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We study free, capped and encapsulated bilayer jacutingaite Pt2HgSe3 from first principles. While
the free standing bilayer is a large gap trivial insulator, we find that the encapsulated structure has
a small trivial gap due to the competition between sublattice symmetry breaking and sublattice-
dependent next-nearest-neighbor hopping. Upon the application of a small perpendicular electric
field, the encapsulated bilayer undergoes a topological transition towards a quantum spin Hall
insulator. We find that this topological transition can be qualitatively understood by modeling the
two layers as uncoupled and described by an imbalanced Kane-Mele model that takes into account
the sublattice imbalance and the corresponding inversion-symmetry breaking in each layer. Within
this picture, bilayer jacutingaite undergoes a transition from a 0+0 state, where each layer is trivial,
to a 0+1 state, where an unusual topological state relying on Rashba-like spin orbit coupling emerges
in only one of the layers.

I. INTRODUCTION

Topological insulators have a finite gap in their bulk
energy spectrum, but differ from standard (trivial) in-
sulators because a non-zero topological invariant is as-
sociated with the manifold of occupied states [1, 2]. In
most cases, the non-trivial topological invariant results
in the appearance of metallic states that cross the bulk
gap close to the boundary of a finite-size system. The
nature of the topological invariant depends on the dimen-
sionality and the underlying fundamental symmetries of
the system [3, 4], including crystal symmetries [5, 6]. A
paradigmatic example is the integer quantum Hall state
in two dimensions (2D), for which the topological invari-
ant is an integer C –known as Chern number– which pro-
vides the number of (chiral) states localized close to each
edge and is related to the quantized Hall conductivity
σxy = C e2/h [7, 8].

When time-reversal symmetry is preserved in 2D, al-
though the Chern number vanishes identically, another
topological invariant ν can be introduced [9–12], which
is a Z2 number that can assume only two values: 0 or
1, i.e. trivial or non-trivial. As a consequence of time-
reversal symmetry, gapless states appear at the edges
of the system in pairs of counter-propagating (helical)
modes and a bulk-boundary correspondence relates ν to
the parity of the number of such pairs. In particular, we
have that an even number of helical pairs is topologically
trivial (ν = 0), as states belonging to different pairs can
be mixed and adiabatically gapped out without breaking
time-reversal symmetry. On the contrary, time-reversal-
invariant topological insulators (ν = 1), also known as
quantum spin Hall insulators (QSHIs), have an odd num-
ber of pairs, so that the presence at each edge of at least
one pair of helical gapless states is robust.

Experimental realizations of the QSHI phase have
been reported in semiconductor quantum wells based on
HgTe/CdTe [13–16] and InAs/GaSb [17, 18] heterostruc-

tures, as well as in 2D materials like WTe2 [19–22]. In all
these systems, the operating conditions where transport
is dominated by edge states are limited to fairly low tem-
peratures owing to their small bulk energy gap. A break-
through could be represented by monolayer Pt2HgSe3,
which has been predicted using first-principles simula-
tions to be the first materials realization of the seminal
Kane-Mele model [9, 10] for QSHIs, with a substantial
energy gap of 0.5 eV [23] (and could even give rise to
a Chern insulator when functionalized [24] or interfaced
with a magnetic material like CrI3 [25]). Although mono-
layers of this material could be potentially exfoliated [26]
from a bulk layered mineral called jacutingaite [27, 28],
a clear experimental validation is still lacking [29].

When two QSHI monolayers are stacked together to
form a bilayer, the system is expected to become trivial
in the limit of weak interlayer coupling. Indeed, when
the layers are almost independent, we inevitably have an
overall even number of helical pairs that can hybridize
and get gapped out, consistently with the fact that the
bulk topological invariant is defined only modulo two, so
that νbi = νmono+νmono = 1+1 ≡ 0 mod 2. Analogously,
a trilayer should be non-trivial, and for thicker layers
we would expect an alternation of trivial and non-trivial
topology that, in the bulk limit, would give rise to a
weak topological phase [30] relying on the translational
invariance along the stacking direction.

