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Abstract
In this paper we investigate how to choose an optimal position of a specific facility that is
constrained to a network tree connecting some given demand points in a given area. A bilevel
formulation is provided and existence results are given together with some properties when a
density describes the construction cost of the networks in the area. This includes the presence
of an obstacle or of free regions. To prove existence of a solution of the bilevel problem, that
is framed in Euclidean spaces, a lower semicontinuity property is required. This is obtained
proving an extension of Goła̧b’s theorem in the general setting of metric spaces, which allows
for considering a density function.
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1 Introduction

In this paperwe investigate a constrained facility location problem: to find an optimal position
of a specific location under the constraint that some given demand points must be connected
by means of a minimal network. As an example, the location of a water tower requires
a minimal path to reach the places of drought that need water as quickly as possible. In
addition, each chosen position of the water tower has a construction cost. Mathematically,
we deal with a two stage optimization problem: a suitable cost function will be optimized
constrained to a network formation that links all the demand points and consists of another
optimization problem. Several questions from operation research require the location of some
facilities constrained to additional requirements. Relevant examples are irrigation (locate the
water tower and find the optimal connection), mining (locate the excavation place and find
the optimal connection), and others.

In these examples, the network with the lowest length is desirable: the optimization prob-
lem that is the constraint of the bilevel scheme is formulated by solving a Steiner-type
problem. The Steiner Tree Problem (Hwang et al., 1992) is to find a connected finite graph
(network) containing n given points (terminal points) in the plane and havingminimal length.
The graph turns out to be a tree (a network containing no loops) and having some other impor-
tant properties (Ambrosio and Tilli, 2004; Fampa et al., 2016; Ivanov and Tuzhilin, 1994).
Existence of solutions for the Steiner problem relies on Goła̧b’s semicontinuity theorem for
compact connected sets. A general version of Goła̧b’s theorem has been proved in Euclidean
spaces by Dal Maso and Toader (2002). It has also been generalized to metric spaces, see
Ambrosio and Tilli (2004); Giacomini (2002); Paolini and Stepanov (2013).

The bilevel optimization has a natural interpretation in the context of game theory (see
Başar and Olsder (1999)) where one of two agents, called leader, optimizes his criterium
knowing the solutions of the optimization problem solved by the other agent, called follower.
Usually the leader’s problem is called upper level problem, the follower’s problem is called the
lower level problem. Bilevel problems have a long history that dates back to von Stackelberg
(1934) and have been intensively studied from a theoretical point of view as well as in
applications to many domains. In case the follower’s problem has several solutions, we see
that there is some ambiguity even in the definition of the leader’s problem: we distinguish two
extreme situations depending on the leader’s behavior (Carlier and Mallozzi, 2022; Dempe
et al., 2007; Dempe and Zemkoho, 2020). The optimistic (or strong) Stackelberg solution
assumes a cooperative like behavior between the agents: the leader expects the follower to
choose solutions leading to the best outcome for him. On the contrary, in the pessimistic
(or weak) Stackelberg solution, as a security strategy for him, the leader assumes that the
follower always breaks ties by choosing the worst action for the leader. We will consider in
this paper the strong approach and we look for the existence of the solution for the bilevel
problem.

Our problem considers a region in an Euclidean space where a density distribution is
given. First, a Goła̧b type result is proved under very general assumptions, then an existence
result for the bilevel optimization problem is given in the case where demand points form a
finite set (concentrated resources case). The generalized Goła̧b’s theorem provides a lower
semicontinuity result that allows to solve the bilevel problem. We discuss a possible appli-
cation of the model: an example of the construction of a bridge under the assumption that, in
a second stage, a network connecting some villages with the bridge will be constructed with
the constraint to be of minimal length. In this paper we limit to Euclidean spaces, even though

123



Annals of Operations Research

some of our results hold in more general metric spaces. However, every time we highlight
metric properties we shall actually use.

The paper is structured as follows: after the preliminaries Sect. 2, in Section 3we introduce
the model and prove the results. Finally, some concluding remarks are in Sect. 4.

