This is the peer reviewd version of the followng article:

A variational property of critical speed to travelling waves in the presence of nonlinear diffusion / Gavioli, Andrea; Sanchez, Luis. - In: APPLIED MATHEMATICS LETTERS. - ISSN 0893-9659. - 48:(2015), pp. 47-54. [10.1016/j.aml.2015.03.011]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

Accepted Manuscript

A variational property of critical speed to travelling waves in presence of nonlinear diffusion

Andrea Gavioli, Luís Sanchez

PII: S0893-9659(15)00113-5
DOI: http://dx.doi.org/10.1016/j.aml.2015.03.011
Reference: AML 4756

To appear in: Applied Mathematics Letters

Received date: 24 January 2015
Revised date: 18 March 2015
Accepted date: 19 March 2015

Please cite this article as: A. Gavioli, L. Sanchez, A variational property of critical speed to travelling waves in presence of nonlinear diffusion, Appl. Math. Lett. (2015), http://dx.doi.org/10.1016/j.aml.2015.03.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A variational property of critical speed to travelling waves in presence of nonlinear diffusion

Andrea Gavioli ${ }^{\text {b }}$, Luís Sanchez ${ }^{\sharp}$
${ }^{b}$ Dipartimento di Matematica Pura ed Applicata, Univ. di Modena e Reggio Emilia,
Via Campi, 213b, 41100 Modena, Italy.
E-mail : andrea.gavioli@unimore.it
\# Faculdade de Ciências da Universidade de Lisboa, CMAF
Avenida Professor Gama Pinto 2, 1649-003 Lisboa, Portugal
E-mail : lfrodrigues@ciencias.ulisboa.pt

Abstract

\section*{Abstract}

Let f be a continuous function in $[0,1]$ with $f(0)=0=f(1)$ and $f>0$ on $] 0,1[$. We show that, under additional mild conditions on f, the minimal speed for travelling waves of $$
\begin{equation*} \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left[\left|\frac{\partial u}{\partial x}\right|^{p-2} \frac{\partial u}{\partial x}\right]+f(u), \tag{0.1} \end{equation*}
$$ may be computed via a constrained minimum problem which in turn is related to the solution of a singular boundary value problem in the half line.

Keywords: travelling wave; nonlinear diffusion; critical speed; constrained minimum
Mathematics subject classification: 34C37, 35C07, 35K57.

1 Introduction

Throughout this note, let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that $f(0)=f(1)=0$ and $f(u)>0$ if $u \in(0,1)$. In the theory of Fisher-Kolmogorov-Petrovski-Piskounov (FKPP) equations, such a function is sometimes referred to as a function of type A (see e.g. [3]).

Also, let $p>1$.
In [4] the notions of admissible speed and critical (i. e. minimal) speed have been introduced for travelling waves to reaction-diffusion equations driven by the one-dimensional p-Laplacian operator, namely

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left[\left|\frac{\partial u}{\partial x}\right|^{p-2} \frac{\partial u}{\partial x}\right]+f(u) \tag{1.2}
\end{equation*}
$$

The relevant front wave profiles $u(x+c t)$ with speed c are given by the (monotone) solutions of the second order problem

$$
\begin{equation*}
\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}-c u^{\prime}+f(u)=0, \quad u(-\infty)=0, u(+\infty)=1 \tag{1.3}
\end{equation*}
$$

Let q be the conjugate of p, that is $\frac{1}{p}+\frac{1}{q}=1$. The solutions of the parametric first order boundary value problem (where we write $y_{+}=\max (y, 0)$)

$$
\begin{equation*}
\left.y^{\prime}=q\left(c y_{+}^{\frac{1}{p}}-f(u)\right), \quad 0 \leq u \leq 1, \quad y(0)=0=y(1), \quad y>0 \text { in }\right] 0.1[\tag{1.4}
\end{equation*}
$$

yield the trajectories of solutions of (1.3) via the relationship

$$
u^{\prime}=y(u(t))^{1 / p}
$$

We recall the following assumptions, used in [4].

$$
\left(H_{p}\right) \quad M=M_{p}:=\sup _{0<u<1} \frac{f(u)}{u^{q-1}}<+\infty ; \quad\left(H_{p}^{\prime}\right) \quad \mu:=\lim _{u \rightarrow 0^{+}} \frac{f(u)}{u^{q-1}} \text { exists, } 0 \leq \mu<+\infty
$$