In bulk jacutingaite, the layers can not be considered
as nearly independent, so that this scenario is expected
to break down. Indeed, first-principles simulations have
shown that nearby layers are strongly hybridized, giving
rise to a large second-nearest layer hopping [31]. This
strong coupling drives bulk jacutingaite into a semimetal-
lic state endowed with a dual topology [31–33] that com-
bines a non-zero mirror Chern number with a weak topol-
ogy. Recent experiments have verified both the semi-
metallic nature of bulk Pt2HgSe3 [34, 35] and the pres-
ence of surface states protected by the crystalline mirror
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symmetry [36].
Here we consider bilayer jacutingaite and predict us-

ing first-principles simulations that it is trivial, although
in an unexpected way, with νbi = 0 + 0. The triv-
ial gap arises from an inversion-symmetry breaking in
each layer, with competing contributions from a struc-
tural distortion and the different environment affecting
intra-sublattice hopping. As a result of this sublattice
imbalance, the Kane-Mele term that drives the topolog-
ical nature of monolayer jacutingaite[23] is replaced by
a spin-orbit coupling that has the same sign on the two
sublattices. When encapsulated in hexagonal boron ni-
tride (h-BN), the trivial gap is strongly reduced and can
be turned topological by a small perpendicular field, pro-
moting bilayer Pt2HgSe3 into a promising system for ex-
perimental explorations.

II. BILAYER STRUCTURES

Jacutingaite comprises AA-stacked honeycomb lattices
of Hg atoms, where the A (B) sublattice is positioned
above (below) a plane of Pt atoms (see Fig. 1). In the ab-
sence of spin-orbit coupling, the electronic band structure
of monolayer jacutingaite contains gapless Dirac cones at
the corners K and K′ of the hexagonal Brillouin zone [23],
similarly to what happens in graphene. These cones can
be gapped in two different ways. The first is by break-
ing the sublattice (inversion) symmetry, e.g. by making
the Hg distance to the Pt planes different on the two
sides, leading to a trivial insulator. The second way to
open a gap is via Kane-Mele spin-orbit coupling, making
monolayer jacutingaite a quantum spin Hall insulator.

In bilayer jacutingaite, although a global inversion
symmetry connecting the two layers is still present, there
is no inversion symmetry per layer, i.e. the two sublat-
tices in each layer are no longer equivalent. This means
that Hg atoms can be displaced to make each layer by
itself trivial (νbi = 0+0 = 0). If no or only small displace-
ments occur and the two layers are almost independent,
however, the combination of two topological monolayers
together makes the bilayer trivial - following the heuristic
rule νbi = 1 + 1 = 0. In either case, bilayer jacutingaite
is expected to be a trivial insulator.

To confirm this, we perform first principles density-
functional theory (DFT) calculations of various
few-layered jacutingaite structures using Quantum
ESPRESSO [37, 38], with a Coulomb cut-off [39] to
reproduce the correct open boundary conditions in the
vertical direction and the van-der-Waals compliant func-
tional vdw-DF-cx [40–42] that gives the best agreement
with Raman experiments for the vibrational frequencies
of bulk jacutingaite [34] (for further details of the
calculations see App. A1). The unit cell is hexagonal
(point group D3d or 3̄m) with in-plane lattice constant
fixed to the bulk relaxed value a = 7.384 Å.

We first relax the structure of a free-standing bilayer,
which shows a large shift in the vertical position of the

TABLE I. Main properties of various layered jacutingaite
structures. Monolayer and bulk have been studied be-
fore [23, 31], here we show new results for free, capped, and
encapsulated bilayers, as well as for trilayer Pt2HgSe3 (see
also App. A2). The second column contains the gap at K
obtained using approximate DFT (see App. A1). The third
column contains the z-position of the Hg atoms relative to
the nearest Pt plane (see Fig. 1). Notice that in capped, en-
capsulated and the trilayer case the position depends on the
layer (abbreviated “l.”).

System Gap at K ∆z Hg-Pt

Bulk < 1 meV 1.84 Å

Monolayer 168 meV 1.73 Å

Bilayer 290 meV 1.81 Å (inner Hg)
2.02 Å (outer Hg)

BN/Bilayer 44 meV 1.78 Å (outer Hg, capped l.)
1.80 Å (inner Hg, capped l.)

1.78 Å (inner Hg, free l.)
1.90 Å (outer Hg, free l.)

