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We compute correlation functions of local operator insertions on the 1=2 Bogomol’nyi-Prasad-
Sommerfield Wilson lines of N ¼ 4 Chern-Simons-matter theories in three dimensions. We study the
algebra preserved by the defect conformal field theory supported on the line, identify the superdisplacement
multiplet, and discuss some of its weak-coupling realizations. By employing a superspace description, we
present the four-point functions of the superdisplacement and show how they are determined by functions
of cross ratios. Within an analytic bootstrap approach, we derive these functions at leading and next-to-
leading order at strong coupling, obtaining a result in agreement with appropriate orbifolds of the ABJM
case considered in Bianchi et al. [Analytic bootstrap and Witten diagrams for the ABJM Wilson line as
defect CFT1, J. High Energy Phys. 08 (2020) 143].
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I. INTRODUCTION AND SUMMARY

Over the years, Bogomol’nyi-Prasad-Sommerfield
(BPS) Wilson loops have provided a rich laboratory for
the investigation of superconformal theories in various
dimensions. Particularly important is their role in holog-
raphy, where they can be computed at strong coupling
through the mapping to minimal surfaces (and other dual
objects) [1], and in supersymmetric localization [2], which
in some instances allows for exact results.
More recently, starting from [3–6], there has been

considerable interest in the theories defined on the
contours of BPS Wilson loops, which are then regarded
as one-dimensional defects immersed in a bulk super-
conformal theory. The resulting defect conformal field
theories (dCFTs) can be studied with a variety of
approaches, from perturbation theory and integrability
to bootstrap techniques and holography, when a dual is
available.
The literature for four-dimensional bulk theories is

already quite extensive, besides the references cited above
see also e.g. [7–23] for a review. The same is not true for
the three-dimensional case which has received far less

attention.1 In general, Wilson loops in three-dimensional
Chern-Simons-matter theories are more complicated than
their four-dimensional counterparts, due to the natural
coupling with all the fields of the theory, both bosonic
and fermionic, which are organized in superconnections
closely reflecting the quiver nature of these theories [28].
The dCFT living on the 1=2 BPS Wilson line in ABJ(M)
theory [29,30] has been studied in [31], employing both
an analytic bootstrap approach and Witten diagrams in
holography.
Inspired by the analysis in [31], here we consider the

dCFT on the 1=2 BPS Wilson lines [32–37] of three-
dimensional N ¼ 4 super-Chern-Simons-matter theories
(SCSM) [38–41], see chapter 9 of [42] for a review. These
theories have superconformal algebra ospð4j4Þ, which gets
broken down to uð1Þj0 ⋊ psuð1; 1j2Þ ⋊ uð1Þaut by the
insertion of a 1=2 BPS line operator [43]. Deformations
of the contour can be associated with the insertion of local
operators [3,44], which correspond, in turn, to the broken
generators of ospð4j4Þ via a Ward identity [31]. These local
operators get arranged in a supermultiplet, the so-called
superdisplacement, with a superprimary R of dimension 1
and its descendants Λa and D of dimensions 3=2 and 2,
respectively.
There are several SCSM theories with an ospð4j4Þ

algebra and a 1=2 BPS Wilson line [45]. They differ in
the specific structure of the quiver one considers and the
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matter fields connecting the nodes of the quiver. This
implies that one can find different weak-coupling realiza-
tions of the superdisplacement multiplet, depending on the
bulk theory considered. At the level of the correlation
functions, the explicit reference to the bulk theory is
encoded in certain physical quantities such as the normali-
zation CΦ of the two-point functions, which is also related
to the Bremsstrahlung function of the theory.
These quantities are functions of the ’t Hooft couplings

and are explicitly related to the specific bulk theory one
considers. Moreover, there exists a classical degeneracy of
1=2 BPS lines, first identified in [33], which is lifted at the
quantum level [46], with the correct quantum operator to
match the corresponding localization result being, in fact,
the average of the two 1=2 BPS operators found in [33].
However, the functional form of the correlation functions is
fixed by the one-dimensional symmetry [3], which is the
same for all cases, so that our conclusions will apply to all
theories with uð1Þj0 ⋊ psuð1; 1j2Þ ⋊ uð1Þaut [we shall see
that the really important bit of this algebra is psuð1; 1j2Þ].
For example, the four-point functions of the superprimary
RðtÞ and its conjugate R̄ðtÞ are given by

hRðt1ÞR̄ðt2ÞRðt3ÞR̄ðt4Þi ¼
C2
Φ

t212t
2
34

fðzÞ;

hRðt1ÞR̄ðt2ÞR̄ðt3ÞRðt4Þi ¼
C2
Φ

t212t
2
34

hðχÞ; ð1:1Þ

with fðzÞ and hðχÞ being two functions of the cross ratios z
and χ of the four coordinates of the insertions.
The main scope of this analysis is then to obtain the

functions fðzÞ and hðχÞ, which can be done using an
analytic bootstrap approach. First, one studies the operator
product expansion (OPE) for the operators in the super-
displacement multiplet, obtaining certain selection rules
and identifying the protected spectrum of exchanged
operators. This ultimately introduces non-trivial constraints
in the bootstrap procedure. Then, one expands the func-
tions fðzÞ and hðχÞ in conformal partial waves (CPWs),
with conformal blocks that turn out to be given by
ð−zÞΔ2F1ðΔ;Δ; 2Δþ 2; zÞ for the chiral-chiral channel
and χΔ2F1ðΔ;Δ; 2Δ; χÞ for the chiral-antichiral one.
The coefficients of the expansions can be found by

imposing consistency conditions like crossing symmetry
and mild behavior for the anomalous dimensions. One
obtains in this way the expression for fðzÞ and hðχÞ, as well
as the anomalous dimensions, in an expansion around
strong coupling with a certain expansion parameter ϵ. The
symmetries of the problem do not allow, however, to
completely fix all coefficients and one is left with a free
parameter, which we call ξ. This is not unexpected and in
fact it is something that also takes place in other non-
maximally symmetric cases, like the 1=2 BPS Wilson line
in four-dimensional N ¼ 2 [8] super-Yang-Mills theory.

One can still fix ξ indirectly, by requiring consistency
with the corresponding correlation function of the operator
in the ABJM superdisplacement multiplet [31] which has
the same charges as our displacement operator D. This
comparison can be motivated by the fact that some N ¼ 4
SCSM theories can be obtained by appropriate quotients of
the ABJM quiver and it fixes the free parameter to ξ ¼ − 3

2
.

The final result simplifies significantly, leading to

fðzÞ ¼ 1þ z2 − 4ϵ

�
1 −

z
2
þ z2 þ ð1 − zÞ

z
ðz3 logð−zÞ

þ ð1 − z3Þ logð1 − zÞÞ
�
þOðϵ2Þ; ð1:2Þ

and a similar expression for hðχÞ. Through this analysis one
can also fix the anomalous dimensions obtaining

Δn ¼ 2þ n − ϵðn2 þ 5nþ 4Þ þOðϵ2Þ; ð1:3Þ
for the chiral-chiral channel and

Δn ¼ 2þ n − ϵðn2 þ 3nÞ þOðϵ2Þ; n even; ð1:4Þ
for the chiral-antichiral case. From a similar discussion,
one can also identify the leading and next-to-leading-
order correction of the four-point correlation function of
the superprimary for the 1=2 BPS Wilson line in three-
dimensional N ¼ 2 theories.
The paper is organized as follows. In Sec. II we introduce

the dCFT associated with the 1=2 BPS Wilson lines of
N ¼ 4 Chern-Simons-matter, the preserved superconfor-
mal algebra and the corresponding superdisplacement
multiplet. In Sec. III we write down the two- and four-
point correlation functions of this supermultiplet in terms of
two functions of the cross ratios, we obtain the selection
rules for the operators in the OPE, and derive the conformal
blocks. Finally, in Sec. IV we perform an analytic bootstrap
to get the two functions of the cross ratios and the
anomalous dimensions at strong coupling. We relegate
some details about the superalgebras, their representations,
and the orthogonality conditions for the coefficients of the
block expansions to a series of Appendixes.

II. SUPERCONFORMAL LINE DEFECT

The discussion of this paper is the one-dimensional
superconformal theory living on 1=2 BPS Wilson lines of
three-dimensional N ¼ 4 super-Chern-Simons-matter the-
ories. We provide some details about various bulk theories
in the following, but for the moment it suffices to recall that
these line operators are given by the path-ordered holon-
omy of a superconnection LðtÞ2

2The definition of these Wilson loops in terms of superconnec-
tions, rather than ordinary bosonic connections, is characteristic
of three-dimensional quiver theories, as initially discovered for
ABJM [29,30] in [28]. See chapter 2 of [42] for a review.
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W ¼ Tr

�
P exp

�
−i
Z

∞

−∞
LðtÞdt

��
; ð2:1Þ

with contour extending along the Euclidean time direction
t. As shown in [32–37,45,47], there exist various realiza-
tions of such nonlocal observables. Depending on the
specific bulk theory, one can find an expression for LðtÞ
in terms of the bulk fields, for which half of the super-
charges are preserved. Moreover, a one-dimensional con-
formal algebra is also preserved by the operators, so that
in total one has a uð1Þj0 ⋊ psuð1; 1j2Þ ⋊ uð1Þaut defect
CFT [43], as we shall see momentarily.
We are interested in considering local insertions OiðtiÞ

on the line and in studying their defect correlation functions

hO1ðt1ÞO2ðt2Þ…OnðtnÞiW
≡ hTrP½W−∞;t1O1ðt1ÞWt1;t2O2ðt2Þ…OnðtnÞWtn;∞�i

hWi ;

ð2:2Þ

where Wtn;tnþ1
is the untraced Wilson link Wtn;tnþ1

¼
expð−i R tnþ1

tn LðtÞdtÞ connecting two consecutive inser-
tions. We take the Wilson lines in the fundamental
representation, so that the local operators are in the adjoint
representation of the (super)gauge group in which LðtÞ
transforms [28]. The trace in (2.2) guarantees a gauge
invariant operator. In the following we shall drop the
subscriptW from the definition of the correlation functions
in (2.2), to simplify the notation, and simply write
hO1ðt1ÞO2ðt2Þ…OnðtnÞi.

A. The superalgebra preserved by the defect

The superconformal group of three-dimensional N ¼ 4
theories is OSpð4j4Þ; see Appendix A for details. This has
a SOð1; 4Þ × SOð4ÞR bosonic subgroup, where SOð1; 4Þ is
the three-dimensional conformal group and SOð4ÞR ≃
SUð2ÞA × SUð2ÞB is the R-symmetry group.
Turning on a straight line defect partially breaks this

supergroup. In R3 a codimension-2 defect is expected to
preserve SUð1; 1Þ ×Uð1Þrot, i.e. the conformal group
along the line and the rotations in the plane orthogonal to
the line. The insertion of the line also breaks at least half of
the supercharges of the bulk theory and, consequently,
this leads to only SUð2ÞA ×Uð1ÞB surviving out of the
original R-symmetry. By studying carefully the breaking
pattern [43], one finds the preserved superalgebra to
be uð1Þj0 ⋊ psuð1; 1j2Þ ⋊ uð1Þaut, where the Abelian con-
tributions are given by linear combinations of theuð1Þrot and
uð1ÞB generators. In particular, uð1Þaut represent an outer-
automorphism, while uð1Þj0 is a central ideal; therefore,
one can simply consider psuð1; 1j2Þ ≃ suð1; 1j2Þ=uð1Þj0,
which we now describe in detail.