It follows from results in [4] that there is a 1-1 correspondence between solutions of (1.3) (up to translation) taking values in $] 0,1]$ and solutions of (1.4) that are strictly positive in $] 0,1\left[\right.$. These sets of solutions are nonempty provided $\left(H_{p}\right)$ holds. Also, basic properties of the profiles and their speeds, now classical in the FKPP theory $(p=2)$, were extended in [4] to the p-Laplacian model. In particular, if $\left(H_{p}\right)$ holds, the set of admissible speeds - that is, values of the parameter c such that (1.4) has a solution - is an interval $\left[c^{*},+\infty[\right.$ where

$$
\begin{equation*}
\mu^{\frac{1}{q}} p^{\frac{1}{p}} q^{\frac{1}{q}} \leq c^{*} \leq M^{\frac{1}{q}} p^{\frac{1}{p}} q^{\frac{1}{q}} \tag{1.5}
\end{equation*}
$$

(the first inequality being valid if the stronger $\left(H^{\prime} p\right)$ holds). The minimum admissible value c^{*} of the parameter c is called critical speed.
Remark 1.1. An elementary calculation on the basis of (1.4) shows that, given a number $a>0, c$ is an admissible speed with respect to f if and only if $c a^{\frac{1}{p}}$ is admissible with respect to $a f$.

For the case of linear diffusion $(p=2)$, variational caracterizations of the critical speed c^{*} are known: in [1] a variational formulation is presented, based on the second order ordinary differential equation satisfied by the wave profiles; in [2] the authors use the first order model that represents the wave trajectories in a phase plane to establish another defining property of variational type for c^{*}.

The purpose of this note is to obtain a variational property of c^{*} in the framework of (1.3). We shall use some ideas from [1].

Remark 1.2. It will be useful for our purpose to recall the role played by functions of type B. A function $f:[0,1] \rightarrow \mathbb{R}$ is said to be of type B if it is continuous and there exists $\delta \in] 0,1[$ such that $f(s)=0$ if $0 \leq s \leq \delta$ or $s=1$, and $f(s)>0$ if $\delta<s<1$.

It is known that if f is of type B there exists exactly one admissible speed c^{*} of (1.3), that is, (1.4) has a positive solution for exactly this value of the parameter c. Moreover, if f_{n} is a nondecreasing sequence of functions of type B and $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$, then with obvious notation $\lim _{n \rightarrow \infty} c^{*}\left(f_{n}\right)=c^{*}(f)$. See [4], section 4 .

2 Some equivalent boundary value problems

For convenience, we start by considering a different model, with homogeneity of degree $p-1$ in the derivatives. Consider the problem

$$
\begin{equation*}
\left(u^{\prime p-1}\right)^{\prime}-c^{p-1} u^{\prime p-1}+f(u)=0, \quad u(-\infty)=0, u(+\infty)=1 \tag{2.6}
\end{equation*}
$$

which, by the way, may be seen as the search for travelling waves of the form $u(x+c t)$ for the quasilinear parabolic equation in one spacial dimension

$$
\begin{equation*}
\frac{\partial\left(u^{p-1}\right)}{\partial t}=\frac{\partial}{\partial x}\left[\left|\frac{\partial u}{\partial x}\right|^{p-2} \frac{\partial u}{\partial x}\right]+f(u) \tag{2.7}
\end{equation*}
$$

Related quasilinear PDEs have been considered in the literature, for example from the point of view of subtle analytic properties of solutions: see e.g. [5].

The homogeneity appearing in the quasilinear term of (2.6) is used in the following way. If we perform the change of variable $s=e^{k t}$ with $k>0$, and define $v(s)=u(t)$, this problem is seen to be equivalent to the following boundary value problem in $[0,+\infty[$

$$
\begin{equation*}
\left(v^{\prime p-1}\right)^{\prime}+\frac{1}{k^{p}} \frac{f(v(s))}{s^{p}}=0, \quad v(0)=0, v(+\infty)=1, \quad v^{\prime}>0 \tag{2.8}
\end{equation*}
$$

provided

$$
c^{p-1}=k(p-1)
$$

Another convenient interpretation of the problem (2.6) is given by the first order model that describes a phase portrait of the second order equation. Letting φ denote the function such that $u^{\prime}=\varphi(u)$ we easily see that φ satisfies

$$
(p-1) \varphi^{p-2} \varphi \varphi^{\prime}=c^{p-1} \varphi^{p-1}-f(u)
$$

so that $\psi=\varphi^{p}$ solves

$$
\begin{equation*}
\left.\psi^{\prime}=q\left(c^{p-1} \psi^{\frac{1}{q}}-f(u)\right), \quad \psi(0)=0, \psi(1)=0, \quad \psi>0 \text { in }\right] 0,1[\tag{2.9}
\end{equation*}
$$

