; yij is
1 if vertex a drone serves vertex i right before vertex j by one drone, 0 otherwise;
fij ∈ Z+ indicates the number of drones serving vertex i right before vertex j;
T j ∈ R+ is the time at which the mission at customer j ∈ CF is completed if the
visit is operated by drones; it is the time the truck reaches the customer and the
service is started in case the visit is operated by a truck.; α is the completion
time of all missions. The model is the following one:

(M2) minα (1)
s.t. α ≥ T j + tj0xj0, j ∈ C (2)

xjj =
∑

qj≤k≤pj

zkj , j ∈ CF (3)

MultipleCircuit



xij :

i, j ∈ V,

i #= 0 ∨ j #= 0,

i ∈ CT ⇒j #= i





(4)
∑

j∈C

x0j ≤ s (5)

xij ⇒T j ≥Ti + tij , i ∈ V, j ∈ C, i #= j (6)
∑

j∈CF

f0j ≤ m (7)

∑

i∈CF∪{0},i$=j

fij =
∑

qj≤k≤pj

kzkj , j ∈ CF (8)

∑

i∈CF∪{0},i$=j

fij =
∑

l∈CF∪{0},l$=j

fjl, j∈CF ∪{0} (9)

fij ≤ myij , i, j ∈ CF ∪ {0}, i #= j (10)

yij ⇒T j ≥ T i+
∑

qj≤k≤pj

τk
j z

k
j ,

i∈CF ∪{0},
j∈CF , i #=j

(11)
0 ≤ fij ≤ m, i, j∈CF ∪{0}, i #= j (12)
xij ∈ {0; 1}, i, j ∈ V (13)
zkj ∈ {0; 1}, j ∈ CF , qj ≤ k ≤ pj (14)
yij ∈ {0; 1}, i, j ∈ CF ∪ {0}, i #= j (15)
T j ≥ 0, j ∈ V (16)

mα ≥
∑

j∈CF

∑

qj≤k≤pj

kτk
j z

k
j (17)

Constraints (2) state that the total time α to be minimized according to
(1), has to be as large as to the time required by the truck and drone mis-
sions. Constraints (3) relate x and z variables for each drone-eligible customers;
Constraint (4) uses MultipleCircuit command of CP-SAT to impose truck tours,
while constraint (5) set tos the maximum number of truck tours. Constraints (6)



Combining Heuristics and Constraint Programming for the PDSVRP-c 139

align timing (T variables) to tours. Constraints (7)-(9) regulate synchronization
among drones (see [4] for details). Constraints (10) and (11) connect y variables
with f and z variables, respectively. The remaining constraints (12)-(16) define
the domain of the variables. The inequality (17) is not necessary for the validity
of the model, but it contributes significantly to tighten the lower bounds, so it is
added. The interested reader can refer to [4] for an explanation of the inequality
and a formal proof of its validity.

Model M3: The variables of the model are defined starting from those of model
M2. Here the x variables are changed to a set of variables w such that wk

ij = 1
if edge (i, j) is traveled by truck k ∈ S, 0 otherwise. Moreover, wk

00 = 1 implies
that truck k is not used in the current solution. Variables T are substituted
by the following variables: Tj represents the completion of the drone-mission to
customer j ∈ CF . The resulting model is as follows:

(M3) minα (18)

s.t. α ≥
∑

i∈V

∑

j∈V,i$=j

tijw
k
ij , k ∈ S (19)

α ≥ Tj , j ∈ CF (20)
s∑

k=1

(1 − wk
jj) +

∑

qj≤k≤pj

zkj = 1, j ∈ CF

(21)
s∑

k=1

wk
jj = s − 1, j ∈ CT (22)

Circuit(wk
ij : i, j ∈ V ), k ∈ S (23)

wk
ij ≤ 1 − wk

00, k ∈ S, i, j ∈ C (24)
∑

j∈CF

f0j ≤ m (25)

∑

i∈CF∪{0},i$=j

fij =
∑

qj≤k≤pj

kzkj , j ∈ CF (26)