The conformal generators on the line are the translations
P, the dilatations K, and the special conformal trans-
formations K, which obey

½P;K� ¼ −2D; ½D;P� ¼ P; ½D;K� ¼ −K: ð2:3Þ

The suð2ÞA R-symmetry generators Ra
b (with a, b ¼ 1, 2)

obey instead

½Ra
b; Rc

d� ¼ δbcRa
d − δdaRc

b: ð2:4Þ

The preserved supercharges are taken to be Qa, Q̄a and Sa,
S̄a (see Appendix A for details) with anticommutators

fQa; Q̄bg ¼ 2δbaP; fSa; S̄bg ¼ 2δbaK;

fQa; S̄bg ¼ 2δbaðDþ J0Þ − 2Ra
b;

fQ̄a; Sbg ¼ 2δabðD − J0Þ þ 2Rb
a; ð2:5Þ

where

J0 ¼ iM12 − R̄1̇
1̇ ð2:6Þ

is the uð1Þj0 generator given by the combination of the
rotations M12 in the orthogonal plane to the line and the
uð1ÞB R-symmetry generator R̄1̇

1̇. The remaining commu-
tation relations between bosonic and fermionic generators
are reported in the Appendix A in (A12) and (A13).
As it will be needed in the following, one can also work

out a differential representation for the algebra [31,48]. By
taking superspace coordinates ðt; θa; θ̄aÞ, where t is the
coordinate on the Wilson line and θa and θ̄a are anti-
commuting, one obtains for psuð1; 1j2Þ

P¼−∂t; D¼−t∂t−
1

2
θa∂a−

1

2
θ̄a∂

a−Δ;

K¼−t2∂t− ðtþθθ̄Þθa∂a− ðt−θθ̄Þθ̄a∂a− ðθθ̄Þ2∂t−2tΔ;

Qa ¼ ∂a− θ̄a∂t; Q̄a ¼ ∂
a−θa∂t;

Sa ¼ ðtþθθ̄Þ∂a− ðt−θθ̄Þθ̄a∂t−2θ̄aθ̄b∂
b−2Δθ̄a;

S̄a ¼ ðt−θθ̄Þ∂a− ðtþ θθ̄Þθa∂t−2θaθb∂b−2Δθ̄a;

Ra
b ¼−θb∂aþ θ̄a∂

bþ1

2
δbaðθc∂c− θ̄c∂

cÞ; ð2:7Þ

where, as usual, ∂a ¼ ∂

∂θa, ∂
a ¼ ∂

∂θ̄a
, the contractions are

θθ̄ ¼ θaθ̄a, and Δ is the conformal dimension on the
operator on which the transformations act. Moreover, as
it will be needed in Sec. III, one can also write down the
quadratic Casimir for psuð1; 1j2Þ

C ¼ D2 −
1

2
fK;Pg þ 1

4
½S̄a; Qa� þ

1

4
½Sa; Q̄a� − 1

2
Ra

bRb
a:

ð2:8Þ
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B. The superdisplacement multiplet

In ordinary dCFTs, one can identify the displacement
operator associated with the broken symmetry generators of
translations orthogonal to the line [49–51]. For super-
symmetric theories, the displacement operator is accom-
panied by all other operators associated with the broken
bulk generators, which are expected to arrange in a
supermultiplet, the so-called superdisplacement multiplet.3

By recalling the definition of the Wilson line (2.1), one
can see that by considering infinitesimal variations it is
possible to relate the broken symmetry generators G to
defect operator insertions GðtÞ on the line [3,53]. This
procedure leads to the Ward identity [31,54]

½G;W� ¼ δGW ≡
Z

W½GðtÞ�dt; ð2:9Þ

to be understood as inserted in a given correlation function
and with GðtÞ ¼ −iδGLðtÞ. By exploiting (2.9), all the
defect operators associated with the respective broken
generators can be identified and their quantum numbers
can be extracted by applying super-Jacobi identities. The
local defect operators can moreover be represented explic-
itly at weak coupling in terms of the bulk Lagrangian fields,
as we will show in the next subsection.
We begin our analysis from the two insertions associated

with the broken R-symmetry generators R̄2̇
1̇ and R̄1̇

2̇, for
which one gets4

½R̄2̇
1̇;W� ¼

Z
W½RðtÞ�dt;

½R̄2̇
1̇;W� ¼

Z
W½R̄ðtÞ�dt: ð2:10Þ

Through appropriate super-Jacobi identities involving
the insertions of the Wilson line, a broken and a preserved
symmetry generator, one can assign quantum numbers to
the operators inserted on the defect. For example, in order
to read the J0 charge of R, one considers

½J0;½R̄2̇
1̇;W��þ½R̄2̇

1̇;½W;J0��þ½W; ½J0;R̄2̇
1̇��¼0: ð2:11Þ

Given that

½J0;W� ¼ 0; ½J0; R̄2̇
1̇� ¼ R̄2̇

1̇; ð2:12Þ

one concludes that R has charge 1 under the Uð1Þj0 .
Using the notation ½Δ; j0; j1�, where Δ is the conformal

dimension, j0 is the quantum number associated with the
central ideal and j1 the Dynkin label of the preserved

suð2ÞA R-symmetry, the defect insertions are found to have
charges

R∶ ½1; 1; 0�; R̄∶ ½1;−1; 0�: ð2:13Þ

Through a very similar discussion, all the remaining cases
can be studied. For the broken supersymmetry generators
Qþa1̇ ¼ ϵabQb and Q−a2̇ ¼ iQ̄a, the corresponding inser-
tions are

½Qa;W� ¼
Z

W½ΛaðtÞ�dt;

½Q̄a;W� ¼
Z

W½Λ̄aðtÞ�dt; ð2:14Þ

with quantum numbers

Λa∶
�
3

2
; 1; 1

�
; Λ̄a∶

�
3

2
;−1; 1

�
: ð2:15Þ

Finally, the broken orthogonal translations, P ¼ P2 þ iP1

and P̄ ¼ P2 − iP1, define the displacement operators

½P;W� ¼
Z

W½DðtÞ�dt;

½P̄;W� ¼
Z

W½D̄ðtÞ�dt; ð2:16Þ

which have charges

D∶ ½2; 1; 0�; D̄∶ ½2;−1; 0�: ð2:17Þ

It is expected that the defect operators arrange in
multiplets of the superconformal group and, therefore,
they must be related by the action of the preserved
generators Qa. This leads to the relations

½Qa;R�¼ϵabΛ
b; fQa;Λbg¼2δbaD; ½Qa;D�¼0: ð2:18Þ

The action of Q̄a on defect operators requires instead
careful consideration due to the fact that ½Q̄a;G� ¼ 0 for all
broken generators. Notably, the definition of the Ward
identity (2.9) holds up to total derivatives along the
defect [31]. This freedom can be utilized to ensure that
the action of the supercharges remains consistent with the
superalgebra, which is achieved by imposing the super-
Jacobi identities

fQ̄b; ½Qa;D�g−fQa; ½D; Q̄b�gþ ½D;fQ̄b;Qag�¼ 0: ð2:19Þ

By exploiting fQa; Q̄bg ¼ 2δbaP and that the differential
action of P is given by −∂t, one obtains

fQa; ½Q̄b;D�g−2δba∂tD¼fQa;½Q̄b;D�−∂tΛ
bg¼0; ð2:20Þ

3Parts of this derivation of the superdisplacement multiplet
have been also obtained in [52].

4From now on, we write the broken generators in boldface, to
distinguish them more easily from the preserved ones.
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leading to ½Q̄a;D� ¼ ∂tΛ
a. For fQ̄a;Λbg a similar discus-

sion applies:

½Q̄b; fQa;Λcg� þ ½Qa; fΛc; Q̄bg� þ ½Λc; fQ̄b; Qag� ¼ 0;

2δca∂tΛ
b þ ½Qa; fΛc; Q̄bg� − 2δba∂tΛ

c ¼ 0;

½Qa; fQ̄b;Λcg − 2ϵbc∂tR� ¼ 0:

ð2:21Þ

This implies that fQ̄b;Λcg ¼ 2ϵbc∂tR. Overall, one finds
the following relations

½Q̄a;R� ¼ 0; fQ̄a;Λbg ¼ 2ϵab∂tR; ½Q̄a;D� ¼ ∂tΛ
a:

ð2:22Þ

We see therefore that RðR̄Þ is the superconformal
primary of the superconformal multiplet

LĀ½1�ð0Þ1 ∶ ½1; 1; 0� ⟶
�
3

2
; 1; 1

�
⟶ ½2; 1; 0�; ð2:23Þ

where we adopt the notation of [43,55] with ½j0�ðj1ÞΔ
indicating the quantum numbers of the superprimary5

and the capital letters specifying whether the multiplet is
long L (L̄) or short at threshold A (Ā) with respect to Qa

(Q̄a), see also Appendix B for more details. In this specific
case, LĀmeans that the multiplet is long with respect toQa

and short with respect to Q̄a. Again, as expected from the
central ideal of the defect algebra, all Q descendants have
the same Uð1Þj0 charge.
This analysis is consistent with [43], where our super-

displacement multiplet is also considered as part of their
general classification of superconformal defects.

C. 1=2 BPS Wilson lines in N = 4 theories

Here we briefly review some 1=2 BPS Wilson lines in
N ¼ 4 theories, thus providing an explicit realization of the
defects discussed so far. These operators have been initially
introduced in [32,33] and then generalized and studied in,
e.g. [34–37,45,47]. See chapter 9 of [42] for a review.

The theories we consider are defined by circular or linear
quivers with gauge groups UðNiÞ [38,40]. The nodes,
labeled by the index i, are connected to each other by
bifundamental fields, which can be either hypers or twisted
hypers. The components of the hypers (twisted hypers) are
the scalars qðiÞa (qȧðiÞ) and the fermions ψ ȧ

ðiÞ (ψ ðiÞa), all in the
(anti)bifundamental representation of the gauge groups
UðNiÞ and UðNiþ1Þ. We recall that a ¼ 1, 2 is the index
for suð2ÞA, while ȧ ¼ 1̇; 2̇ is the one for suð2ÞB.