2 Preliminaries

Let us fix some notation we will use in the following. A set X ⊂ R
N (N ∈ N) is called a

region if it is the closure of an open connected subset. Throughout this paper X is a bounded
region and d the Euclidean distance. Given x ∈ X , A, B ⊆ X non empty subsets we denote:

• Br (x) = {y ∈ X : d(x, y) < r} the open ball with center x and radius r > 0;
• diam (A) the diameter of A, i.e. sup{d(x, x ′) : x, x ′ ∈ A};
• dist (x, A) the distance between x and A, i.e. inf{d(x, x ′), x ′ ∈ A};
• dH (A, B) the Hausdorff distance between A and B, i.e. the infimum of r ∈ ]0,+∞]

such that dist(x, A) ≤ r for any x ∈ B and dist (x, B) ≤ r for any x ∈ A; dH is actually
a metric on the family CX of nonempty closed subsets of X ;

• Lip( f ) the Lipschitz constant of a function f ;
• Ac the complementary set of A in X .

For any A ⊂ X , the one-dimensional Hausdorff measure of A is defined as

H1(A) := sup
δ>0

H1
δ (A) = lim

δ→0
H1

δ (A)

where H1
δ (A) := inf{∑i diam (Ai )} for any δ > 0 and the infimum is over all countable

families (Ai ) of subsets of X which cover A and with diam (Ai ) ≤ δ. It is well known that
H1 is actually a measure (i.e. it is countably additive) on the family of Borel subsets.

We recall some well known results for set valued functions. Let X , Y be nonempty sets, a
set valued function M : X ⇒ Y is a correspondence which maps an element of X to a subset
of Y . In this paper we deal with set valued mappings such that M(x) 	= ∅ for each x .

Definition 2.1 Let X , Y be metric spaces. The correspondence M : X ⇒ Y has the closed
graph property at x0 ∈ X if the following holds:
for every sequence {xn} in X converging to x0 and for every sequence {yn} in Y such that
yn ∈ M(xn) for each n and converging to y0 ∈ Y , then y0 ∈ M(x0).

Theorem 2.1 (Berge’s Theorem Aubin and Frankowska (1990); Hu and Papageorgiou
(1997)) Given f : X ×Y → R and M : X ⇒ Y a real and a set valued function, respectively,
let us define

w(x) = inf
y∈M(x)

f (x, y), x ∈ X .

If f is a lower semicontinuous (l.s.c.) function on X × Y and M satisfies the closed graph
property at each point of X, then w is a lower semicontinuous function on X.

2.1 The Steiner problem

s The Steiner problem (see Fampa et al. 2016; Hwang et al. 1992), as introduced in the 20th
century, has the following statement.
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Given the set of points A = {a1, . . . , an}, n ∈ N, in the Euclidean plane, find the shortest
graph � among all connected graphs containing all the given points.

The statement of the Steiner problem only needs the basic concepts of length and con-
nectedness. We can reformulate the Steiner problem in a given metric space X , considering
as length the Hausdorff measure and the larger class of compact sets S ⊂ X instead of finite
graphs. We have

Theorem 2.2 Let X be a compact, connected metric space and let C ⊂ X be a compact set.
Then there exists a set S which has minimal H1 measure among all compact connected sets
containing C.

The proof is straightforward and based on the compactness with respect to the Hausdorff
metric (Blaschke theorem) and the lower semicontinuity of theH1-measure (Goła̧b theorem).
We recall these tools here Ambrosio and Tilli (2004); Paolini and Stepanov (2013).

Theorem 2.3 (Goła̧b) If �n is a sequence of connected closed subsets of a complete metric
space which Hausdorff converges to a set �, then

H1(�) ≤ lim inf
n→+∞ H1(�n).

This result on lower semicontinuity of the one-dimensional Hausdorff measureH1 still holds
if we assume that the number of connected components of �n is bounded by a fixed con-
stant. The conclusion is easly shown to be false if the connectness assumption is completely
removed.

Theorem 2.4 (Blaschke) The space of non empty closed subsets of a compact set endowed
by the Hausdorff metric is a compact metric space.