∑

i∈CF∪{0},i$=j

fij =
∑

l∈CF∪{0},l$=j

fjl,j∈CF ∪{0}

(27)
fij ≤ myij , i, j ∈ CF ∪ {0}, i #= j (28)

yij ⇒Tj ≥ T i+
∑

qj≤k≤pj

τk
j z

k
j ,

i∈CF ∪{0},
j∈CF , i #=j

(29)
0 ≤ fij ≤ m, i, j ∈ CF ∪ {0}, i #= j (30)
wk

ij ∈ {0; 1}, k ∈ S, i, j ∈ V (31)
zkj ∈ {0; 1}, j ∈ CF , qj ≤ k ≤ pj (32)
yij ∈ {0; 1}, i, j ∈ CF ∪ {0}, i #= j (33)
Tj ≥ 0, j ∈ CF ∪ {0} (34)

mα ≥
∑

j∈CF

∑

qj≤k≤pj

kτk
j z

k
j (35)

The constraints follow the meaning already described for the model M2 in
Sect. 3. The changes are as follows. Equalities (21) are used to force any each
drone-eligible customer has to be services by drones or by a truck. The new
constraints (22) is required to force customers in CT to be service by a truck.
Constraints (23), adopting the Circuit command from CP-SAT, are defined for
each truck k, since the concept of giant-tour seen in the model CP2 does not
exist here. The constraints (24) state that a truck k can be used only if wk

00 = 1.

Hint-start: One of the features of CP-SAT is the possibility of passing a (par-
tial) solution to the solver through some values for the variables of the model.
The solver takes these settings as suggestions (hints) and potentially improves its
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Table 1. Experimental results.