BN/Bilayer/BN 27 meV 1.80 Å (inner Hg)
1.78 Å (outer Hg)

Trilayer < 1 meV 1.84 Å (middle l.)
1.81 Å (inner Hg, outer l.)
2.02 Å (outer Hg, outer l.)

outer Hg atoms. The distance of the Hg atoms to the
Pt planes increases from 1.73 Å in the monolayer to 2.02
Å for the outer Hg atoms. The sublattice asymmetry is
responsible for a large trivial (νbi = 0 + 0 = 0) band-gap
of 290 meV at the K point (see App. A3 and the dis-
cussion below). The same level of displacement is found
in trilayer jacutingaite (see also App. A2), however, the
trilayer is semimetallic owing to a large second-nearest
layer hopping between the outer layers, similarly to what
happens in the bulk [31]. See Table I for an overview of
the Hg positions and bandgaps of the different studied
structures.

The bandgap in free bilayer jacutingaite is so large
that a topological transition cannot be obtained using
reasonable perpendicular external electric fields (up to
1 V/Å), unlike monolayer jacutingaite which has a tran-
sition at Eext = 0.36 V/Å. This is because the external
electric field is never sufficient to reduce the sublattice
asymmetry. We note in passing that these values do not
correspond to a potential drop across the system (e.g.
Eext = 1 V/Å does not correspond to 1 V over 1 Å),
as in first-principles simulations we can set only the ex-
ternal electric field (related the dielectric displacement
D through Eext = 4πD), and not the total electric field
as in experiments (through the gate voltages applied to
electrodes at the two sides of the system).

A possible way to restore sublattice symmetry, and
thus to make a topological transition more feasible –at
least in one layer, is to suppress the lattice distortion
by encapsulating one side of bilayer jacutingaite with h-
BN. As can be seen in Table I and App. A3, this indeed
reduces the sublattice asymmetry in one of the layers and
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FIG. 1. Band structure and lateral view of the crystal structure for: a) free, b) h-BN capped, and c) hBN-encapsulated bilayer
jacutingaite. In the top panels, the full band structure along the path Γ−M−K−Γ is shown with dots, while lines represent
the Wannierized band structure of the 8 bands closest to the Fermi level. The red rectangle in c) highlights the region around
the gap magnified in Fig. 3. In the bottom panels, we note that in each Pt2HgSe3 layer Hg atoms form a buckled honeycomb
lattice (see also Fig. 2 for a top view in case c)), with Hg atoms in the two sublattices alternating above/below a Pt2Se3 layer.
Dashed lines highlight the vertical position of Hg planes, showing the inequivalence of inner and outer planes, the latter tending
to extend further away from the Pt2Se3 layer. This tendency, most apparent in the free bilayer, is suppressed by the presence
of h-BN, with the encapsulated bilayer recovering a more symmetric structure of each layer.

reduces the gap. However, the system is still 0 + 0 = 0
trivial and fields up to 1 V/Å do not induce a topological
transition - instead they make the system metallic, with
a charge transfer from the bilayer to h-BN.

On the other hand, the reduction in gap size suggests
that fully encapsulating bilayer jacutingaite with h-BN
might bring us to the regime where we can induce a topo-
logical transition via an electric field. We indeed find that
the Hg positions are nearly symmetrical in h-BN encap-
sulated bilayers. Furthermore, the gap is reduced to only
27 meV, which brings us in the regime that allows for a
topological transition.

III. BAND STRUCTURE AND
WANNIERIZATION

We will now discuss in-depth the properties of the en-
capsulated bilayer structure. For simplicity, we locate
the h-BN layers on the two sides of the bilayer so that,
in the absence of an external electric field, the total sys-
tem again contains inversion symmetry, and we let only
the vertical position of the h-BN layers relax. The full
band structure is shown in the top panel of Fig. 1c)
for Eext = 0, where all bands are doubly degenerate as
a consequence of time-reversal and inversion symmetry.
Whereas the bandwidth of the four main bands is about
1 eV, the bandgap is only 27 meV (see the top left panel

of Fig. 3 for a closer look at the band structure around
K near the Fermi energy).

When a finite external electric field Eext is applied, the
gap at K reduces, until it closes at about Eext = 0.3 V/Å,
as shown in the top central panel of Fig. 3. At larger
fields, the gap reopens and increases with Eext, with the
bands at K that are inverted, as shown in the right top
panel of Fig. 3 for Eext = 0.5 V/Å. The full dependence
of the direct gap size at K as a function of external elec-
tric field is reported in the bottom panel of Fig. 3. It is
important to stress that the calculated value of the criti-
cal field at which the topological transition occurs might
depend on the choice of approximate DFT and the cor-
responding evolution of the energy gap with Eext. More-
over, since approximate semilocal DFT typically tends to
underestimate energy gaps with respect to experiments,
the critical field might be severely underestimated. To
test the reliability of the above predictions we have thus
performed hybrid-functional calculations, which are ex-
pected to provide more realistic estimates of the energy
band gap [43], see App. A5. The semilocal and hybrid-
functional estimates give a good approximation of the
lower and upper bounds of the critical field Eext, which
is to be compared with experimental results.