1. Alternating CS levels

Following [33], we first consider circular quivers with
vector multiplets coupled to hypers and twisted hypers.
In particular, we consider N ¼ 4 SCSM theories with
alternating levels specified by the (partial) necklace quiver
diagram

where the solid lines stand for hypers linking the two nodes
and the dashed line for twisted hypers. One defines the
following scalar bilinears [33,39]

νðiÞ ¼ qðiÞaq̄aðiÞ; ν̃ðiÞ ¼ q̄aðiÞqðiÞa;

ðμðiÞÞab ¼ qðiÞaq̄bðiÞ −
1

2
δa

bνðiÞ;

ðμ̃ðiÞÞab ¼ q̄aðiÞqðiÞb −
1

2
δabν̃ðiÞ: ð2:24Þ

transforming in the adjoint representation of the gauge
group of their respective node.
For this case we consider the so-called ψ1 loop specified

by the superconnection6

Lψ1
¼
 
Aðiþ1Þ1 − 2πi

k ðμ̃ðiÞÞ1̇1̇ − iπ
k νðiþ1Þ ð1 − iÞ ffiffi

π
k

p
ψþ
ðiþ1Þ1̇

ð1 − iÞ ffiffi
π
k

p
ψ̄ 1̇
ðiþ1Þþ Aðiþ2Þ1 − 2πi

k ðμðiþ2ÞÞ1̇1̇ − iπ
k ν̃ðiþ1Þ

!
ð2:25Þ

defined in terms of fields in the fi; iþ 1; iþ 2g nodes. The
spinor indices are �, see Appendix A for details. The
Wilson loop is then (2.1), with the superconnection above.
It preserves half of the superconformal charges [33]

5We mix the two equivalent notations ½j0�ðj1ÞΔ ¼ ½Δ; j0; j1�.

6With respect to [33] we have just added a factor of π. There is
a second operator, called ψ2 loop, corresponding to having
suð2ÞB preserved. The choice of which R-symmetry subgroup
is preserved and which one is broken is immaterial, being just a
matter of swapping hypers and twisted hypers. There is also a
sign difference in the scalar coupling, which however does not
affect the result at this level.
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Qþa2̇; S−
a2̇
; Q−b1̇; Sþ

b1̇
: ð2:26Þ

For example, by looking at the contributions with μðiþ2Þ and
μ̃ðiÞ, only the diagonal part of suð2ÞB is unbroken. On the
other hand, the line defect has to commute with the
preserved symmetry generators. For example, one can look
at the relation involving J0 which, consistently with the
previous discussion, vanishes for the fermions

½J0;ψþ
ðiþ1Þ1̇� ¼ 0; ð2:27Þ

and for all other fields.
It is worth recalling that for these Wilson lines expressed

in terms of superconnection, one relaxes the requirement
that the supersymmetry variation δS of the superconnection
be zero, imposing instead the weaker requirement [28,56]

δSL ¼ DtG ¼ ∂tGþ i½L;G�; ð2:28Þ

where G is a UðNiþ1jNiþ2Þ supermatrix. The gauge
invariance of the operator guarantees then its supersym-
metry invariance as well.
We are now in the position to write down a weak-

coupling realization of the superprimary operator R in
terms of the ingredients introduced above. By computing
explicitly the variation (2.9) of the superconnection (2.25)
with respect to the broken R-symmetry generators, one
finds

R ¼ −

 
2π
k ðμ̃ðiÞÞ2̇1̇ 0

ð1þ iÞ ffiffi
π
k

p
ψ̄ 2̇
ðiþ1Þþ

2π
k ðμðiþ2ÞÞ1̇2̇

!
;

R̄ ¼
 

2π
k ðμðiÞÞ2̇1̇ ð1þ iÞ ffiffi

π
k

p
ψþ
ðiþ1Þ2̇

0 2π
k ðμ̃ðiþ2ÞÞ1̇2̇

!
: ð2:29Þ

The Q descendants can be obtained in a similar way,
exploiting (2.9) or, equivalently, the gauge transforma-
tion (2.28).

2. Linear quivers

The same analysis done for the case of an alternating CS
level can be performed analogously for all the other cases.
The linear case just follows from the previous, by removing
a hyper or twisted hyper from the circular case [33]:

Lψ1
¼
 
Aðiþ1Þ1− 2πi

k ðμ̃ðiÞÞ1̇1̇− iπ
k νðiþ1Þ ð1− iÞ ffiffi

π
k

p
ψþ
ðiþ1Þ1̇

ð1− iÞ ffiffi
π
k

p
ψ̄ 1̇
ðiþ1Þþ Aðiþ2Þ1− iπ

k ν̃ðiþ1Þ

!
:

ð2:30Þ

Again, one can identify the superprimaries for this par-
ticular case, which read

R ¼ −

 
2π
k ðμ̃ðiÞÞ2̇1̇ 0

ð1þ iÞ ffiffi
π
k

p
ψ̄ 2̇
ðiþ1Þþ 0

!
;

R̄ ¼
 

2π
k ðμðiÞÞ2̇1̇ ð1þ iÞ ffiffi

π
k

p
ψþ2̇
ðiþ1Þ

0 0

!
: ð2:31Þ

It is clear at this point that for each case of [33] (or
of [45,47]) one can construct the corresponding weak
coupling representation in terms of supermatrices of the
bulk fields, through the prescription in (2.9). It is rather
interesting to note that these different 1=2 BPSWilson lines
are all mapped to the same functionally equivalent quan-
tities in the defect CFT analysis, as dictated by the
preserved superconformal symmetry. However, the explicit
reference to a specific bulk theory is not to be completely
lost, for it is encoded in a physical normalization factor and
a small expansion parameter of the correlation functions.

III. DEFECT CORRELATION FUNCTIONS

Now we organize the operators of the superdisplacement
multiplet into (anti)chiral superfields, for which one can
define and study correlation functions in superspace. This
will set the groundwork for the next section.

A. Correlation functions in superspace

We begin by defining (anti)chiral coordinates in
superspace

y ¼ tþ θaθ̄a; ȳ ¼ t − θaθ̄a; ð3:1Þ

and the corresponding covariant derivatives

Da ¼ ∂a þ θ̄a∂t; D̄a ¼ ∂
a þ θa∂t; ð3:2Þ

such that Daȳ ¼ 0 and D̄ay ¼ 0. This allows us to
introduce the component expansion of generic (anti)chiral
superfields obeying the conditions D̄aΦðy; θÞ ¼ 0 and
DaΦ̄ðȳ; θ̄Þ ¼ 0:

Φðy; θÞ ¼ ϕðyÞ þ θaλaðyÞ þ θaθbϵabFðyÞ;
Φ̄ðȳ; θ̄Þ ¼ ϕ̄ðȳÞ þ θ̄aλ̄

aðȳÞ þ θ̄aθ̄bϵ
abF̄ðȳÞ: ð3:3Þ

The two-point function in superspace is then given by

hΦðy1; θ1ÞΦ̄ðȳ2; θ̄2Þi ¼
CΦ

h12̄i2Δ ; ð3:4Þ

where [31]

hij̄i ¼ yi − ȳj − 2θai θ̄ja ð3:5Þ

is the chiral distance between two points in superspace and
Δ the conformal dimension of the superfields.
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In the case of interest, the superfields associated with the
superdisplacement multiplet of the 1=2 BPSWilson line are

Φðy; θÞ ¼ RðyÞ þ θaΛaðyÞ þ θaθbϵabDðyÞ;
Φ̄ðȳ; θ̄Þ ¼ R̄ðȳÞ þ θ̄aΛ̄

aðȳÞ þ θ̄aθ̄bϵ
abD̄ðȳÞ; ð3:6Þ

and have Δ ¼ 1. The two-point functions for each defect
operator are obtained by expanding (3.4) in the Grassmann
variables. By comparing the product of the superfields on
the left-hand side and the expansion of the chiral distance
on the right-hand side, one gets7

hRðt1ÞR̄ðt2Þi ¼
CΦ

t212
; hΛaðt1ÞΛ̄bðt2Þi ¼

4CΦ

t312
δab;

hDðt1ÞD̄ðt2Þi ¼
6CΦ

t412
; ð3:7Þ

with tij ≡ ti − tj. The powers of t12 in these expressions are
of course consistent with the conformal dimensions of the
components of the superdisplacement (2.23). The normali-
zation CΦ depends on the coupling constant of the theory
and, for the superdisplacement multiplet, it has an impor-
tant physical meaning, being generally related to the
Bremsstrahlung function [50].8

Moving on to the four-point functions, there are two
inequivalent ordering choices:

hΦðy1;θ1ÞΦ̄ðȳ2; θ̄2ÞΦðy3;θ3ÞΦ̄ðȳ4; θ̄4Þi¼
C2
Φ

h12̄i2h34̄i2fðZÞ;

ð3:8Þ

and

hΦðy1;θ1ÞΦ̄ðȳ2; θ̄2ÞΦ̄ðȳ3; θ̄3ÞΦðy4;θ4Þi¼
C2
Φ

h12̄i2h43̄i2hðXÞ:

ð3:9Þ

Here fðZÞ and hðXÞ are functions of the cross ratios of the
chiral distances

Z ¼ h12̄ih34̄i
h14̄ih32̄i ; X ¼ h12̄ih43̄i

h13̄ih42̄i : ð3:10Þ

By expanding in the fermionic coordinates, one can
identify the bosonic part of these cross ratios, which are
given by

z ¼ t12t34
t14t32

; χ ¼ t12t34
t13t24

: ð3:11Þ

In the specific case of one-dimensional theories, the operator
insertions are ordered along the line: t1 < t2 < t3 < t4.
Before moving on, it is worth discussing the domains of

the variables and their relations. First of all, as typical in
CFTs, one can exploit the symmetries to fix a frame. In the
following we will work in the conformal frame specified by
t1 → 0, t3 → 1, and t4 → ∞. In this setup the cross ratios
are given by

z ¼ t2
t2 − 1

∈ ð−∞; 0Þ; χ ¼ t2 ∈ ð0; 1Þ; ð3:12Þ

which are related by

z ¼ χ

χ − 1
; ð3:13Þ

with branch cut singularities at the endpoints of the
intervals above. Relevant limits are given by t2 → t1, which
implies χ → 0 and z → 0, and by t2 → t3, which implies
χ → 1 and z → −∞. Moreover, under the mapping
χ → 1 − χ, one has z → 1=z. We will see how these limits
will play a role in the following.
Similarly to the two-point functions, one can specialize

(3.9) to the superdisplacement multiplet and, by expanding
both sides, one can obtain the expressions in terms of the
defect insertions. The most straightforward relations are the
ones regarding the superprimaries, which are given by

hRðt1ÞR̄ðt2ÞRðt3ÞR̄ðt4Þi ¼
C2
Φ

t212t
2
34

fðzÞ;

hRðt1ÞR̄ðt2ÞR̄ðt3ÞRðt4Þi ¼
C2
Φ

t212t
2
34

hðχÞ: ð3:14Þ

For reference, in order to distinguish them in the following,
we will refer to the first correlator as the f correlator and to
the second one as the h correlator.
It is remarkable to notice how the preserved supersym-

metry allows one to determine all four-point correlation
functions of the supermultiplet insertions in terms of just
two quantities, fðzÞ and hðχÞ, and their derivatives. For
example, the fermionic superdescendant has

hΛa1ðt1ÞΛ̄a2ðt2ÞΛa3ðt3ÞΛ̄a4ðt4Þi

¼ ð4CΦÞ2
t312t

3
34

1

4
½δa1a2δa3a4ð4f − 3zf0 þ z2f00Þ

− δa1a4δ
a3
a2ðz2f0 þ z3f00Þ�; ð3:15Þ

while for the displacement operators one obtains

7Alternatively to expanding (3.4), one can equivalently take
(3.7) with generic normalizations of the various components,
CR;Λ;D, and relate them by applying the supercharges on mixed
two-point correlation functions like hRðt1ÞΛ̄aðt2Þi ¼ 0. One finds
CΦ ¼ CR ¼ 4CΛ and 2CD ¼ 3CΛ.8For ABJM see also, e.g., [27,57–60] and chapters 10 and 11
of [42] for a review.
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hDðt1ÞD̄ðt2ÞDðt3ÞD̄ðt4Þi

¼ ð6CΦÞ2
t412t

4
34

1

36
½36f þ zð4z2 − 2z − 32Þf0

þ 2z2ð7z2 þ zþ 7Þf00 þ z3ðz − 1Þð8zþ 4Þfð3Þ
þ z4ðz − 1Þ2fð4Þ�; ð3:16Þ

with f ¼ fðzÞ everywhere. Similarly, all other correlators
that can appear by expanding (3.8) or (3.9) are completely
specified by either fðzÞ or hðχÞ and their derivatives. The
computation of the correlators reduces then to determining
these functions.