2 Trucks 3 Trucks
VRP Model M2 Model M3 New bounds VRP Model M2 Model M3 New bounds

[4] Hint-start [4] Hint-start [4] Hint-start [4] Hint-start
Instances UB [LB, UB] [LB, UB] [LB, UB] [LB, UB] [LB, UB] UB [LB, UB] [LB, UB] [LB, UB] [LB, UB] [LB, UB]
50-r-e 128 [65, 116] [61, 116] [63, 120] [69, 112] [69, 112] 112 [48, 112] [62, 104] [47, 112] [52, 108] [62, 104]
53-r-e 128 [77, 112] [65, 116] [82, 128] [78, 112] [82, 112] 112 [56, 96] [64, 96] [51, 112] [56, 104] [64, 96]
66-rc-e 128 [72, 112] [47, 124] [73, 136] [63, 116] [73, 112] 112 [53, 108] [47, 100] [38, 116] [57, 104] [57, 100]
67-c-c 56 [38, 52] [20, 48] [31, 52] [19, 52] [38, 48] 56 [27, 52] [21, 52] [9, 52] [12, 52] [27, 52]
68-rc-c 120 [50, 56] [36, 104] [52, 104] [47, 84] [52, 56] 84 [39, 56] [36, 60] [34, 104] [42, 76] [42, 56]
76-c-c 40 [26, 36] [16, 36] [16, 40] [16, 36] [26, 36] 28 [18, 24] [12, 24] [12, 52] [16, 24] [18, 24]
82-c-e 64 [32, 64] [26, 64] [17, 64] [12, 64] [32, 64] 64 [22, 64] [26, 64] [8, 64] [10, 64] [26, 64]
82-rc-c 108 [62, 116] [32, 100] [56, 132] [54, 100] [62, 100] 88 [47, 80] [34, 84] [38, 128] [48, 84] [48, 80]
88-c-e 84 [54, 84] [18, 84] [58, 112] [40, 84] [58, 84] 80 [36, 76] [18, 76] [32, 104] [39, 80] [39, 76]
91-r-c 152 [75, 152] [33, 140] [75, 160] [63, 124] [75, 124] 108 [56, 120] [34, 104] [42, 148] [54, 100] [56, 100]
99-rc-c 152 [63, 96] [26, 136] [51, 144] [47, 136] [63, 96] 96 [47, 64] [26, 92] [29, 128] [41, 88] [47, 64]
101-r-c 176 [71, 164] [20, 160] [53, 152] [55, 152] [71, 152] 104 [52, 128] [20, 96] [36, 144] [44, 100] [52, 96]
103-rc-c 128 [69, 124] [34, 124] [52, 128] [49, 128] [69, 124] 88 [49, 96] [35, 88] [32, 136] [41, 88] [49, 88]
105-rc-e 140 [65, 136] [27, 128] [57, 148] [52, 128] [65, 128] 112 [49, 120] [27, 104] [34, 132] [40, 108] [49, 104]
108-rc-e 160 [79, 172] [22, 152] [70, 160] [57, 160] [79, 152] 128 [58, 184] [23, 124] [37, 160] [54, 124] [58, 124]
114-rc-c 120 [58, 124] [27, 104] [49, 140] [47, 104] [58, 104] 88 [44, 80] [26, 72] [32, 112] [40, 80] [44, 72]
121-rc-e 144 [70, 156] [25, 140] [56, 152] [57, 132] [70, 132] 96 [52, 124] [28, 96] [40, 152] [44, 96] [52, 96]
126-rc-e 160 [87, 220] [18, 152] [67, 184] [63, 152] [87, 152] 116 [63, 136] [20, 108] [44, 164] [48, 100] [63, 100]
126-r-c 172 [78, 160] [26, 136] [56, 156] [58, 136] [78, 136] 108 [56, 140] [24, 116] [38, 148] [48, 116] [56, 116]
144-rc-c 132 [67, 272] [21, 128] [47, 168] [43, 116] [67, 116] 120 [50, 132] [23, 116] [35, 160] [41, 120] [50, 116]
154-c-c 40 [35, -] [14, 40] [8, 72] [12, 40] [35, 40] 36 [24, 36] [14, 36] [8, 68] [8, 36] [24, 36]
165-r-c 200 [88, -] [16, 192] [67, 224] [68, 184] [88, 184] 140 [68, -] [15, 136] [50, 212] [50, 132] [68, 132]
167-r-e 196 [100, -] [16, 188] [74, 256] [75, 180] [100, 180] 140 [73, -] [16, 132] [54, 204] [56, 132] [73, 132]
173-r-c 196 [85, 204] [16, 188] [59, 240] [60, 176] [85, 176] 136 [65, -] [16, 132] [45, 212] [47, 128] [65, 128]
173-rc-c 152 [79, -] [21, 148] [48, 180] [50, 144] [79, 144] 120 [58, 172] [20, 116] [37, 168] [40, 120] [58, 116]
181-r-e 192 [112, -] [18, 188] [78, 252] [79, 180] [112, 180] 152 [82, -] [18, 152] [55, 216] [62, 152] [82, 152]
185-c-c 60 [48, -] [20, 60] [24, 96] [24, 60] [48, 60] 48 [32, -] [22, 48] [14, 96] [24, 48] [32, 48]
187-rc-e 176 [100, 308] [27, 172] [65, 212] [67, 160] [100, 160] 132 [74, -] [26, 124] [46, 212] [50, 128] [74, 124]
198-c-c 36 [32, -] [16, 36] [12, 64] [12, 36] [32, 36] 36 [22, 36] [16, 36] [8, 68] [13, 36] [22, 36]
200-r-e 224 [105, -] [16, 216] [68, 324] [69, 220] [105, 216] 152 [77, -] [16, 152] [48, 252] [50, 148] [77, 148]
Average 131.5 [68.1, 138.0] [26.0, 124.0] [52.8, 150.0] [50.2, 120.3] [68.6, 117.2] 99.7 [49.9, 97.2] [26.2, 94.7] [34.4, 137.9] [40.9, 95.9] [51.1, 92.7]