To elucidate if the band inversion is associated with
a topological phase transition, we map first-principles
eigenstates for the bands facing the energy gap into a
set of maximally-localized Wannier functions (WFs) [44]
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FIG. 2. Top and lateral views of the crystal structure of h-BN
encapsulated bilayer jacutingaite. In the top view, the green
shaded area highlights the hexagonal Wigner-Seitz unit cell
and the (buckled) honeycomb lattice formed by Hg atoms.
Two Wannier functions associated with the two sublattices of
the upper layer are also reported as isosurfaces for both posi-
tive (blue) and negative (red) values. The Wannier functions
associated with the bottom layer can be simply obtained by
inversion symmetry.

using Wannier90 [45]. The Hg s-orbitals are used as first
projections to initialize the Wannierization procedure, as
in the case of monolayer [23] and bulk [31] Pt2HgSe3.
We thus end up with four WFs (eight by including spin),
two per layer, that are depicted in Fig. 2 for the top layer
when Eext = 0. While for the external sublattice the WF
is similar to the one of the monolayer [23] and it is well
localized on just one layer, the inner WF has significant
contributions from orbitals in the opposite layer, signal-
ing a strong hybridization between the layers similarly
to what happens in bulk jacutingaite [31]. As a result,
the center of the inner WFs is significantly shifted in the
z-direction such that the center of the top WF of the
bottom layer is higher than the one of the bottom WF of
the top layer.

From the knowledge of the WFs, we can easily compute
the Z2 topological invariant using WannierTools [46] by
monitoring the evolution of the Wannier charge centers
(WCCs) over half of the Brillouin zone [47, 48], i.e. the
expectation value of the coordinate along one direction
of hybrid WFs [49] as a function of momentum in the
remaining direction, along which they are delocalized.
The Z2 invariant ν can be then obtained by considering
the parity of the number of times an arbitrary curve going
from k = 0 to k = 0.5 (in units of the primitive reciprocal
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FIG. 3. Top panels: Band structure of h-BN encapsulated
bilayer jacutingaite around the K point in a small energy
window close the Fermi energy for three different values of
the applied external electric field. Note that at zero field
all bands are double degenerate due to inversion symmetry,
whereas at nonzero fields this degeneracy is lifted. Bottom
panel: The direct gap at the K-point as a function of perpen-
dicular external electric field. Around Eext = 0.3 V/Å the
gap closes. For larger fields, a band inversion occurs and the
system is a quantum spin Hall insulator with ν = 1. The
indirect bandgap is shown in App. A4, while the direct gap
computed with different functionals is reported in App. A5.

lattice vector in that direction) crosses the WCC lines [47,
48]. As shown in Fig. 3, this confirms the presence of a
topological transition as a function of the external electric
field (see Fig. 4d and e for the WCC evolution at small
and large fields). In particular, while the system is trivial
(ν = 0) in the absence of external fields (confirmed also
using a parity approach [50]), it becomes a QSHI (ν = 1)
when Eext > 0.3 V/Å, showing that the topological state
of bilayer jacutingaite can be easily manipulated.

The mapping of the first-principles results into WFs
can be beneficial also to extract an effective tight-binding
model that describes the behavior of bilayer jacutingaite,
helping to gain additional physical insight into the mech-
anisms underlying the topological transition. The re-
sulting eight-band model (including spin) reproduces the
DFT band structure around the band gap (see Fig. 1)
and involves the sites of two buckled honeycomb lattices
–one for each layer– with one orbital per site and spin
(given by the WFs in Fig. 2). We find that even though
the WFs associated with the inner sublattices are delo-
calized over the two layers (see Fig. 2 and the discussion
above), the effective tight-binding model is still domi-
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TABLE II. Dominant tight-binding parameters of the band
structure of encapsulated bilayer jacutingaite, obtained using
Wannier90. The first column indicates the type of coupling,
the second column how it acts on spin (s), sublattice (σ)
and layer (τ) space. NN stands for nearest neighbor, NNN
for next-nearest neighbor. Notice that the NNN Rashba and
Kane-Mele spin-orbit coupling terms are highly imbalanced
between the two sublattices.