B. Selection rules

We now study the operator product expansion for the
superdisplacement multiplet and obtain the selection rules
that constrain the exchanged operators. Due to the sim-
ilarity with ABJM, some of the considerations in [31] may
be also applied here.
Let us start with the chiral-antichiral case, namely the

OPE between a chiral and an antichiral superfield. In [60] it
was found that only the identity and long multiplets can
appear in the chiral-antichiral OPE for the suð1; 1j1Þ case,
which corresponds to N ¼ 2 theories. It follows that in all
other algebras with higher supersymmetry, one can always
identify the subalgebra suð1; 1j1Þ ⊂ suð1; 1jbN =2cÞ gen-
erated by Qa; Q̄a for fixed a [31]. This is true for the 1=2
BPS Wilson line in N ¼ 6, but also for the one of N ¼ 4.
Hence, the OPE schematically reads

LĀ½j0�ð0Þj0
× AL̄½−j0�ð0Þj0

∼ I þ LL̄½0�ð0ÞΔ ; ð3:17Þ

where the notation introduced at the end of Sec. II B and in
Appendix B is adopted.
Regarding the chiral-chiral case, one can study the OPE

expansion by requiring consistency under the chirality
condition and the charges. In particular, if one considers

the OPE for ½j0�ð0Þj0
× ½j0�ð0Þj0

where ½j0�ð0Þj0
is the super-

primary of LA½j0�ð0Þj0
, the first contribution one expects to be

exchanged is again a superprimary, as it satisfies the full

shortening condition, with quantum numbers ½2j0�ð0Þ2j0
.

Notice, however, that it is not the full LA½2j0�ð0Þ2j0
multiplet

that takes part in the OPE, but just one of its components (in
this case the superprimary), with all its conformal family.
Analogously, all other contributions that can be exchanged
are constrained by chirality. These are built by acting a
sufficient number of times with Q̄a on a given super-
primary, until the correct chirality condition and charge
consistency are met. The result for the supermultiplets is
schematically given by

LĀ½j0�ð0Þj0
× LĀ½j0�ð0Þj0

∼ LĀ½2j0�ð0Þ2j0
þ LĀ½2j0�ð1Þ2j0þ1

2

þ LL̄½2j0�ð0ÞΔ : ð3:18Þ

Then, when considering the superprimary OPE, one obtains
[see (B3) for the charges of Q̄a]

½j0�ð0Þj0
× ½j0�ð0Þj0

∼ ½2j0�ð0Þ2j0
þ Q̄1½2j0�ð1Þ2j0þ1

2

þ Q̄2Q̄1½2j0�ð0ÞΔ ;

ð3:19Þ

where we have explicitly written down the Q̄ descendants
given by the action of the supercharges on the correspond-
ing superprimaries. The quantum numbers of the
exchanged conformal primaries are therefore ½2j0; 2j0; 0�,
½2j0 þ 1; 2j0; 0�, and ½Δþ 1; 2j0; 0�.
In order to complete the discussion, one has also to

investigate the implications of the decomposition rules at
the threshold Δ⋆ ¼ j0 þ 1

2
j1 for the long superprimary.

In particular, one has [43]

LL̄½j0�ðj1ÞΔ→Δ⋆
¼ LĀ½j0�ðj1ÞΔ⋆

⊕ LĀ½j0�ðj1þ1Þ
Δ⋆þ1

2

; ð3:20Þ

which, specialized to our case in order to meet (3.19), reads

LL̄½2j0�ð0ÞΔ→Δ⋆
¼ LĀ½2j0�ð0Þ2j0

⊕ LĀ½2j0�ð1Þ2j0þ1
2

: ð3:21Þ

Since this is precisely the contribution that has been
already considered, one can avoid this case by requiring
that the dimension of long multiplets never hits the
threshold value. Therefore, the long superprimaries are
only allowed to have dimension strictly greater the satu-
rating one, Δlong−SP > 2j0. Rewritten in terms of the Q̄
superdescendants appearing in the expansion, this means

ΔQ̄-des
long > 2j0 þ 1: ð3:22Þ

Consequently, the OPE within the chiral-chiral sector
allows for the exchange of two conformal primaries that
are protected and have dimensions 2j0 and 2j0 þ 1, along-
side an infinite number of operators whose dimensions are
unprotected and strictly larger than those of the protected
operators.

C. Block expansions

Now everything is set for identifying the superconfor-
mal blocks of the conformal partial wave (CPW)
expansions [61] of (3.14). These contributions will be
associated with the conformal family of the operators that
appear in the OPE expansion of the corresponding channel.
In the following we identify all such contributions.
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1. f correlator

We start by the s channel, in which we expand around the
insertions at points (12) and (34). In terms of the cross
ratios, this corresponds to z → 0. The chiral-antichiral OPE
(3.17) can be exploited, thus leading to the CPWexpansion
of fðzÞ given by

fðzÞ ¼ 1þ
X
Δ>0

aΔFΔðzÞ; ð3:23Þ

where Δ > 0 follows directly from the selection rule and
the blocks sum the contributions of the superconformal
descendants with quantum numbers ½Δ; 0; 0�. In order to
identify them, we rely on the shadow formalism [62],
see [63] for a review. We consider the quadratic Casimir
(2.8) acting on the operators inserted at y1 and y2. To this
scope, we replace the generators in (2.8) with generators
acting on the two coordinates, e.g. D → Ds ¼ D1 þD2,
K → Ks ¼ K1 þ K2 and so on.9 Overall, the differential
operator one obtains is

D1;2 ¼ D2
s −

1

2
fKs; Psg þ

1

4
½S̄as ; Qsa� þ

1

4
½Ssa; Q̄a

s �

−
1

2
Rsa

bRsb
a: ð3:24Þ

Moreover, from (2.8) and the quadratic Casimir eigen-
value cΔ ¼ ΔðΔþ 1Þ, one reaches the condition

ðD1;2 − cΔÞhΦðy1; θ1ÞΦ̄ðȳ2; θ̄2ÞΦðy3; θ3ÞΦ̄ðȳ4; θ̄4Þi ¼ 0:

ð3:25Þ

By expanding in the Grassmann variables, one can identify
the second-order differential equation

zð2 − zÞ∂zFΔðzÞ þ ð1 − zÞz2∂2zFΔðzÞ ¼ ΔðΔþ 1ÞFΔðzÞ;
ð3:26Þ

which is solved by the linear combination10

FΔðzÞ ¼ c1ð−zÞ−Δ−12F1ð−Δ − 1;−Δ − 1;−2Δ; zÞ
þ c2ð−zÞΔ2F1ðΔ;Δ; 2Δþ 2; zÞ; ð3:27Þ

where c1 and c2 are integration constants. By defining

GΔðzÞ ¼ ð−zÞΔ2F1ðΔ;Δ; 2Δþ 2; zÞ; ð3:28Þ

the superconformal blocks have the simple expression

FΔðzÞ ¼ c1G−1−ΔðzÞ þ c2GΔðzÞ: ð3:29Þ

The G−1−ΔðzÞ term is associated with the so-called shadow
contributions. Its appearance is related to the fact that
G−1−ΔðzÞ and GΔðzÞ have the same eigenvalues
cΔ ¼ c−1−Δ. Having dimension strictly less than the uni-
tarity bound, they have no real physical interpretation,
meaning that they do not belong to the physical spectrum of
the theory. So, consistently with the OPE, one sets c1 ¼ 0
and c2 ¼ 1. However, with a little foresight, we can already
expect that these contributions, precisely because they have
the same eigenvalue under D1;2, will be prime candidates
for defining an internal (weighted) product, see Sec. IVA.
Moreover, it is worth noticing that the superblocks can be

consistently decomposed in terms of one-dimensional con-
formal blocks g̃ΔðzÞ ¼ ð−zÞΔ2F1ðΔ;Δ; 2Δ; zÞ as follows:

GΔðzÞ ¼ g̃ΔðzÞ þ
Δ

2þ 2Δ
g̃Δþ1ðzÞ

þ Δ2

4ð3þ 4Δð2þ ΔÞÞ g̃Δþ2ðzÞ: ð3:30Þ

Wemove on to the t channel. In this case we focus on the
proximity of the defect insertions at (23) and (14). The
latter may initially appear unusual due to the sequential
ordering of the correlator insertions with ti < tiþ1.
However, as discussed in [7], crossing symmetry allows
for the interchange of the second and fourth insertions. We
will see this better in the following. For the moment, notice
that this implies that the t channel is equivalent to the
previous configuration. Therefore, it is useful to introduce a
cross invariant function which can be defined as

f̂ðχÞ ¼ χ−2ΔfðzÞ ¼ χ−2Δf

�
χ

χ − 1

�
; ð3:31Þ

with the property

f̂ðχÞ ¼ f̂ð1 − χÞ: ð3:32Þ

This clearly relates the s channel limit, χ → 0, with the t
channel one, χ → 1. Thus the f correlator can be written as

hRðt1ÞR̄ðt2ÞRðt3ÞR̄ðt4Þi ¼
C2
Φ

t212t
2
34

fðzÞ ¼ C2
Φ

t212t
2
34

χ2f̂ðχÞ

¼ C2
Φ

t213t
2
24

f̂ðχÞ; ð3:33Þ

which is explicitly crossing invariant. The f̂ðχÞ can also be
written in terms of a block expansion and its expression is
given by

9This is just the same as considering D1;2 ∝ ðJ ab;1 þ
J ab;2ÞðJ ab

1 þ J ab
2 Þ where J ab

1 are the differential representa-
tions of the generators of the superconformal algebra and
the single Casimir is C ∝ J abJ ab.10An initial derivation of these conformal blocks is contained
in [52].
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f̂ðχÞ ¼ 1

χ2
þ
X
Δ>0

aΔG̃ΔðχÞ; ð3:34Þ

with G̃ΔðχÞ ¼ 1
χ2
GΔðχÞ ¼ χΔ−22F1ðΔ;Δþ 2; 2Δþ 2; χÞ.