When the given set C has infinite H1 measure the formulation of Theorem 2.2 has no
sense. A formulation of the concept of connecting a set is to require that S ∪ C become
connected (and we do not require S to be connected). In this framework the Steiner problem
reads as: given a compact set C ⊂ X find a set S in X such that C ∪ S is connected and has
minimal length (i.e. minimizing H1(S)).

Although it seems necessary to require S to be connected (which leads to an undesirable
behavior, see Paolini and Stepanov (2013)) to apply Goła̧b’s theorem and the compactness of
S in view of Blaschke theorem, it is surprising that this is not the case. Indeed the existence
of minimizers for this very general formulation of the Steiner problem was proved by Paolini
and Stepanov.

We recall that a metric space X is called proper (or having the Heine-Borel property) if
every closed ball is compact.

Theorem 2.5 If X is a proper connected metric space and C ⊂ X is compact, then the Steiner
problem admits a solution.

Moreover some quite natural topological properties of solutions to the Steiner problem
are summarized as follows: every solution S having finite length H1(S) < +∞ has the
properties:

a) S ∪ C is compact;
b) S \ C has at most countably many connected components, and each of the latter has

strictly positive length;
c) S contains no closed loops;
d) ifC has a finite number of connected components, then S\C has finitely many connected

components, the closure of each of which is a finite geodesic embedded graph with
endpoints on C , and with at most one endpoint on each connected component of C .
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2.2 On the bilevel approach

Given f , g : X × Y → R two functions, if f expresses the cost of some activities, and
g another criterium that must be optimized, one usually tries to minimize the total cost as
follows: find (x̌, y̌) ∈ X × Y such that

T := [ f + g](x̌, y̌) = min
(x,y)∈X×Y

[ f + g](x, y). (T)

On the other hand, in some situation it is more natural reasoning in a bilevel formulation,
minimizing the cost f with respect to the x variable, under the constraint that g achieves the
minimumwith respect to the y variable, for any x , and define the bilevel optimization problem
as follows Başar and Olsder (1999); Carlier and Mallozzi (2022); Dempe and Zemkoho
(2020). We assume that for any x ∈ X there exists a unique ỹ(x) ∈ Y such that

g(x, ỹ(x)) = min
y∈Y

g(x, y)

and the bilevel optimization problem consists in finding x̂ ∈ X such that

BL := f (x̂, ỹ(x̂)) = min
x∈X

f (x, ỹ(x)) (BL)

where the map x → ỹ(x) has been defined above. A solution of (BL) will be the pair
(x̂, ỹ(x̂)). In this case the total cost is given by BL + g(x̂, ỹ(x̂)) that clearly is higher than
T . However, as it happens in applicative contexts, not always the choice of optimal values of
the strategies is made by a decision maker able to control both variables x and y.

An example is given by the mining problem, where the aim is to plan the extraction
activity searching for the optimal starting point for extraction (also called ora), minimizing
the installation cost together with the transportation cost of the underground material. This
transport is supposed to take place along a given network of tunnels. So, the problem turns
out to be constrained to a choice of this network of tunnels and this aspect of the project
planning can be contracted out.

In a general view, in this paper the bilevel optimization problem corresponds to a situation
where the best position of a specific facility that is constrained to a network tree connecting
some given demand points is chosen, and where the facility construction and the network
construction are managed separately.

A further application in air traffic management can be formalized in a bilevel scheme as
well: for example, a group of UAVs (Unmanned Aerial Vehicle) may need to fly in a certain
formation to reduce their fuel expenditure and keep active communication links among them.
The bilevel problem studied in Zhang and Hu (2008), for example, gives the coordinated
motions with the minimum energy cost that can move a group of agents from given initial
position to given destination within a certain time horizon under a tree formation constraints.
The problem consists in a bilevel optimization problem having a Steiner problem in the lower
level.