Coupling Proportional to Value [meV]

Onsite potential m σzτz 135
NN intralayer t σx,y 233
NN Rashba λR sx,yσx,yτz 10
NN interlayer t1 σx,yτx,y 53

NNN intralayer t2 (1 − σzτz) −34 (outer)
(1 + σzτz) 32 (inner)

NNN Rashba λ′
R sx,y(σz − τz) 28 (outer only)

NNN Kane-Mele λKM σzsz(1 − σzτz) 16 (outer)
σzsz(1 + σzτz) −2 (inner)

NNN interlayer t′2 τx,y −20

nated by intralayer terms.

In Table II we summarize the most important terms
of the effective tight-binding model when Eext = 0. The
two largest contributions are by far the intralayer nearest-
neighbor (NN) hopping t = 233 meV and the sublattice
symmetry breaking on-site term m = 135 meV. The ab-
sence of layer inversion symmetry allows a NN (Rashba-
like) spin-orbit coupling λR that is vanishing in isolated
monolayers.

The most important contribution that couples the two
layers is a NN hopping t1 ∼ 50 meV, which –together
with the other relevant interlayer term t′2 in Table II–
plays a minor role on the band structure. To verify
this, we calculated the band-structure using the full tight-
binding model with and without interlayer coupling. The
result is shown in Fig. 4. In the absence of a perpendic-
ular field, the band-structure is marginally changed: re-
moving the interlayer coupling mainly reduces the gap at
K. The interlayer coupling can therefore be neglected for
a qualitative understanding of the topological transition.

An external field now reduces the gap further in the
top layer whereas it increases the gap in the bottom layer
(Fig. 4). This is indicative of the topological transition
that goes from a ν = 0 + 0 to ν = 0 + 1 state. In-
deed, Fig. 4d (e) shows the evolution of the WCCs at
small (large) external field. In both cases the WCCs of
the full model (black) are consistent with the WCC com-
puted for the separate layers (blue and red), thus justify-
ing the assumption that the topological invariant can be
expressed as the sum of the invariants in the two layers,
νbi = ν1 + ν2. Moreover, while at small fields both layers
are trivial (and related by inversion symmetry), at large
fields the layers are no longer equivalent and the top layer
(red) is non-trivial after the gap re-opens at K.

Within each layer, the inequivalence of the two sub-
lattices not only makes the on-site energy very differ-
ent (as expressed by m), but also introduces a large im-
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FIG. 4. Bilayer jacutingaite can be qualitatively understood
as two decoupled layers. a: To verify this, we calculated the
gap at K as a function of external field for the individual
layers using the tight-binding model with interlayer couplings
set to zero. Though the gap is quantitatively underestimated
(compare with Fig. 3), we still find a topological transition in
the top layer. b: The dispersion close to K changes only sub-
tly when we have interlayer coupling (black) or not (red/blue
dashed lines), at zero field. c: At a finite external field of
Eext = 0.46 V/Å, the dispersion for just the top layer (red)
and bottom layer (blue) has still a large overlap with the full
bilayer band-structure. d: The WCCs (in units of the lat-
tice parameter a) computed for the full tight-binding model
(black) are the same as the WCCs computed per layer (red
and blue). e: Same calculation as in d, but now at a finite
field Eext = 0.46 V/Å. We clearly see the topological nature
of the bands in the top layer (red).

balance in the intralayer next-nearest neighbor (NNN)
hopping terms. This arises as a result of the different
(de)localization of the Wannier orbitals for the inner and
outer sublattice sites. A first important example of NNN
term is the hopping energy t2 that takes approximately
opposite values for the inner and outer sublattices. In
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t t2
-t2

λR

λKM λ'KM

+m

-m

FIG. 5. Terms in the imbalanced Kane-Mele model. We in-
clude nearest-neighbor t and next-nearest-neighbor hopping
t2. Sublattice symmetry breaking is included by the term
mσz. The spin-orbit terms include the regular Kane-Mele
term λKMσ

zsz and the new sublattice-symmetric Kane-Mele
term λ′

KMs
z. The arrow directions indicate the sign of the

imaginary hopping. Finally, we include a nearest neighbor
Rashba term λR that stabilizes an unusual topological insu-
lator phase when λ′

KM > λKM.

particular, we find that t2 is positive for the outer sites
similarly to what happens in monolayer Pt2HgSe3, while
it is negative for inner sites in complete analogy with
bulk jacutingaite. This effectively staggered NNN hop-
ping term gives rise to a trivial gap at K that is found
to compete with the trivial gap associated with the on-
site m (see also below). This compensation is almost
perfect in h-BN encapsulated bilayers (contrary to the
free-standing case), thus explaining the very small trivial
gap at K.