2. h correlator

We start again from the analysis of the s channel, which
is important in order to make contact with the s channel of
the f correlator. Again, one expands around the insertions
at (12) and (34), or χ → 0. One can, once more, exploit the
chiral-antichiral OPE and expect hðχÞ to have the func-
tional expansion

hðχÞ ¼ 1þ
X
Δ
bΔGΔðχÞ; ð3:35Þ

with GΔ ¼ χΔ2F1ðΔ;Δ; 2Δþ 2; χÞ being obtained by
solving (3.28) and by imposing consistency with the
OPE expansions. In this respect, the s channel OPE
coefficients of both correlators are specified by the
three-point coefficients

aΔ ¼ cRR̄OΔ
cRR̄OΔ

; bΔ ¼ cRR̄OΔ
cR̄ROΔ

; ð3:36Þ

where OΔ denotes the exchanged operator of conformal
dimension Δ. As it can be seen by applying a parity
transformation [31], the two coefficients are related by

aΔ ¼ ð−1ÞsOΔbΔ; ð3:37Þ

where sOΔ
stands for the charge of the exchanged operator

under parity. Taking, for example, operators schematically
defined as O2þn ∼R∂nt R̄, see Sec. IV, the corresponding
charge is sO2þn

¼ n. In passing, let us also notice that (3.37)
depends solely on the quantum number of the exchanged
operator under parity, and thus it remains valid even when
perturbations are considered.
Finally, we consider the t channel. In this last case, one

expands around the insertions at (14) and (24), or χ → 1,
allowing to exploit, for the first time, the chiral-chiral OPE.
Let us recall the crossing symmetry briefly discussed for the
f correlator: once one identifies the endpoints at infinity, it
is possible to swap the positions of points two and four [7].
This allows one to relate the defect insertions

hRðt1ÞR̄ðt2ÞR̄ðt3ÞRðt4Þi ¼ hRðt1ÞRðt4ÞR̄ðt3ÞR̄ðt2Þi;
ð3:38Þ

and to exploit the chiral-chiral OPE. In terms of hðχÞ, (3.38)
implies

ð1 − χÞ2hðχÞ ¼ χ2hð1 − χÞ: ð3:39Þ

It follows that the correlator can be rewritten conven-
iently as

hRðt1ÞR̄ðt2ÞR̄ðt3ÞRðt4Þi ¼
C2
Φ

t214t
2
23

hð1 − χÞ

¼ C2
Φ

t214t
2
23

ĥðχÞ; ð3:40Þ

where we have defined

ĥðχÞ ¼
�
1 − χ

χ

�
2

hðχÞ: ð3:41Þ

Now we can perform the CPWexpansion and, again, we
rely on the analysis of Sec. III B regarding the chiral-chiral
channel. In this case, we have seen that only a single
component of each supermultiplet, with all its conformal
family, participates in the OPE. It follows that, in this case,
the expansion is given in terms of the one-dimensional
conformal blocks [61]

gΔðχÞ ¼ χΔ2F1ðΔ;Δ; 2Δ; χÞ: ð3:42Þ

If follows that the CPW expansion (in terms of new
coefficients bΔ) is

ĥðχÞ ¼ b2j0g2j0ð1 − χÞ þ b2j0þ1g2j0þ1ð1 − χÞ
þ

X
Δ>2j0þ1

bΔgΔð1 − χÞ; ð3:43Þ

where, as a consequence of the selection rule (3.19), the
sum is taking into account the protected and unprotected
long contributions with Δ > 2j0 þ 1. Specializing to our
case j0 ¼ 1, it reads

ĥðχÞ ¼ b2g2ð1 − χÞ þ b3g3ð1 − χÞ þ
X
Δ≥4

bΔgΔð1 − χÞ:

ð3:44Þ

IV. ANALYTIC BOOTSTRAP

At strong coupling, the Wilson lines are mapped
through holography to minimal surfaces extending in the
AdS bulk and ending along the operator contour on the
boundary [1].11 The induced metric on the minimal surface
is AdS2, which is dual to a CFT1 on the defect [4,64]. The
operators of the superdisplacement multiplet are associated
with the fluctuations near the minimal surface of transverse
string modes, the leading contribution to a four-point
correlation function arising from a disconnected Witten
diagram in AdS2. The first-order correction, on the

11See chapters 12 and 13 of [42] for a review of the ABJM
case.
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other hand, is given by the connected four-point Witten
diagram [4,31].
The strong coupling regime can also be accessed by

analytic bootstrap methods, which we proceed to perform
in this section. The idea is to expand the functions in terms
of a small parameter ϵ

fðzÞ ¼ fð0ÞðzÞ þ ϵfð1ÞðzÞ þOðϵ2Þ;
hðχÞ ¼ hð0ÞðχÞ þ ϵhð1ÞðχÞ þOðϵ2Þ; ð4:1Þ

with the superscripts indicating the leading and the next-to-
leading (NLO) order terms of the expansions, to be
eventually matched with the holographic contributions
mentioned above.
By general arguments, the parameter ϵ scales like the

inverse string tension 1=T ∼ 1=
ffiffiffi
λ

p
and is therefore small at

strong coupling in the gauge theory, as stated above. The
precise mapping depends on the specific N ¼ 4 theory
(and, therefore, coupling λ) one considers and can only be
established after an explicit comparison with the Witten
diagram computation, not being fixed by symmetry.
To emphasize the physical meaning of this small param-

eter, we derive below an explicit relation between ϵ and CΦ
(or, equivalently, between ϵ and the Bremsstrahlung func-
tion) following the ideas in [65,66] based on the computa-
tion of the Zamolodchikov metric of the defect conformal
manifold.12

A. Leading order

We start from the leading order, which is given by Wick
contractions of generalized free fields [4,67–70]. For example,
the four-point correlation function hRðt1ÞR̄ðt2ÞRðt3ÞR̄ðt4Þi
factorizes in this limit as products of two-point correlation
functions

hRðt1ÞR̄ðt2ÞihRðt3ÞR̄ðt4Þi þ hRðt1ÞR̄ðt4ÞihR̄ðt2ÞRðt3Þi

¼ C2
Φ

�
1

t212t
2
34

þ 1

t214t
2
32

�
¼ C2

Φ
t212t

2
34

ð1þ z2Þ; ð4:2Þ

where (3.7) and the explicit expression (3.11) for z have been
used. For (3.14), one obtains

fð0ÞðzÞ ¼ 1þ z2; hð0ÞðχÞ ¼ 1þ χ2: ð4:3Þ

As expected, the two expressions have the same functional
form. In fact, theoperators that are exchanged in the s channels
of both four-point functions of (3.14) are R∂nt R̄, besides
the identity, while for the t channel of the h correlator they are
R∂ntR. All these have dimensions Δs

n ¼ Δt
n ¼ 2þ n.13

To get the conformal data, one has to identify the OPE
coefficients of the CPW expansion. By using orthogonality
conditions of the conformal blocks in Sec. III C, it is a
simple task to project out the coefficients (see Appendix C
for details). For our discussion we will only need the
relations [31,61]

I
dz
2πi

ωðzÞGnþ1ðzÞG−2−mðzÞ ¼ δn;m;I
dχ
2πi

ρðχÞgnþ1ð1 − χÞg−mð1 − χÞ ¼ δn;m; ð4:4Þ

where the densities are ωðzÞ ¼ − 1
ð1−zÞ2 and ρðχÞ ¼ − 1

ð1−χÞ2,
and the circles close counter-clockwise around the points
z ¼ 0 and χ ¼ 1. Notice that, as discussed in the previous
section, the contribution over which we project Gmþ1ðzÞ is
precisely G−2−mðzÞ, i.e. the shadow one obtains when
solving the differential equation. Equating the functions
(4.3) with the CPW expansion and exploiting the ortho-
gonality, one gets right away the coefficients. For the s
channel, these are

að0Þn ¼
ffiffiffi
π

p
2−2ð2þnÞðnþ 1ÞΓðnþ 5Þ
ðnþ 2ÞΓðnþ 5

2
Þ ; ð4:5Þ

and, from the discussion of Sec. III C 2, one finds

bð0Þn ¼ ð−1Þnað0Þn . For the t channel, only even n contribute:

bð0Þn ¼
ffiffiffi
π

p
2−ð1þ2nÞðnþ 1ÞΓðnþ 3Þ

Γðnþ 3
2
Þ ; if n even;

bð0Þn ¼ 0; if n odd: ð4:6Þ

This is expected, since only for even n the exchanged
operators R∂ntR respect the Z2 symmetry t → −t.

B. Next-to-leading order

We move now to investigate the NLO of the expansions
(4.1). Following [31], one can start from an ansatz for fð1Þ

and hð1Þ. It is however particularly convenient to focus on
f̂ðχÞ in (3.31), since one can exploit crossing invariance to
fix its generic structure, given by

f̂ð1ÞðχÞ ¼ rð1 − χÞ logðχÞ þ rðχÞ logð1 − χÞ þ qðχÞ; ð4:7Þ

where qðχÞ and rðχÞ are rational functions expanded as [31]

rðχÞ ¼
X
k

rkχk qðχÞ ¼
X
l

qlχlð1 − χÞl: ð4:8Þ

In the following, we will investigate how to fix the
coefficients rk and ql. Plugging the ansatz in fðzÞ, one has

12We thank Nadav Drukker for suggesting this computation.
13Here and in the following,Δt

n and γtn refer exclusively to the t
channel of the h correlator, i.e. the chiral-chiral channel.
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fð1ÞðzÞ ¼ z2

ðz − 1Þ2
�
r
�

1

1 − z

�
logð−zÞ −

�
r
�

1

1 − z

�
þ r
�

z
z − 1

��
logð1 − zÞ þ q

�
z

z − 1

��
: ð4:9Þ

Similarly, one can find an analogous expression for hð1Þ by recalling that in the s channels the two functions have the same
functional form. Hence, by replacing z → χ, one obtains the expression for hð1ÞðχÞ, up to the sign in the logarithm14

hð1ÞðχÞ ¼ χ2

ðχ − 1Þ2
�
r

�
1

1 − χ

�
logðχÞ −

�
r

�
1

1 − χ

�
þ r

�
χ

χ − 1

��
logð1 − χÞ þ q

�
χ

χ − 1

��
; ð4:10Þ

and, plugging (4.10) in (3.41), also the expression for ĥð1ÞðχÞ,

ĥð1ÞðχÞ ¼ r

�
1

1 − χ

�
logðχÞ −

�
r

�
1

1 − χ

�
þ r

�
χ

χ − 1

��
logð1 − χÞ þ q

�
χ

χ − 1

�
: ð4:11Þ

These must match with the perturbed CPW expansions. In particular, we expect the conformal dimensions to become
anomalous

Δs
n ¼ 2þ nþ ϵγsn; Δt

n ¼ 2þ nþ ϵγtn; ð4:12Þ

for the s and t channels, respectively. Similarly, the CPW coefficients will now be given by

an ¼ að0Þn þ ϵað1Þn ; bn ¼ bð0Þn þ ϵbð1Þn : ð4:13Þ

The NLO expansions for the functions (3.23) and (3.44) are then explicitly given by

fð1ÞðzÞ ¼
X
n≥0

ð−zÞnþ2ðað1Þn F2þnðzÞ þ γsna
ð0Þ
n F2þnðzÞ logð−zÞ þ γsna

ð0Þ
n ∂ΔFΔðzÞj2þnÞ;