Acording to what has been recalled in the Introduction, (2.9) has solutions provided that

$$
\left(H_{q}\right) \quad M_{q}:=\sup _{0<u<1} \frac{f(u)}{u^{p-1}}<+\infty
$$

Moreover, writing (2.9) as

$$
\begin{equation*}
\psi^{\prime}=p\left(c^{p-1} \frac{q}{p} \psi^{\frac{1}{q}}-\frac{q}{p} f(u)\right) \tag{2.10}
\end{equation*}
$$

we assert that the set of admissible speeds c is an interval $\left[c^{*},+\infty\left[\right.\right.$ where $c^{* p-1} \leq M_{q}^{\frac{1}{p}} p$. If, in addition, we assume the stronger assumption
$\left(H_{q}^{\prime}\right) \quad \nu:=\lim _{u \rightarrow 0^{+}} \frac{f(u)}{u^{p-1}}$ exists, $0 \leq \nu<+\infty$
then we also have the lower estimate

$$
\begin{equation*}
c^{* p-1} \geq \nu^{\frac{1}{p}} p \tag{2.11}
\end{equation*}
$$

The preceeding considerations may be summarized in the following statement.

Proposition 2.1. Let f be of type A and $\left(H_{q}\right)$ hold, or let f be of type B. Then the following are equivalent:

- (2.6) has a monotone solution with $u^{\prime}>0$ in some interval $]-\infty, b\left[\right.$, and $u\left(b^{-}\right)=1$
- (2.9) has a solution which is positive in $] 0,1[$
- (2.8) with $k=\frac{c^{p-1}}{p-1}$ has a (concave) solution with $v^{\prime}>0$ in some interval $]-\infty, \beta\left[\right.$, and $u\left(\beta^{-}\right)=1$.

Remark 2.2. $b=+\infty$ (and therefore also $\beta=+\infty$) if $q \leq 2$ and $\sup _{0<u<1} \frac{f(u)}{(1-u)^{q-1}}<+\infty$. See [4], sction 6. In this case the heteroclinics that solve (2.6) are nondegenerate, never taking the value 1 . The same can be said of the solution of the corresponding problem (2.8).
Remark 2.3. If f is of type $\mathrm{B},(2.8)$ is solvable only for $k=k^{*}:=\frac{\left(c^{*}\right)^{p-1}}{p-1}$.

Proposition 2.4. Suppose that ψ solves (2.9) with $c>c^{*}$. Then

$$
\lim _{u \rightarrow 0} \frac{\psi(u)}{u^{p}}<\left(\frac{c^{p-1}}{p}\right)^{p}
$$

Proof. See [4], Theorem 3.3 and page 175, in view of (2.10).

3 A constrained minimum problem

The purpose of this section is to relate (2.6) with the nonlinear singular boundary value problem

$$
\begin{equation*}
\left(v^{\prime p-1}\right)^{\prime}+\lambda \frac{f(v(s))}{s^{p}}=0, \quad v(0)=0, v(+\infty)=1, \quad v^{\prime}>0 \tag{3.12}
\end{equation*}
$$

where λ is a positive parameter.
Let us fix some notation. We still denote by f the extension of f with zero value outside $[0,1]$ and set

$$
F(u)=\int_{0}^{u} f(z) d z
$$

In addition we consider the space of functions

$$
E=\left\{v \in A C \left(\left[0,+\infty[, \mathbb{R}) \mid v^{\prime} \in L^{p}(0,+\infty), v(0)=0 .\right\}\right.\right.
$$

and the following real functionals on E

$$
J(v)=\frac{1}{p} \int_{0}^{+\infty}\left|v^{\prime}(s)\right|^{p} d s, \quad \Gamma(v)=\int_{0}^{+\infty} \frac{F(v(s))}{s^{p}} d s
$$

Remark 3.1. 1. If V is a subset of E such that $J(V)$ is bounded, then by Hőlder's inequatity there exists a number $C>0$ such that

$$
|v(s)| \leq C s^{\frac{1}{q}} \quad \forall s \geq 0, \quad \forall v \in V
$$

2. The assumption $\left(H_{q}\right)$ is sufficient for Γ to be well defined and C^{1} in E. In fact this follows from Hardy's inequality:

$$
\int_{0}^{+\infty}\left|v^{\prime}(s)\right|^{p} d s<q^{p} \int_{0}^{+\infty} \frac{|v(s)|^{p}}{s^{p}} d s \quad \forall v \in E \backslash 0
$$

Set

$$
\begin{equation*}
\theta=\inf _{v \in E \backslash 0} \frac{J(v)}{\Gamma(v)} \tag{3.13}
\end{equation*}
$$

Theorem 3.2. Let f be of type B, or of type A and such that $\left(H_{q}^{\prime}\right)$ holds. We have $\nu q^{p} \theta \leq 1$. If $\nu q^{p} \theta<1$ then the inf in (3.13) is attained. In any case $\theta^{1 / p}=\frac{p-1}{c^{* p-1}}$ where c^{*} is the least admissible value of c so that (2.9)has solutions.