3 The bilevel problem for concentrated resources

3.1 Themodel

As mentioned, in this paper we work in Euclidean spaces. Nevertheless every time we will
try to highlight the metric properties really necessary.
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Let us consider X a bounded region of RN and H ⊂ X a compact subset of X . A set
C = {v1, . . . , vn} (n ∈ N) is given, where v1, . . . , vn ∈ X represent demand points that
must be connected by a network between themselves and also with a new facility x that will
be installed in H . A function F : H → R

+ that describes the installation cost of the new
facility x ∈ H is also given.

We suppose that the cost of construction of the network depends on the characteristic
of the area X . More precisely, we consider a density distribution ϕ : X → [0,+∞] that is
a lower semicontinuous nonnegative function on X describing the construction costs in X .
Then we consider the network installation cost as in the following definition:

Definition 3.1 Given a network S in a region X with l.s.c. density ϕ, we define the network
installation cost as

K[S] =
∫

S
ϕ dH1, (3.1)

where H1 is the one-dimensional Hausdorff measure.

Given the compact set C ⊂ X , a set S connecting elements of C is an element of the set:

St(C) = {S ⊆ X : C ∪ S is compact and connected}.
Moreover we suppose that the cost of using a network S that has been built depends on

its total length, i.e. the one-dimensional Hausdorff measure H1(S).
The problem: the aim of our study is to find the optimal position x̄ ∈ H and the optimal
network S̄ that connects the points in C and x̄ , minimizing all the costs.

As an example, the logistic problem corresponding to this situation is given by a planar
region where a river separates the city center from n villages in the countryside and a road
network must be planned to connect all the villages and also a bridge has to be built in a
suitable location of the river (see example 3.1).

Mathematically, we formulate the problem in the bilevel optimization scheme.
The bilevel problem (U)-(L). Find x̄ ∈ H solution of the the upper level problem:

inf {F(x) + G(x), x ∈ H} (U)

where, for each x ∈ H , G(x) is given by

G(x) = inf
{H1(S), S ∈ Mϕ(x, C)

}

and

Mϕ(x, C) = {
S ∈ St(C ∪ {x}) : K[S] ≤ K[S′],∀S′ ∈ St(C ∪ {x})}

is the set of solutions of the lower level problem

inf {K[S], S ∈ St(C ∪ {x})} . (L)

Any x̄ ∈ H solving the problem (U ) will be called an optimal solution of the bilevel
problem described in (U)-(L). In the upper level problem we are minimizing the total cost
incurred in building the facility in x and in using the network connecting x and C , with the
constraint that the considered network is an optimal one considering the installation cost
derived by the properties of X .

Let us note that the installation cost in (L) covers some special cases such as
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• when ϕ ≡ 1 the lower level problem corresponds to the classical Euclidean Steiner
problem. In this case the costs of construction and usage are equals and the choice of the
optimal set S depends only on the installation of x and the length of S;

• when ϕ assume the value +∞ on a subset of X the lower level problem corresponds to
a minimal cost problem in presence of obstacles;

• when ϕ ≡ 0 on a subset of X the lower level problem takes into account the presence of
“free" regions, i.e. regions in which construction costs vanish.

In order to prove the existence of solutions to the lower level problem (L), we need a
semicontinuity result for the functional K introduced in (3.1).

Remark 3.1 The problem (U)-(L) can be written also in the following way, showing the
optimistic nature of the bilevel problem.
The bilevel problem (U)-(L). Find x̄ ∈ H solution of the the upper level problem:

inf
x∈H

inf
S∈Mϕ(x,C)

F(x) + H1(S) (U)

where, for each x ∈ H , Mϕ(x, C) is the set of solutions of the lower level problem

inf
S∈St(C∪{x})

∫

S
ϕ dH1. (L)

Let us remark that for a given x ∈ H , it is not guaranteed that the set Mϕ(x, C) is a
singleton; however all the Steiner trees in the set have the same minimal length.

3.2 Goła̧b Theoremwith density

In this section we prove the following Goła̧b type theorem in the general setting of metric
spaces to have the semicontinuity result for the functional K introduced in (3.1).