ĥð1ÞðχÞ ¼
X
n≥0

ð1 − χÞnþ2ðbð1Þn F̃2þnð1 − χÞ þ γtnb
ð0Þ
n F̃2þnð1 − χÞ logð1 − χÞ þ γtnb

ð0Þ
n ∂ΔF̃Δð1 − χÞj2þnÞ; ð4:14Þ

with simplified notation: FΔðzÞ ¼ 2F1ðΔ;Δ; 2Δþ 2; zÞ and F̃Δð1 − χÞ ¼ 2F1ðΔ;Δ; 2Δ; 1 − χÞ. One may infer the CFT
data as it was done in the previous section at leading order. In particular, the anomalous dimensions can be extracted and
related to the ansatz by

γsn ¼
1

að0Þn

I
dz
2πi

ωðzÞ
�

z2

ðz − 1Þ2 r
�

1

1 − z

��
G−3−nðzÞ;

γtn ¼ −
1

bð0Þn

I
dχ
2πi

ρðχÞ
�
r

�
1

1 − χ

�
þ r

�
χ

χ − 1

��
g−1−nð1 − χÞ; for n even; ð4:15Þ

while γtn ¼ 0 for n odd. Here a comment is in order: from
the evaluation of the anomalous dimensions through this
procedure, one is not extracting the contributions of
individual operators entering the OPE, but rather a linear
combination thereof, weighted by the corresponding CPW
coefficients [4,59]. The unmixing of these contributions is a

highly nontrivial task [12,71,72], which we do not address
here.
To fix the coefficients in (4.8), one can first truncate

their expansions borrowing some arguments from
[4,8,31,64,67,73,74] regarding the large-n behaviour of
the anomalous dimensions. The lore goes as follows: the
increase in anomalous dimensions is tied to the local
interactions occurring within the AdS dual counterpart.
As the relevance of these interactions decreases, the growth
in anomalous dimensions becomes more significant. In
aiming to bootstrap a leading correction for the holographic
correlator, it is sensible to prioritize solutions characterized
by minimal, or mildest, growth. In the CFT this can be

14The sign is changed in order to require consistency with the
first-order expansion of the expression (3.35), see also [31]. By
doing the expansion explicitly, two contributions given by logðχÞ
and logð1 − χÞ factorize. Equivalently, one can consider absolute
values in the arguments as done in [4].
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justified a posteriori knowing that γn < 0, so that the
mildest growth of the anomalous dimension is the one that
guarantees reliability for the largest span of values of n [4].
If γn grows too fast, the contribution ϵγs;tn will grow faster
compared to the leading order 2þ n until, eventually,
hitting the unitarity bound. Through the prescription
(4.15) one can compute the anomalous dimensions exploit-
ing the rational function rðχÞ. This leads to the parametric
expressions

γsn¼
1

4
ð1þnÞð4þnÞr−3þr−2þ

2þð−1Þnð6þ5nþn2Þ
2ð4þ5nþn2Þ r−1

−
ð−1Þn
6

ð6þ5nþn2Þr0þOðn4Þ;

γtn¼
1

4
nðnþ3Þr−3−r−2þ

1

ð1þnÞð2þnÞr−1
þOðn4Þ; forneven: ð4:16Þ

To meet the mildest-n behavior, the coefficients of the
expansion of rðχÞ must be rk ≠ 0 only for −3 ≤ k ≤ 0.
However, there are some oscillating contributions appear-
ing on the s channel anomalous dimension. Motivated by
the results in [4,8,31], one could think to further fix them by
expecting a universal strong coupling trend for n ≫ 1 and
ϵ ≪ 1 but with nϵ fixed, see e.g. [4]. This consideration
would enable one to fix r0 ¼ 0 (which will also emerge
from requiring the regularity of the ansatz anyway), but it
does not allow one to draw any conclusion on the r−1
coefficient, as it become negligible at large n. Crucially, the
requirement that γt0 ¼ 0, following from the selection rules,
introduces a further condition that must be satisfied, and
that is

2r−2 − r−1 ¼ 0: ð4:17Þ

This constraint and r0 ¼ 0 can be equivalently obtained by
requiring that the series expansion around χ → 1 of the
ansatz (4.11) starts at ð1 − χÞ4, precisely as in (4.14).
As anticipated, other restrictions can be drawn from

imposing the condition of regularity for the ansatz (4.7) and
(4.11). This translates into the requirement of pole can-
cellations in the regimes χ → 1 (or equivalently χ → 0) for
f̂ð1ÞðχÞ and χ → 1 for ĥð1ÞðχÞ. One obtains the conditions

q−2 − r−3 ¼ 0; 2q−2 þ q−1 −
r−3
2

− r−2 ¼ 0; ð4:18Þ

and all others ql ¼ 0. All other constraints that can be
obtained from similar analyses will just be redundant.
Summarizing, one can consider the ansatz specified by

the rational functions

rðχÞ ¼ r−3
χ3

þ r−2
χ2

þ r−1
χ

;

qðχÞ ¼ q−2
χ2ð1 − χÞ2 þ

q−1
χð1 − χÞ ; ð4:19Þ

with the five coefficients subject to

r−3¼q−2; r−2¼
3q−2
2

þq−1; r−1¼3q−2þ2q−1: ð4:20Þ

There remain then two independent coefficients, which are
not fixed by internal consistency, crossing symmetry, and
so on. This is not an unexpected result, as it can be justified
by drawing analogies from cases in four dimensions. In
particular, for N ¼ 4 super-Yang-Mills the corresponding
solutions are defined up to an overall parameter [4].
However, when one studies less supersymmetric cases,
e.g. N ¼ 2, one finds that the solutions are expressed in
terms of two free parameters [8]. Something similar
happens for three-dimensional theories. The solutions
found for the ABJM case [31] were defined up to a single
overall parameter too, while here we find, as for N ¼ 2, a
two-parameter family of solutions.
In order to state the final answer one can proceed by

absorbing one of the coefficients in the expansion param-
eter ϵ and, in analogy with the SUð1; 1j3Þ case [31], we also
change the overall sign.15 Hence, by reabsorbing q−2 into
the definitions of ϵ and expressing the ratio of the two free
parameters as

ξ≡ q−1
q−2

; ð4:21Þ

Equation (4.7) now reads

f̂ð1ÞðχÞ ¼ −
�
2ξþ 3

χ
þ ξþ 3

2

χ2
þ 1

χ3

�
logð1 − χÞ

−
�
2ξþ 3

1 − χ
þ ξþ 3

2

ð1 − χÞ2 þ
1

ð1 − χÞ3
�
logðχÞ

−
ξ

ð1 − χÞχ −
1

ð1 − χÞ2χ2 : ð4:22Þ

The expression for fð1ÞðzÞ is given instead by

fð1ÞðzÞ ¼−1þð2þ ξÞz− z2

−
ð1− zÞ2ð2z2− ð2ξþ 1Þzþ 2Þ logð1− zÞ

2z

−
z2ð6ξþ 2z2− ð2ξþ 7Þzþ 11Þ logð−zÞ

2ð1− zÞ : ð4:23Þ

15In fact, the discussion in this section is true regardless of the
overall sign of the ansatz. This sign change was justified in [31]
by the comparison with the holographic dual.
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As before, hð1ÞðχÞ can be obtained from fð1ÞðzÞ through the
usual mapping, while for (4.11) one has explicitly

ĥð1ÞðχÞ ¼ χ − 1

2χ3

h
2ðχ − 1Þχð1− ð2þ ξÞχþ χ2Þ

þ ðχ − 1Þ3ð2− ð1þ 2ξÞχþ 2χ2Þ logð1− χÞ
þ χ3ð2ξðχ − 3Þ− 2χ2þ 7χ − 11Þ logðχÞ

i
: ð4:24Þ

With these parametrizations, the anomalous dimensions for
the two channels are now expressed as

γsn¼−
4þnðnþ1Þ½2þnþn2þ4ξþ2ð−1Þnð3þ2ξÞ�

4ð−2þnþn2Þ ;

γtn¼−
1

4
nðnþ3Þþnð3þnÞð3þ2ξÞ

2ð1þnÞð2þnÞ ; forn even; ð4:25Þ

and the NLO OPE coefficients can be consistently written
as [67,68,74]

að1Þn ¼ ∂

∂n
ðað0Þn γsnÞ; ð4:26Þ

and

bð1Þn ¼ ∂

∂n
ðbð0Þn γtnÞ; for n even: ð4:27Þ

C. Relation to the 1=2 BPS line in ABJM

By looking at most of the results above, e.g. (4.22) for
f̂ð1ÞðχÞ or (4.25) for the anomalous dimensions, one notices
that ξ screams to be set to ξ ¼ −3=2, to drastically simplify
those expressions. However, as discussed, this cannot be
done by invoking internal consistency or crossing sym-
metry. The presence of the free parameter ξ is simply due to
the N ¼ 4 case being less constrained by supersymmetry
than ABJM.
We can, however, make contact with the ABJM case16 by

identifying the operators in the ABJM superdisplacement
multiplet which map to the ones in (2.23), which is

LĀ

�
3

2

�ð0;0Þ
1
2

→ LĀ½1�ð0Þ1 : ð4:28Þ

In ABJM, the primary operator is a fermion with Δ ¼ 1=2,
j0 ¼ 3=2 and singlet under R-symmetry. We may then
compare the four-point functions of the defect operators
with the same dimension Δ in ABJM and in N ¼ 4. In the
comparison, one has to take into account that the normal-
izations of the two-point functions and the small parameters
of the expansions are different in the two cases, so we call
them CABJM and ϵABJM in the ABJM case, to distinguish
them from CΦ and ϵ above.
The displacement operator D, which appears in both

theories and is neutral under the preserved R-charges, is the
natural place to start the comparison. Its four-point corre-
lation function for the ABJM case has been obtained in [31]
and is a rather complicated expression,

hDðt1ÞD̄ðt2ÞDðt3ÞD̄ðt4ÞiABJM ¼ ð12CABJMÞ2
t412t

4
34

1

36
½36f − 36ðz4 þ zÞf 0 þ 18z2ð−14z3 þ 3z2 þ 1Þf 00

− 6z3ð55z3 − 39z2 þ 3zþ 1Þfð3Þ − 3z4ð46z3 − 63z2 þ 18z − 1Þfð4Þ
− 3ðz − 1Þ2z5ð7z − 1Þfð5Þ − ðz − 1Þ3z6fð6Þ� ð4:29Þ

of the function fðzÞ ¼ fABJMðzÞ and its first six
derivatives.
At leading order one finds fð0ÞðzÞ ¼ 1 − z [31].