Even more compelling, the imbalance affects also two
additional NNN spin-orbit terms: a Kane-Mele [9, 10]
and in-plane Rashba-like [51] spin-orbit coupling. Also
in this case, these terms retain values very close to the
one in the monolayer for the outer sublattices [23, 25, 52],
while they are strongly suppressed for the inner sublat-
tices, in analogy with bulk jacutingaite where the effect
of spin-orbit coupling is almost negligible [31–33]. Tradi-
tionally, topological transitions were understood in terms
of spin-orbit couplings that were identical on both sub-
lattices [9, 10]. In bilayer jacutingaite, however, the fact
that the spin-orbit coupling is different on the two sub-
lattices requires an extension of the original Kane-Mele
model.

IV. IMBALANCED KANE-MELE MODEL

As argued in the previous section, the topological tran-
sition can be qualitatively understood by decoupling the
two layers and focusing on the top layer only. We will
now explore the question of whether we can understand
the transition purely in terms of a short-ranged hopping
model. To this end, we introduce the so-called imbal-
anced Kane-Mele model, which contains nearest (t) and
a staggered next-nearest neighbor hopping (t2), a sub-

lattice symmetry breaking potential (m) and two spin-
orbit terms, see Fig. 5. In addition to the regular Kane-

Mele (KM) term iλKM

∑
〈〈ij〉〉 νijc

†
is

zcj , which has oppo-

site sign on the two sublattices, we include a sublattice-
symmetric Kane-Mele term λ′KM,

iλ′KM

∑
〈〈ij〉〉

νijc
†
iσ

zszcj . (1)

This term, as is shown in Fig. 5, has the same sign of
the spin-orbit coupling term on the two sublattices. As a
consequence, the effective spin-orbit coupling on the two
sublattices given by λKM ± λ′KM.

In momentum space, the regular KM term is pro-
portional to λKMd(k)σzsz where d(k) = 2 sin(kxa) −
4 sin(kxa/2) cos(

√
3kya/2)[10], if we define the honey-

comb lattice with lattice vectors a1,2 = a
2 (±1,

√
3). Con-

sequently, the sublattice-symmetric KM term is propor-
tional to λ′KMd(k)sz. As a result, at the K and K′ points,
the Hamiltonian reads

H = (m− 3t2)σz + 3
√

3λKMκσ
zsz + 3

√
3λ′KMκs

z (2)

where κ = ±1 for the K/K′ valley. In the absence of
spin-orbit coupling, the trivial gap at K is determined by
the sublattice potential reduced by the staggered near-
est neighbor hopping, m − 3t2. For λKM > λ′KM > 0,
the gap is insensitive to the sublattice-symmetric KM
term, and given by ∆ = |m − 3t2| − 3

√
3λKM. As long

as this parameter ∆ is positive, the system is trivial,
and for ∆ < 0 the model is a quantum spin Hall insula-
tor with ν = 1. When the two spin-orbit terms are ex-
actly equal, λKM = λ′KM, the system realizes a semimetal
with quadratic band-touching as long as ∆ < 0. If the
sublattice-symmetric KM term dominates, λKM < λ′KM,
the system is either metallic (∆′ < 0) or a trivial insula-

tor (∆′ > 0), with ∆′ = |m− 3t2| − 3
√

3λ′KM.
When also the NN Rashba spin-orbit coupling

iλR
∑
〈ij〉

c†i (s× dij)
zcj (3)

(arising from the inversion symmetry breaking in each
layer) is included, not only a finite gap is opened in the
semimetallic phase when λKM < λ′KM, but also a non-
trivial topological state emerges for m − 3t2 < λ′KM.
When m − 3t2 further decreases the gap closes again
(away from K/K′ at 3 Dirac cones around each cor-
ner of the Brillouin zone) and the system enters a trivial
phase adiabatically connected to the one for ∆′ > 0 when
λR = 0. The topological phase thus survives over a finite
interval of values of m − 3t2, whose extension increases
with λR and is non-vanishing only when m− 3t2 has the
same sign as λ′KM, even in the limit λKM → 0.