4 Trucks 5 Trucks
VRP Model M2 Model M3 New VRP Model M2 Model M3 New

[4] Hint-start [4] Hint-start bounds [4] Hint-start [4] Hint-start bounds
Instances UB [LB, UB] [LB, UB] [LB, UB] [LB, UB] [LB, UB] UB [LB, UB] [LB, UB] [LB, UB] [LB, UB] [LB, UB]
50-r-e 116 [46, 104] [62, 100] [35, 112] [37, 100] [62, 100] 116 [47, 100] [61, 100] [30, 112] [34, 112] [61, 100]
53-r-e 112 [50, 96] [64, 96] [38, 112] [39, 100] [64, 96] 112 [50, 92] [64, 92] [32, 112] [36, 112] [64, 92]
66-rc-e 108 [41, 104] [44, 100] [34, 108] [35, 104] [44, 100] 100 [35, 100] [46, 100] [24, 120] [32, 100] [46, 100]
67-c-c 56 [21, 48] [20, 52] [8, 52] [11, 52] [21, 48] 56 [18, 52] [21, 52] [8, 52] [11, 52] [21, 52]
68-rc-c 64 [32, 52] [36, 60] [29, 88] [30, 60] [36, 52] 60 [28, 44] [35, 56] [23, 80] [27, 56] [35, 44]
76-c-c 28 [14, 24] [12, 24] [12, 56] [16, 24] [16, 24] 28 [12, 24] [12, 24] [12, 40] [14, 24] [14, 24]
82-c-e 64 [18, 64] [26, 64] [8, 64] [10, 64] [26, 64] 64 [15, 64] [26, 64] [6, 64] [9, 64] [26, 64]
82-rc-c 72 [38, 68] [32, 68] [31, 124] [32, 60] [38, 60] 64 [32, 68] [33, 60] [24, 112] [28, 60] [33, 60]
88-c-e 76 [28, 76] [18, 72] [32, 108] [39, 76] [39, 72] 76 [23, 72] [18, 72] [32, 108] [38, 76] [38, 72]
91-r-c 92 [45, 96] [33, 88] [32, 156] [35, 76] [45, 76] 72 [38, 88] [32, 68] [28, 124] [32, 68] [38, 68]
99-rc-c 76 [37, 68] [26, 72] [24, 120] [26, 64] [37, 64] 60 [32, 64] [27, 60] [20, 108] [26, 64] [32, 60]
101-r-c 84 [42, 76] [21, 80] [30, 144] [31, 80] [42, 76] 72 [36, 112] [22, 68] [26, 144] [28, 68] [36, 68]
103-rc-c 76 [39, 80] [35, 76] [26, 140] [30, 76] [39, 76] 72 [32, 80] [37, 68] [22, 120] [25, 68] [37, 68]
105-rc-e 116 [39, 116] [27, 104] [26, 132] [26, 108] [39, 104] 104 [33, 112] [26, 104] [21, 124] [24, 104] [33, 104]
108-rc-e 120 [46, 124] [22, 120] [28, 152] [36, 120] [46, 120] 128 [39, 120] [23, 120] [24, 136] [31, 124] [39, 120]
114-rc-c 72 [35, 88] [28, 72] [26, 120] [26, 72] [35, 72] 80 [30, 64] [28, 64] [22, 96] [22, 72] [30, 64]
121-rc-e 96 [42, 104] [34, 92] [29, 144] [31, 96] [42, 92] 96 [34, 116] [30, 92] [24, 128] [24, 96] [34, 92]
126-rc-e 112 [50, 132] [19, 84] [35, 164] [34, 84] [50, 84] 124 [41, 120] [17, 76] [29, 148] [30, 76] [41, 76]
126-r-c 88 [45, 116] [23, 112] [28, 140] [30, 112] [45, 112] 80 [37, 116] [26, 112] [24, 144] [24, 112] [37, 112]
144-rc-c 80 [40, 128] [27, 76] [25, 144] [26, 72] [40, 72] 172 [34, 104] [29, 92] [22, 136] [23, 148] [34, 92]
154-c-c 36 [18, 40] [14, 36] [8, 72] [8, 36] [18, 36] 36 [15, 36] [14, 36] [6, 68] [12, 36] [15, 36]
165-r-c 108 [54, 192] [14, 108] [40, 192] [40, 108] [54, 108] 88 [47, 220] [14, 88] [34, 212] [34, 84] [47, 84]
167-r-e 124 [58, 176] [16, 120] [42, 196] [43, 124] [58, 120] 120 [49, 204] [16, 116] [34, 204] [35, 120] [49, 116]
173-r-c 104 [54, 352] [16, 96] [36, 192] [37, 104] [54, 96] 100 [43, -] [16, 92] [32, 196] [31, 96] [43, 92]
173-rc-c 88 [46, 116] [21, 88] [29, 164] [29, 84] [46, 84] 88 [39, 116] [21, 80] [24, 164] [24, 88] [39, 80]
181-r-e 128 [65, 268] [19, 124] [42, 208] [42, 128] [65, 124] 132 [54, 204] [20, 120] [35, 204] [36, 132] [54, 120]
185-c-c 48 [24, 48] [20, 44] [14, 100] [24, 48] [24, 44] 48 [20, 48] [20, 44] [12, 60] [24, 48] [24, 44]
187-rc-e 248 [58, 216] [27, 148] [37, 204] [37, 180] [58, 148] 248 [48, 128] [28, 136] [32, 192] [32, 176] [48, 128]
198-c-c 36 [16, -] [16, 36] [8, 68] [13, 36] [16, 36] 36 [16, 36] [16, 36] [8, 68] [13, 36] [16, 36]
200-r-e 124 [60, 308] [16, 120] [38, 228] [39, 124] [60, 120] 120 [52, 288] [17, 120] [32, 216] [34, 120] [52, 120]
Average 91.7 [40.0, 120.0] [26.3, 84.4] [27.7, 133.5] [29.7, 85.7] [42.0, 82.7] 91.7 [34.3, 103.2] [26.5, 80.4] [23.4, 126.4] [26.4, 86.4] [37.2, 79.6]
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performance if the information received is valuable. In the experiments reported
in [4], it emerges that both the model have scalability issues on large instances,
likely due to the difficulties of the Circuit andMulticircuit commands of CP-SAT
of dealing with VRP problems with more than a few tens of customers. In this
paper, we evaluate whether hinting a solution can make the models more effec-
tive.