Notice that since it encodes the information of the
superprimary four-point function of the ABJM 1=2-
BPS Wilson line, it has clearly a different functional
form compared to the N ¼ 4 case in (4.3). Nonetheless,
when computing the four-point function at this order, one
obtains

hDðt1ÞD̄ðt2ÞDðt3ÞD̄ðt4ÞiABJM ¼ ð12CABJMÞ2
t412t

4
34

ð1þ z4Þ

þOðϵABJMÞ; ð4:30Þ

which is, upon the overall factor, precisely the same
functional form that one gets in N ¼ 4, see (3.16) with
fðzÞ ¼ fð0ÞðzÞ in (4.3). The NLO result for ABJM was
obtained in [31] and reads

fð1ÞABJMðzÞ ¼ z − 1 −
ð1 − zÞ3

z
logð1 − zÞ

þ zð3 − zÞ logð−zÞ: ð4:31Þ

16We specialize to those configurations that can be directly
derived from the ABJM theory, for example from quotients of the
latter [42].
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When plugged into (4.29), the four-point function of the displacement operator of the ABJM theory becomes

hDðt1ÞD̄ðt2ÞDðt3ÞD̄ðt4ÞiABJM ¼ ð12CABJMÞ2
t412t

4
34

�
1þ z4 þ 2ϵABJM

�
−8 − z −

7z2

6
− z3 − 8z4

þ
�
3 −

8

z
þ 3z4 − 8z5

�
logð1 − zÞ þ z4ð8z − 3Þ logð−zÞ

��
: ð4:32Þ

Remarkably, if we evaluate (3.16) for ξ ¼ −3=2, we precisely reproduce the formula above for ABJM.
For reference, the anomalous dimensions and coefficients of the CPW expansion for ξ ¼ −3=2 reduce to

γsn ¼ −n2 − 5n − 4;

γtn ¼ −n2 − 3n; for n even; ð4:33Þ

and

að1Þn ¼ að0Þn

�
−2n − 5þ γsn

�
ψðnþ 5Þ − ψ

�
nþ 5

2

�
− 2 log 2þ 1

ðnþ 1Þðnþ 2Þ
��

;

bð1Þn ¼ bð0Þn

�
−2n − 3þ γtn

�
ψðnþ 3Þ − ψ

�
nþ 3

2

�
− 2 log 2þ 1

nþ 1

��
; for n even; ð4:34Þ

where ψðzÞ ¼ Γ0ðzÞ=ΓðzÞ is the digamma function.

D. Relation to the 1=2 BPS line in N = 2 theories

One can exploit what has been computed so far to guess
what the result for the bootstrap of the displacement
operator would be like for the 1=2 BPS Wilson line defect
of N ¼ 2 SCSM [75]. To do this, one needs to recall the
different superdisplacement multiplets in the three-dimen-
sional N ¼ 2, 4, 6 cases [43]:

N ¼ 6∶
�
3

2

�ð0;0Þ
1
2

⟶ ½2�ð1;0Þ1 ⟶

�
5

2

�ð0;1Þ
3
2

⟶ ½3�ð0;0Þ2 ;

N ¼ 4∶ ½1�ð0Þ1 ⟶ ½1�ð1Þ3
2

⟶ ½1�ð0Þ2 ;

N ¼ 2∶
�
−
3

2

�
3
2

⟶ ½−1�2; ð4:35Þ

with the usual notation for the charges ½j0�ðRÞ
Δ ,

with ðRÞ standing for the Dynkin labels of the considered
representation.
All displacement operators are singlets of the preserved

R-symmetry (when present), and the four-point function is
neutral under the Abelian symmetry. Therefore, one
expects the same relation to take place, where now the
less supersymmetric one is the defect theory of the 1=2 BPS
Wilson line inN ¼ 2 and theN ¼ 4 defect plays the same
role as the ABJM one in the previous section. Thus, one can
expect that whatever function is relative to the super-
primary, it should be consistent, upon normalization,
with the N ¼ 4 one, precisely as before. Moreover, one
can extract much more information about the unknown

function. Notably, as illustrated in the scheme above, the
multiplets shorten as the bulk supersymmetry decreases, as
expected. Consequently, the superprimary of the less
supersymmetric multiplet can be matched with the first
Q descendant of the higher supersymmetric theory. This is
true and can be verified for the matching between the
N ¼ 4 case and ABJM, as seen above. By exploiting
(3.15), one can do the same forN ¼ 4 andN ¼ 2, arriving
at the f function for the N ¼ 2 case, both at the leading
order

fð0ÞN¼2
ðzÞ ¼ 1 − z3; ð4:36Þ

and at the NLO

fð1ÞN¼2
ðzÞ ¼ −9þ z

2
−
z2

2
þ 9z3

þ
�
5 −

9

z
þ 5z3 − 9z4

�
logð1 − zÞ

þ ð5 − 9zÞz3 logð−zÞ: ð4:37Þ

One can straightforwardly extend this analysis to the h
function, the anomalous dimensions, and so on.

E. Comments on the holographic dual

A natural question at this point is of course to try to
reproduce the results obtained here from the holographic
dual [76], by computing explicitly the disconnected and
connected Witten diagrams in AdS2, as pioneered in [4]. In
fact, this is not strictly necessary, as one can simply reuse
the analysis in [31] for the ABJM case.
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The supergravity dual is of course different in theN ¼ 4

case, namely AdS4 × S7=Q, where Q is some appropriate
quotient of S7, for example Q ¼ ðZp ⊕ ZqÞ=Zk for quiv-
ers coupled to p hypers and q twisted hypers. This implies
that the Kaluza-Klein reduction of the supergravity fields in
the internal space is going to be different, e.g. one does not
expect the three massless fields found in [31] due the
SUð3ÞR R-symmetry. However, the analysis for the AdS2
fluctuations is going to be the same, correspondingly to the
fact that the displacement operator D is the same as in that
case. The Witten diagram for this field is decoupled from
the rest, so that the result in [31] also applies here,
consistently with the discussion above in Sec. IV C.

F. Relation between ϵ and CΦ

It is possible to establish a relation between the expansion
parameter ϵ and the normalization of the two-point corre-
lation functions CΦ or, equivalently, the Bremsstrahlung
function of the theory. This was first proposed in [65] and
then extended to higher orders at strong coupling in [66].
The idea is to consider the defect conformal manifold

associated with exactly marginal deformations of our 1=2
BPS operators. This manifold is CP1 with Zamolodchikov
metric given by

gzz̄ ¼ hRð0ÞR̄ð1Þi ¼ CΦδzz̄; ð4:38Þ

which is conformally related to the line element

ds2CP1 ¼ 4CΦ

ð1þ jzj2Þ2 dzdz̄: ð4:39Þ

The corresponding Riemann tensor is

Rzz̄zz̄ ¼ −
1

2
gzz̄gzz̄RCP1 ; Rzzz̄ z̄ ¼ 0; ð4:40Þ

with Ricci scalar

RCP1 ¼ 2

CΦ
: ð4:41Þ

Now, as suggested in [65], the Riemann tensor can be
also interpreted as the four-point correlation functions of
the primary operator, by extending the Zamolodchikov
metric beyond the flat space approximation. There are the
two possible orderings seen above, so that one has to
consider

t212t
2
34hRðt1ÞR̄ðt2ÞRðt3ÞR̄ðt4Þi ¼ gzz̄gzz̄fðzÞ ¼ C2

ΦfðzÞ;
t212t

2
34hRðt1ÞR̄ðt2ÞR̄ðt3ÞRðt4Þi ¼ gzz̄gz̄zhðχÞ ¼ C2

ΦhðχÞ:
ð4:42Þ

Following the analysis in [65] and identifying our func-
tions with their functions as f ¼ K1 − K2 and
h ¼ H1 −H2, one finds Rzzz̄ z̄ ¼ 0, consistently with
(4.40) above, and Rzz̄zz̄ ¼ 2gzz̄gzz̄R with

R ¼
Z

1

0

dχ
χ2

�
logð1 − χÞ

�
2hðχÞ − 1

2
f

�
χ

χ − 1

��

− log χ

�
hðχÞ þ 1

2
f

�
χ

χ − 1

���
: ð4:43Þ

Evaluating this with fð1Þ and hð1Þ, one obtains

R ¼ 2π2ϵ: ð4:44Þ

Comparing with the Riemann tensor in (4.40), one finds the
desired relation

ϵ ¼ −
1

4π2CΦ
; ð4:45Þ

with the minus sign being consistent with having absorbed
another minus sign in ϵ in the Ansatz (see discussion in
footnote 15).
If one knows the Bremsstrahlung function of the theory

at strong coupling, this relation can be used to determine ϵ
in a way which is independent of the comparison with the
holographic computation in terms of Witten diagrams. This
was done in [65] for the 1=2 BPS Wilson loops of N ¼ 4
super-Yang-Mills and of the ABJM theory. Unfortunately,
such computation of the Bremsstrahlung function has not
been performed yet for N ¼ 4 Chern-Simons-matter the-
ories, so that one cannot get the precise expression of ϵ.
However, the leading term of the Bremsstrahlung function
scales generically like

ffiffiffi
λ

p
, so that ϵ ∼ 1=

ffiffiffi
λ

p
, as stated at the

beginning of this section.
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APPENDIX A: SYMMETRIES OF THE BULK
AND DEFECT THEORIES

We collect here details about our conventions and the
symmetries preserved by the bulkN ¼ 4 theory and its 1=2
BPS Wilson lines. We work in Euclidean space R3.
The three-dimensional N ¼ 4 superconformal algebra

is ospð4j4Þ. Its bosonic subalgebra consists of the
three-dimensional conformal algebra soð1; 4Þ and of
the R-symmetry algebra soð4ÞR ≃ suð2ÞA ⊕ suð2ÞB.
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The conformal generators are the rotations Mμν, the trans-
lations Pμ, the special conformal transformations Kμ, and
the dilations D, with μ, ν ¼ 0, 1, 2 and algebra given by

½Mμν;Mρσ� ¼ δσμMνρ − δσνMμρ þ δρνMμσ − δρμMνσ;

½Pμ;Mνρ� ¼ δμνPρ − δμρPν;

½Kμ;Mνρ� ¼ δμνKρ − δμρKν;

½Pμ; Kν� ¼ −2δμνD − 2Mμν;

½D;Pμ� ¼ Pμ; ½D;Kμ� ¼ −Kμ: ðA1Þ

The R-symmetry generators are RIJ ¼ −RJI , with I; J ¼ 1,
2, 3, 4, and obey

½RIJ; RKL� ¼ δK½IRJ�L þ δL½JRI�K: ðA2Þ

The fermionic generators QIα and SαI , with spinorial
indices α ¼ �, satisfy

fQIα; QJβg ¼ 2iδIJðγμÞαβPμ;

fSαI ; SβJg ¼ 2iδIJðγμÞαβKμ;

fQIα; S
β
Jg ¼ δIJððγμνÞαβMμν þ 2δβαDÞ þ 2δβαRIJ; ðA3Þ

with ðγμÞαβ being the Pauli matrices satisfying fγμ; γνg ¼
2δμν and γμν ¼ 1

2
ðγμγν − γνγμÞ ¼ iϵμνργρ.