From Table II it follows that in bilayer jacutingaite
the sublattice-symmetric KM term dominates: λ′KM =
9 meV while λKM = 7 meV (their sum is the ’outer’
sublattice Kane-Mele term while their difference the in-
ner). In the absence of a field, the sublattice potential



7

m controls the physics and we expect a trivial insulator.
A perpendicular electric field affects the value of m and
t2, because of the different z-positions of the Wannier
orbitals. In particular, by wannierizing the electronic
structure at different Eext, we find that the onsite poten-
tial and the staggered hopping t2 change linearly with
field, approximately as ∆m = − 135 meV per V/Å and
∆t2 = 9 meV per V/Å. This change has opposite sign in
the two layers, making the bottom layer having a larger
trivial gap upon the application of a field, whereas the
top layer reduces the gap.

Consistently with the results above, the imbalanced
Kane-Mele thus predicts that the bottom layer remains
trivial with just an increasing gap at K, while in the
top layer the gap decreases and closes at a critical value
when the field is such that m−3t2 = λ′KM, in qualitative
agreement with Fig. 4a). When Eext is further increased,
the gap re-opens and the top layer is in a topologically
non-trivial state (ν = 1), protected by the NN Rashba
λR. This prediction is validated by the fact that with-
out spin-flipping inter-sublattice hopping terms (such as
λR), no topological transition occurs even in the full WF
tight-binding model. Of course, longer-range and inter-
layer hopping terms in the full model play a role in the
quantitative determination of energy gaps and transition
fields, but the imbalanced Kane-Mele is sufficient to de-
scribe the essential physical features of the topological
transition occurring in encapsulated bilayer jacutingaite.

V. OUTLOOK

We predict that h-BN encapsulated bilayer Pt2HgSe3
undergoes a topological transition under the applica-
tion of an electric field, from a trivial insulator at zero
field to a quantum spin Hall insulator. The transition
can be qualitatively understood by considering the lay-
ers as decoupled and described by an imbalanced Kane-
Mele model, with a new, sublattice-symmetric next-
nearest-neighbor spin-orbit coupling. This additional
term emerges from the inversion-symmetry breaking in
each layer associated with the inequivalence of the two
sublattices. This imbalance also allows for a non-zero
Rashba spin-orbit coupling that plays an essential role in
stabilizing the topological phase at large fields.

Jacutingaite has been predicted to be potentially exfo-
liable [23, 26], and consequently bilayer jacutingaite can
also appear during an exfoliation process. Recently, ex-
periments have shown that this is possible [29], although
the quality of the exfoliated samples needs to be im-
proved. If encapsulated, this could lead to the construc-
tion of a gate-switchable topological insulator (off at zero
field, on at finite field), which is complementary to the
monolayer case (on at zero field, off at finite field) [23].

Free Trilayer
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FIG. A1. a) Lateral view of the crystal structure of free tri-
layer jacutingaite. The central layer is symmetric, while in the
other layers the outermost Hg atoms are further away from the
central plane of Pt atoms with respect to the inner ones. b)
Electronic band structure of trilayer jacutingaite, where sym-
bols represent direct calculations while lines are the result of
a minimal tight-binding model based on Wannier functions.
The zero of energy is set at the Fermi level.
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Appendix A1: Calculation details

As mentioned in the main text, all first-principles
DFT calculations were performed using the Quantum
ESPRESSO suite of codes [37, 38]. Structural re-
laxations were carried out using the “cx” variant [41]
of the van-der-Waals compliant vdw-DF [40, 42] func-
tional without spin-orbit coupling, with pseudopoten-
tials from the Standard Solid State Pseudopotential li-
brary [55] (efficiency version 1.0), with an energy cut-
off of 60 Ry for wavefunctions and 480 Ry for the den-
sity. The Brillouin zone was sampled with 8 × 8 × 1
k-points of a uniform Γ-centered Monkhorst-Pack grid
with a cold smearing of 0.015 Ry [56]. Band struc-
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FIG. A2. Evolution of Wannier charge centers (WCCs) for (a)
free and (b) h-BN capped bilayer Pt2HgSe3. Both systems
are topologically trivial. Note that the WCCs (in units of
the lattice parameter a) computed for the full tight-binding
model (black) are the same as the WCCs computed per layer
(red and blue).
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FIG. A3. The indirect band gap (measured as minimum of
the conduction band minus the maximum of the valence band)
of the encapsulated bilayer as a function of external electric
field. In the topological phase the gap is smaller than the
direct gap at K in Fig. 3 but still positive, suggesting the
presence of a fully-developed band gap.