Theorem 3.1 Let X be a complete metric space and let ϕ : X → [0,+∞] be a lower semi-
continuous function. For every Borel subset C of X, we define

K[C] =
∫

C
ϕ dH1

Let Cn be compact connected subsets of X, converging to the compact subset C with respect
to the Hausdorff metric. Then C is connected and

K[C] ≤ lim inf
n

K[Cn]. (3.2)

Proof Since Hausdorff convergence preserves connectedness, we know that C is connected,
see Ambrosio and Tilli (2004); Paolini and Stepanov (2013). Clearly, we may assume ϕ 	≡ 0
and that the right-hand side of (3.2) is finite. Then, there are at most countably many levels
l > 0 for which the measure

H1({x ∈ C : ϕ(x) = l}) (3.3)

is strictly positive. Indeed, the set of such levels is

⋃

k∈N

{

l >
1

k
: H1({x ∈ C : ϕ(x) = l}) >

1

k

}

.
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We show that this is a countable union of finite sets. Fixed λ > 0 and defined

Eλ = {x ∈ X : ϕ(x) ≤ λ}, (3.4)

we have

+∞ >
1

λ
lim inf

n
K[Cn \ Eλ] ≥ lim inf

n
H1(Cn \ Eλ) ≥ H1(C \ Eλ),

last inequality being a consequence of [Paolini and Stepanov (2013), Theorem 3.3]. As the
subsets considered in (3.3) are pair-wise disjoint, the number of levels l > λ for which also
the measure in (3.3) is larger than λ is finite.

We have

lim
λ↓0 ϕ(x)χEc

λ
(x) = ϕ(x)

for all x ∈ X . The equality is trivial if ϕ(x) = 0. In case ϕ(x) > 0, for λ < ϕ(x) we have
χEc

λ
(x) = 1. Hence, we can use monotone convergence theorem to infer

K[C] =
∫

C
ϕ dH1 = lim

λ↓0

∫

C\Eλ

ϕ dH1 (3.5)

To prove (3.2), we show that, for any fixed T ∈ R verifying T < K[C], we actually have

T < lim inf
n

K[Cn]. (3.6)

To this end, we first assume ϕ continuous and bounded. By (3.5), we find λ, 0 < λ < supX ϕ,
such that

T < K[C \ Eλ] =
∫

C\Eλ

ϕ dH1. (3.7)

For any ε > 0, we can find positive levels li , i = 0, . . . , k + 1, such that 0 < li+1 − li < ε

for i ≤ k,

0 < l0 < λ < sup
X

ϕ < lk+1

and

H1({x ∈ C : ϕ(x) = li }) = 0, for i = 0, . . . , k + 1. (3.8)

We consider the closed subsets

Ji = {x ∈ X : ϕ(x) ≤ li or ϕ(x) ≥ li+1}, for i = 0, . . . , k.

Note that J c
i are pair-wise disjoint and that J c

i ∩ (Cn\Eλ) = Cn\(Ji ∪ Eλ). Then

K[Cn] ≥ K[Cn \ Eλ] ≥
k∑

i=0

K[Cn \ (Ji ∪ Eλ)] ≥
k∑

i=0

li H1(Cn \ (Ji ∪ Eλ))

Hence, using again ((Paolini and Stepanov, 2013), Theorem 3.3) we get

lim inf
n

K[Cn] ≥
k∑

i=0

li lim inf
n

H1(Cn \ (Ji ∪ Eλ)) ≥
k∑

i=0

liH1(C \ (Ji ∪ Eλ))

≥
∫

C\Eλ

ϕ dH1 − εH1(C \ Eλ).
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Above we used that the subsets J c
i verify

H1((C \ Eλ) \ ∪i J c
i ) = 0

as a consequence of (3.8). By (3.7), for small ε we get (3.6).
The extension to the case ϕ lower semicontinuous is straightforward, since ϕ is the limit of

an increasing sequence of nonnegative continuous bounded functions ϕh , and by monotone
convergence theorem for any Borel subset C

∫

C
ϕ dH1 = lim

h

∫

C
ϕh dH1 = sup

h

∫

C
ϕh dH1.