In the solution considered, we will ignore the drones and solve each instance
as a min-max VRP problem. The solution, using only trucks is then passed to
the solver, that might benefit from this because solutions using drones can in
principle be obtained by taking away some customers from the tours of the truck.

4 Experimental Results

All the models presented in previous sections have been coded in Python 3.11.2.
The Constraint Programming models discussed in Sect. 3 have been solved via
the CP-SAT solver of Google OR-Tools 9.6 [2], while the heuristic method
adopted for retrieving min-max VRP solutions was the Route solver, again from
OR-Tools. All the experiment reported have been carried out on a computer
equipped with A CPU Intel Core i7 12700F, and 32 GB of RAM and with a
maximum computation time of 1 h. The instances originally introduced in [6] for
the PDSTSP-c, and available at http://orlab.com.vn/home/download are con-
sidered. The number n of customers varies from 50 to 200, the number m of
drones available is between 5 and 10 and the number s of trucks is between 2
and 5. The interested reader can find all the details of the instances in [6].

The models M2 and M3, without hint-start (from [4], state-of-the-art at the
time of writing) and with hint-start, are considered in Table 1. The upper and
lower bounds (when available) found in the given time by each method are
reported.

The experiments suggest that hint-starting the solver with a solution is ben-
eficial when considering both lower bounds and (especially) heuristic solutions.
Given that the hinted solution is only based on trucks, this was not obvious.
Passing an initial solution optimized externally – even without drones – shapes
up the truck tours. The CP-SAT solver appears to benefit from such information
and seems more effective in taking customers out of the truck tours to assign
them to drones, then to design tours from scratch. Finally, a consideration about
the use of (collaborative) drones is that they allow an average time-saving in the
order of 10% (comparison against the column VRP).
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