tures were computed by including spin-orbit coupling
through fully-relativistic pseudopotentials of the Pseudo-
Dojo family [57] with a wavefunction cutoff of 80 Ry on
top of self-consistent calculations with 12×12×1 k-points
within the generalized gradient approximation as formu-
lated by Perdew-Burke-Ernzerhof (PBE) [53]. Calcula-
tions with the HSE hybrid functional [54] have been per-
formed with norm-conserving pseudopotentials[58] from
the SG15 library [59, 60] that do not have non-linear core
corrections, using a cutoff of 50 Ry both for wavefunc-
tions and the representation of the Fock operator, and a
6× 6 k-point grid.

Crystal structures and Wannier functions are visual-
ized using VESTA [61].
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FIG. A4. Direct band gap at the K point for hBN-
encapsulated bilayer jacutingaite as a function of the exter-
nal electric field computed using either the PBE [53] or the
HSE [54] functional. Dots represent actual calculation results,
while lines are linear extrapolations.

Appendix A2: Trilayer crystal and band structure

Although the main target is bilayer jacutingaite, we
have also considered the trilayer structure. In Fig. A1
we show both the relaxed crystal structure and the com-
puted electronic band structure along a high-symmetry
path in the Brillouin zone. We note that contrary to
the bilayer cases shown in Fig. 1, the system is metal-
lic, mainly due to a strong interlayer coupling between
the outermost layers similar to the second-nearest-layer
hopping of bulk jacutingaite [31].

Appendix A3: Wannier charge centers for free and
capped bilayer

In the main text we introduced in addition to the en-
capsulated bilayer jacutingaite also a free bilayer and a
h-BN capped bilayer (with h-BN only on one side), whose
band structure is shown in Fig. 1. In Fig. A2 we plot evo-
lution of the Wannier charge centers, to show that the
free and capped bilayers are topologically trivial. In par-
ticular, the Wannier charge centers computed assuming
the layers to be decoupled (red and blue) are the same as
for the full system (black), suggesting that the topologi-
cal invariant for the bilayer can be expressed as the sum
of the invariants of the two layers, νbi = ν1 + ν2, with
both ν1 = ν2 = 0.

Appendix A4: Indirect gap in encapsulated bilayer

In the topological phase, the direct gap at K of the
encapsulated bilayer in Fig. 3 is not equal to the full band
gap. This is typical for band-inversion, and is visible in
the band structure of Fig. 3. Nevertheless, the maximum
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of the valence band remains below the minimum of the
conduction band, i.e. there is a fully developed band gap,
whose magnitude is shown in Fig. A3.

Appendix A5: Direct gap with hybrid functional

Standard approximations to DFT, including the
generalized-gradient PBE approximation [53] used here
(see App. A1), tend to largely underestimate the en-
ergy gap, so that topological transitions and the corre-
sponding critical electric field might also be affected. To
test the reliability of the conclusions in the main text,
we report here results for the direct gap at K (which
controls the topological transition) of the encapsulated
bilayer using hybrid functionals (in particular the HSE

functional [54]), which typically lead to estimates of the
energy gap in closer agreement with experiments [43].

Fig. A4 shows that for Eext = 0 the gap is largely
underestimated by almost a factor of 4 in PBE-DFT
with respect to hybrid-functional calculations. Still, the
rate at which the gap closes as a function of the exter-
nal electric field is much larger with the HSE functional
than with PBE (note that the latter results slightly dif-
fer from Fig. 3 because smearing is not used in this case
and thus the almost linear behavior extends down to zero
gap while deviations associated with smearing appear in
Fig. 3). As a consequence, a topological phase transi-
tion still occurs even at the HSE level and the estimated
critical field is only a factor of 2 larger than in PBE cal-
culations, supporting the robustness of the phenomena
discussed in the main text.
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