��
Remark 3.2 If K ⊂ X is closed, ϕ χK c is lower semicontinuous. Applying Theorem 3.1 with
this function in place of ϕ, more generally than (3.2) we also have

K[C \ K ] ≤ lim inf
n

K[Cn \ K ]. (3.9)

Actually, our proof can easily be modified to show that if, in addition to the assumptions
of Theorem 3.1, the sequence Kn of closed subsets converges to the closed subset K with
respect to the Hausdorff metric, then

K[C \ K ] ≤ lim inf
n

K[Cn \ Kn], (3.10)

thus reaching a complete analogy with [Paolini and Stepanov (2013), Theorem 3.3]. Indeed,
defining Eλ as in (3.4), clearly Kn ∪ Eλ converges to K ∪ Eλ with respect to the Hausdorff
metric, as n → +∞. Hence, we can repeat the above argument with C \ K and Cn \ Kn

in place of C and Cn , respectively, and see that (3.10) holds if the density ϕ is continuous
and bounded. Finally, if the lower semicontinuous function ϕ is the limit of an increasing
sequence of nonnegative continuous bounded functions ϕh , denoting by Kh the functional
with density ϕh , for all h ∈ N we have

Kh[C \ K ] ≤ lim inf
n

Kh[Cn \ Kn]
so that

Kh[C \ K ] ≤ lim inf
n

K[Cn \ Kn]
and conclude with (3.10) letting h → +∞.

Let us recall that we are dealing with the case of n points in which some resources are
concentrated, i.e. C = {v1, . . . , vn}; then we have the following result.

Theorem 3.2 Let X be a connected compact metric space and let ϕ : X → [0,+∞] be a
lower semicontinuous function on X. The lower level problem (L) admits a solution.

Proof We observe first that the set St(C ∪ {x}) 	= ∅ because, since X is assumed to be
connected, it belongs to St(C ∪ {x}). Considering a minimizing sequence Sn , n ∈ N, for
the functional K, define �n = Sn ∪ C ∪ {x}. We assume that K[Sn] < +∞ because if
every S ∈ St(C ∪ {x}) has K[S] = +∞ then every S attains the minimum. Then according
to Blaschke Theorem, �n converges to a still closed and connected set � in the sense of
Hausdorff metric, up to passing to a subsequence. Remark 3.2 gives

K[� \ C] ≤ lim inf
n

K[�n \ C] = lim inf
n

K[Sn].
Hence � \ C is a solution to (L). ��
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3.3 Existence results for the bilevel problem

In the following we limit to Euclidean spaces and deal with the bilevel problem (U)-(L). We
give conditions that ensure the existence of solutions.

We define

L(x) = inf {K[S] : S ∈ St(C ∪ {x})} , for x ∈ H . (3.11)

Remark 3.3 Note that we may have L ≡ +∞ on H . This can be expected, if ϕ takes the
value +∞, or even if it is unbounded. For example, in the region X an obstacle is present
which separates H from the points of C .

However, L ≡ +∞ may also happen for ϕ bounded, e.g. ϕ ≡ 1, that is K = H1. Indeed,
for some X and a finite subset C , we may have H1(S) = +∞, for all S ∈ St(C). On the
other hand, assuming for X the segment property (see Adams (1975), pg. 54]) prevents this
problem, because then for all x, y ∈ X there exists a polygonal contained in X connecting x
and y.

Now we prove the following existence result.

Theorem 3.3 Let X ⊂ R
N be a compact region and ∅ 	= C ⊂ X be a finite set. Suppose that

∅ 	= H ⊆ X is a closed subset of X contained in a convex subset Z ⊆ X, ϕ : X → [0,+∞]
is l.s.c. and bounded from above on Z and F : H → [0,+∞[ is a l.s.c. function on H. Then
there exists an optimal solution of the bilevel problem (L)-(U).

Proof Existence of a solution for the lower level problem (L) is guaranteed by Theorem 3.2
and then the set Mϕ(x, C) is non empty, for any given x ∈ H .