The remaining commutation relations are

½D;QIα�¼
1

2
QIα; ½D;SIα�¼−

1

2
SIα;

½Mμν;QIα�¼−
1

2
ðγμνÞβαQIβ; ½Mμν;SIα�¼

1

2
ðγμνÞαβSβI ;

½Kμ;QIα�¼ iðγμÞαβSIβ; ½Pμ;SIα�¼−iðγμÞαβQIβ

½RIJ;QKα�¼δIKQJα−δJKQIα; ½RIJ;SαK�¼ δIKSαJ−δJKSαI ;

ðA4Þ

where spinorial indexes are raised/lowered with ϵαβ and ϵαβ,
such that ϵþ− ¼ ϵ−þ ¼ 1.
Since the Wilson line insertion breaks half of the

supersymmetry, it is convenient to decompose the
R-symmetry in terms of the isomorphic suð2ÞL ⊕ suð2ÞR

½Ra
b; Rc

d� ¼ δbcRa
d − δdaRc

b;

½Rȧ
ḃ; R

ċ
ḋ� ¼ δċ

ḃ
Rȧ

ḋ − δȧ
ḋ
Rċ

ḃ; ðA5Þ

where Ra
b ¼ − 1

4
ðσI σ̄JÞabRIJ and R̄ḃ

ȧ ¼ − 1
4
ðσ̄IσJÞḃȧRIJ,

with indices a, b ¼ 1, 2 and ȧ; ḃ ¼ 1̇; 2̇. We take σIaȧ ¼
ð1; iσ1; iσ2; iσ3Þ and σ̄Iȧa ¼ ð1;−iσ1;−iσ2;−iσ3Þ.
For the fermionic charges we define instead Qαaȧ ¼

σIaȧQIα and similarly for the superconformal charges.
Correspondingly, (A3) becomes

fQαaȧ; Qβbḃg ¼ 2iεabεȧ ḃðγμÞαβPμ; fSαaȧ; Sβbḃg ¼ 2iεabεȧ ḃðγμÞαβKμ;

fQαaȧ; S
β
bḃ
g ¼ 2

�
εabεȧ ḃ

�
1

2
ðγμνÞαβMμν þ δβαD

�
þ δβαðεȧ ḃRab − εabR̄ȧ ḃÞ

�
;

½Ra
b;Qαcċ� ¼ δbcQαaċ −

1

2
δbaQαcċ; ½Ra

b; Sαcċ� ¼ δbcSαaċ −
1

2
δbaSαcċ;

½R̄ḃ
ȧ; Qαcċ� ¼ −δḃċQαcȧ þ

1

2
δḃȧQαcċ; ½R̄ḃ

ȧ; S
α
cċ� ¼ −δḃċSαcȧ þ

1

2
δḃȧS

α
cċ: ðA6Þ

The insertion of a 1=2 BPS Wilson line [33] breaks the
ospð4j4Þ of the bulk theory down to suð1; 1j2Þ. The
suð1; 1Þ generators are those of the one-dimensional
conformal group, i.e. fD;P≡ P0; K ≡ K0g, satisfying

½P;K� ¼ −2D; ½D;P� ¼ P; ½D;K� ¼ −K: ðA7Þ

The preserved R-symmetry is taken to be suð2ÞA generated
by Ra

b. Since the translations along the line are preserved
(as well as special conformal transformations and rotations
around the line M12), one can conveniently choose
ðγμÞαβ ¼ ðσz; σx; σyÞαβ as a basis and therefore ðγμÞαβ ¼
ðσ1;−σ3; i1Þ and ðγμÞαβ ¼ ð−σ1; σ3; i1Þ. From the anti-
commutation relations one can identify the preserved
fermionic charges. In our conventions

fQþaȧ; Q−bḃg ¼ 2iεabεȧ ḃP: ðA8Þ

If one picks Qþa2̇, then the closure of the one-dimensional
superconformal algebra requires that the other set of
conserved charges be ϵabQ−b1̇, and similarly for the
superconformal ones. The full set of conserved super-
charges is then

Qa ≡Qþa2̇; Sa ≡ iS−
a2̇
;

Q̄a ≡ iϵabQ−b1̇; S̄a ≡ −ϵabSþ
b1̇
; ðA9Þ

which obey the anticommuation relations
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fQa; Q̄bg ¼ 2δbaP; fSa; S̄bg ¼ 2δbaK;

fQa; S̄bg ¼ 2δbaðDþ J0Þ − 2Rb
a;

fQ̄a; Sbg ¼ 2δabðD − J0Þ þ 2Ra
b; ðA10Þ

with

J0 ¼ iM12 − R̄1̇
1̇
: ðA11Þ

The mixed bosonic/fermionic commutation relations are

½D;Qa� ¼
1

2
Qa; ½D; Q̄a� ¼ 1

2
Q̄a;

½D; Sa� ¼ −
1

2
Sa; ½D; S̄a� ¼ −

1

2
S̄a;

½K;Qa� ¼ Sa; ½K; Q̄a� ¼ S̄a;

½P; Sa� ¼ −Qa; ½P; S̄a� ¼ −Q̄a; ðA12Þ

and

½Ra
b;Qc�¼δbcQa−

1

2
δbaQc; ½Ra

b;Sc�¼δbcSa−
1

2
δbaSc;

½Ra
b;Q̄c�¼−δcaQ̄bþ1

2
δbaQ̄c; ½Ra

b;S̄c�¼−δcaS̄bþ
1

2
δbaS̄c;

½R̄1̇
1̇
;Qa�¼

1

2
Qa; ½M12;Qa�¼−i

1

2
Qa; ½J0;Qa�¼0;

½R̄1̇
1̇
;Sa�¼

1

2
Sa; ½M12;Sa�¼−i

1

2
Sa; ½J0;Sa�¼0;

½R̄1̇
1̇
;Q̄a�¼−

1

2
Q̄a; ½M12;Q̄a�¼ i

1

2
Q̄a; ½J0;Q̄a�¼0;

½R̄1̇
1̇
;S̄a�¼−

1

2
S̄a; ½M12;S̄a�¼ i

1

2
S̄a; ½J0;S̄a�¼0: ðA13Þ

Here one can see that the preserved uð1ÞL ⊕ soð2Þrotations
combine in uð1Þj0 ⊕ uð1Þaut where uð1Þj0 is the nontrivial
central ideal and uð1Þaut is the outer-automorphism gen-
erated by J̃ ¼ iM12 þ R̄1̇

1̇, giving for example the relations
½J̃aut; Qa� ¼ þQa and ½J̃aut; Q̄a� ¼ −Q̄a. Consistently
with [43], the maximal subalgebra of ospð4j4Þ is there-
fore uð1Þj0 ⋊ psuð1; 1j2Þ ⋊ uð1Þaut, where psuð1; 1j2Þ≃
suð1; 1j2Þ=uð1Þj0 .

APPENDIX B: REPRESENTATIONS
OF suð1;1j2Þ

We discuss now the representations of uð1Þj0 ⋊
psuð1; 1j2Þ ⋊ uð1Þaut [43]. First let us notice that the
defect superconformal algebra has a suð1; 1Þ ⊕ suð2ÞR ⊕
uð1Þj0 ⊕ uð1Þaut subalgebra. We can therefore label the
representations in terms of the Dynkin labels ½Δ; j0; j1�
where the uð1Þaut charge can be neglected as it is unim-
portant for the following discussion. For the preserved

R-symmetry one can define the Cartan generator H and the
associated raising and lowering operators E�

H ¼ R1
1 − R2

2 ¼ 2R1
1; Eþ ¼ R2

1; E− ¼ R1
2; ðB1Þ

that satisfy

½H;E�� ¼ �E�; ½Eþ; E−� ¼ 2H: ðB2Þ

One can therefore characterize the states and the super-
charges in terms of the corresponding quantum numbers. In
particular

Q1∶
�
1

2
; 0; 1

�
; Q2∶

�
1

2
; 0;−1

�
;

Q̄1∶
�
1

2
; 0;−1

�
; Q̄2∶

�
1

2
; 0; 1

�
: ðB3Þ

The highest-weight state jΔ; j0; j1i is defined from the
conditions

SajΔ; j0; j1i ¼ 0; S̄ajΔ; j0; j1i ¼ 0;

EþjΔ; j0; j1i ¼ 0; ðB4Þ

and long multiplets are obtained by acting on it with Qa,
Q̄a, E−, and P. The unitarity bound reads

Δ ≥ jj0j þ
1

2
j1; ðB5Þ

which is strictly satisfied by the long multiplets. One can
also impose the shortening conditions

Q̄ajΔ; j0; j1i ¼ 0; ðB6Þ

leading to the two following cases:

1=4BPS∶ Δ ¼ j0 þ
1

2
j1; LĀ½j0�ðj1ÞΔ ;

1=2BPS∶ Δ ¼ j0; LĀ½j0�ð0ÞΔ ; ðB7Þ

where we adopt (a simplified version of) the notation

of [43,55] with ½j0�ðj1ÞΔ indicating the quantum numbers of
the superprimary and the capital letters specifying whether
the multiplet is long L (L̄) or short at threshold A (Ā) with
respect to Qa (Q̄a).
The conjugate ones are instead given by the conditions

QajΔ; j0; j1i ¼ 0; ðB8Þ

which leads to
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1=4BPS∶ Δ ¼ −j0 þ
1

2
j1; AL̄½j0�ðj1ÞΔ ;

1=2BPS∶ Δ ¼ −j0; AL̄½j0�ð0ÞΔ : ðB9Þ

One can explicitly recognize the displacement multiplet

as LĀ½1�ð0Þ1 .

APPENDIX C: ORTOGONALITY CONDITIONS

In this appendix we provide some details on the ortho-
gonality conditions for the blocksGΔðzÞwhichwe have used
to extract the coefficients of the CPW expansions.
We begin by recalling that the blocks are the eigenfunc-

tions of the differential operator

D ¼ aðzÞ∂2z þ bðzÞ∂z ¼ ð1 − zÞz2∂2z þ zð2 − zÞ∂z ðC1Þ

satisfying the eigenvalue equation DGΔðzÞ ¼ cΔGΔðzÞ.
As noted in the main text, however, the spectrum is
degenerate as also the shadow contributions have the same
eigenvalue. One can then define the ω-weighted inner
product as

hGΔ1
jGΔ2

i≡
I

dz
2πi

ωðzÞGΔ1
ðzÞGΔ2

ðzÞ; ðC2Þ

denoting the block contributions as jGΔi
i and the shadow

ones as hGΔj
j. Defining Δ̃ to be the shadow dimension,

such that cΔ ¼ cΔ̃, one has the orthogonality

hGΔ̃jGΔi ¼
I

dz
2πi

ωðzÞGΔ̃ðzÞGΔðzÞ ¼ δΔ;Δ̃: ðC3Þ

Now one must determine the weight ωðzÞ. This can be done
by rewriting (C1) in Sturm-Liouville form

D ¼ −
1

ωðzÞ
∂

∂z
pðzÞ ∂

∂z
; ðC4Þ

from which one gets

aðzÞ¼−
pðzÞ
ωðzÞ; bðzÞ¼−

p0ðzÞ
ωðzÞ ;

bðzÞ−a0ðzÞ
aðzÞ ωðzÞ¼ω0ðzÞ;

ðC5Þ

and finally

ωðzÞ ¼ −
1

ð1 − zÞ2 ; ðC6Þ

where the normalization is fixed by requiring
orthonormality.
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