In order to prove that

x → F(x) + inf
S∈Mϕ(x,C)

H1(S) (3.12)

is l.s.c. on H , we use Berge’s Theorem 2.1. Given S ∈ Mϕ(x, C), we set

� = S ∪ C ∪ {x}.
Clearly, H1(�) = H1(S). Next, we define the following set-valued map

M : x ∈ X ⇒ M(x) = {� : S ∈ Mϕ(x, C)}, (3.13)

taking values in the family CX of nonempty closed subsets of X , in which we use Hausdorff
metric.

We observe that the function

f (x, �) = F(x) + H1(�)

is l.s.c. on H ×CX . Now, we show that the mapping M defined at (3.13) has the closed graph
property at each point of H , that is, if xn → x , �n ∈ M(xn) for all n, and �n → � in the
Hausdorff metric, then � ∈ M(x). To this end, first we prove that

� ∈ St(C ∪ {x}).
To show that x belongs to the closed set �, it suffices to prove that x is a limit point for
it. Given ε > 0, we have dH (�,�n) < ε for large n, so that, choosing in the definition of
Hausdorff distance A = �, B = �n , we have dist (xn, �) < ε and find y ∈ � such that
d(xn, y) < ε. Hence, we conclude

d(x, y) ≤ d(x, xn) + d(xn, y) < 2ε.
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Similarly, C ⊂ �. Moreover � is connected since �n are connected sets.
Now we prove minimality of �, that is, we have

K[�] ≤ K[S′]
for all S′ ∈ St(C ∪ {x}). Consider [x, xn] the segment connecting x and xn . We have
S′ ∪ [x, xn] ∈ St(C ∪ {xn}) and

K[�n] ≤ K[S′ ∪ [x, xn]] ≤ K[S′] +
∫

[x,xn ]
ϕ dH1. (3.14)

Moreover, since [x, xn] ⊂ Z ,
∫

[x,xn ]
ϕ dH1 ≤

(

sup
Z

ϕ

)

d(x, xn)

converges to 0 as n → +∞. Therefore, we can pass to the limit in (3.14), using lower
semicontinuity of K in the left-hand side, and get

K(�) ≤ lim inf
n

K(�n) ≤ K(S′).

It is now clear that the upper level problem (U) admits a solution. ��

Remark 3.4 Let us observe that in Theorem 3.3 we can relax conditions on H and ϕ. Indeed,
an inspection of the proof shows that, instead of assuming H contained in a convex set Z ,
and that ϕ is bounded on it, we may assume that there exists a constant � with the following
property: for each point x ∈ H , there exists a ball Br (x) centered at x such that X ∩ Br (x)

is star-shaped with respect to x , and ϕ(y) ≤ �, for all y ∈ X ∩ Br (x).
Moreover, concerning the possibility L ≡ +∞ discussed in Remark 3.3, we note that,

also in the case where ϕ takes the value +∞, under the above assumptions, if L(x0) < +∞
for a point x0 ∈ H , then L(x) < +∞, for all x ∈ H .

Example 3.1 Two villages and a river. We want to connect two villages in the countryside
with a bridge that we build on a river. Let us consider the region X = [0, 1]×[0, 1] ⊂ R

2, and
two villages located at O = (0, 0) and U = (1, 0), a river described by H = X ∩ {y = 1}.
Problem (L) gives the Steiner tree connecting vertices B = (x, 1), O and U . We consider
the uniform density ϕ ≡ 1 in X and in this case C = {O, U } and L = G, where G is defined
as in the bilevel problem (U)-(L). For any x ∈ [0, 1] the tree in Fig. 1 is the minimal length
tree, i.e. the Steiner tree.

Let us note that V as in Fig. 1 is the Fermat point of the triangle (Fampa et al., 2016;
Hwang et al., 1992) with vertices O, U , B. By means of geometric properties, it is possible
to compute the coordinates of V , in particular the abscissa is

xV = (1 + √
3x)(1 + √

3 + x)√
3[(1 + √

3)2 − 2x + 2x2]
that is a continuous function of x ∈ [0, 1]. For example, if x = 0.5 we find xV = 0.5.

By using classical numerical computation, it is possible to compute the solution of the
problem (U ): we consider here two cases (Fig. 2):
- (a) If F(x) = x2, we compute V = (0.314, 0.258), x̄ = 0.191;
- (b) If F(x) = (1 − x)2, we compute V = (0.697, 0.254), x̄ = 0.828.
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Fig. 1 Example 3.1

Fig. 2 The Euclidean Steiner tree in cases (a) and (b) of Example 3.1

Remark 3.5 The situation illustrated in the previous example could be also modellized by
using the barycenter of the triangle with vertices B, O, U (Drezner, 2022) that is simpler
from a computational point of view. However, this leads to a network connecting the points
B, O, U with the barycenter that is clearly longer that the one obtained connecting the points
B, O, U with the Fermat point V . This confirm that the Steiner tree type choice is optimal,
even if computational costly (see Fampa et al. (2016); Ivanov and Tuzhilin (1994); Ras et al.
(2017)).

4 Concluding remarks

In this paper we investigated a bilevel optimization problem that arises when a social planner
wants to locate a specific facility in a region equipped with a density distribution, under the
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constraint that this facility will be connected with another facility of a Steiner tree type. The
density we considered allows to include particular cases such as obstacle presence.

To prove the existence of a solution of the bilevel problem, that is framed in Euclidean
spaces, a lower semicontinuity property has been obtained: this has been reached by proving
an extension of Goła̧b’s theorem in the general setting of metric spaces, which allows for
considering a density function.

As mentioned above, the bilevel problem studied in this paper has an important impact
on applications and then the computational aspect of it is of interest. That is why some
important properties must be investigated. For example, under suitable conditions, we can
prove that L is a Lipschitz continuous function, then the regularity of the lower level value
(L function) makes the upper level optimization problem a smooth one. This is often vital
for the computational aspect in bilevel optimization (Başar and Olsder, 1999; Dempe et al.,
2007; Dempe and Zemkoho, 2020). In this paper we just mention that algorithmic discussions
concerning the Steiner trees have been provided in Hwang et al. (1992); Paolini et al. (2015);
Ras et al. (2017).

Proposition 4.1 Let X ⊂ R
N be a bounded connected Euclidean region, with the segment

property; let ∅ 	= H ⊆ X be contained in a convex subset Z of X and let ∅ 	= C ⊂ X
be a finite set. Suppose ϕ : X → [0,+∞[ is l.s.c. and bounded from above on X. Then the
function L : H → [0,+∞[ defined by (3.11) is (finite) Lipschitz continuous.

Proof Clearly, L(x) ≤ (
supϕ

)H1(S), for all S ∈ St(C ∪ {x}). Then L is finite valued
everywhere. Let us fix x, x1 ∈ H and denote by [x, x1] the segment joining x and x1. Given
ε > 0, by the definition of L , there exists S ∈ St(C ∪ {x}) such that

∫

S
ϕ dH1 < L(x) + ε

Moreover S ∪ [x, x1] ∈ St(C ∪ {x1}), hence

L(x1) ≤
∫

S∪[x1,x]
ϕ dH1 ≤

∫

[x1,x]
ϕ dH1 +

∫

S
ϕ dH1

which implies

L(x1) − L(x) < ε + c d(x, x1)

with c = supX ϕ. Letting ε ↓ 0,

L(x1) − L(x) ≤ c d(x, x1)

and we conclude the proof by exchanging the role of x and x1. ��

In example 3.1, the set H is assumed to be a hyperplane in the Euclidean space. On the
other hand, this assumption is unrealistic, particularly in the case of the above example where
it represents a river. Therefore we note that the Lipschitz continuity of the function L , proved
in Proposition 4.1, still holds when we replace the convexity assumption by the following
more general property:

(P) there exists a constant cH > 0 such that for every x, y ∈ H we can find a path
(i.e. continuous immage of the interval [0, 1] ⊂ R) γ in X connecting x and y such that
H1(γ ) ≤ cH d(x, y).

For example, property (P) holds if the set H is a Lipschitz hypersurface.
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Moreover, we can vary also the points vi ∈ C , and arguing as above we can show that the
quantity L is Lipschitz continuous also with respect to them.
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