Proof. Step $1 \quad \underline{\nu q^{p} \theta \leq 1 . ~ L e t ~} \xi(x)=\inf _{0<z \leq x} \frac{F(z)}{z^{p}}$. Because of $\left(H_{q}^{\prime}\right) \lim _{x \rightarrow 0} \xi(x)=\frac{\nu}{p}$. Let $\alpha>\frac{1}{q}$ and define $v_{r}(s)=\min \left(s^{\alpha}, r^{\alpha}\right)$ for $r>0$ small. Then $J\left(v_{r}\right)=\frac{\alpha^{p} r^{\alpha p-p+1}}{p(\alpha p-p+1)}$ and $\Gamma\left(v_{r}\right)>\xi\left(r^{\alpha}\right) \int_{0}^{r} s^{\alpha p-p} d s$. It follows that $\frac{J\left(v_{r}\right)}{\Gamma\left(v_{r}\right)}<\frac{\alpha^{p}}{p \xi\left(r^{\alpha}\right)}$. Taking the limit as $r \rightarrow 0$ and then the limit as $\alpha \rightarrow \frac{1}{q}$ yields the statement.

Step 2 Let $u_{n} \rightarrow 0$ weakly in E, u_{n} bounded in $L^{\infty}(0, \infty)$ and $\Gamma\left(u_{n}\right)=1$.
Then $\lim \inf J\left(u_{n}\right) \geq \frac{1}{\nu q^{p}}$. For each $r>0$, denote by J_{r} and Γ_{r} the functionals obtained by replacing the integration interval with $[0, r]$. Since $\Gamma-\Gamma_{r}$ is obviously weakly sequentially continuous in E, we have $\lim \Gamma_{r}\left(u_{n}\right)=1$ for each $r>0$. Similarly to step 1 , we write $\eta(x)=\sup _{0<z \leq x} \frac{F(z)}{z^{p}}$; then $F(x) \leq \eta(x) x^{p}$ and $\lim _{x \rightarrow 0} \eta(x)=\frac{\nu}{p}$. Using Hardy's inequality and noting that there exists a constant C such that $\sup _{s>0} \frac{\left|u_{n}(s)\right|}{s^{1 / q}} \leq C$ for all n, we obtain

$$
J\left(u_{n}\right) \geq J_{r}\left(u_{n}\right) \geq q^{-p} \frac{1}{p} \int_{0}^{r} \frac{u_{n}(s)^{p}}{s^{p}} d s \geq \frac{\Gamma_{r}\left(u_{n}\right)}{p q^{p} \eta\left(C r^{1 / q}\right)}
$$

Applying liminf as $n \rightarrow \infty$ and then the limit as $r \rightarrow 0$ we conclude.
Step 3 Consider the functional $I_{\lambda}=J-\lambda \Gamma$ and let $\lambda \leq \frac{1}{q^{p} \nu}$. Then if v_{n} converges weakly to v in E and v_{n} is bounded in $C\left[0,+\infty\left[\right.\right.$, we have $I_{\lambda}(v) \leq \lim \inf I_{\lambda}\left(v_{n}\right)$. Let us decompose

$$
I_{\lambda}=A+B, \quad A(w)=J(w)-\lambda \nu \int_{0}^{\infty} \frac{|w(s)|^{p}}{p s^{p}} d s, \quad B(w)=\lambda\left(\nu \int_{0}^{\infty} \frac{|w(s)|^{p}}{p s^{p}} d s-\int_{0}^{\infty} \frac{F(w(s))}{s^{p}} d s\right)
$$

We prove our claim by showing that

$$
\lim B\left(v_{n}\right)=B(v), \quad A(v) \leq \liminf A\left(v_{n}\right)
$$

We start with the assertion about B. By assumption, taking Remark 3.1 into account, we may fix a constant $C>0$ such that

$$
\left|v_{n}\right| \leq C,|v| \leq C, \sup _{s>0} \frac{\left|v_{n}(s)\right|}{s^{1 / q}} \leq C, \sup _{s>0} \frac{|v(s)|}{s^{1 / q}} \leq C, \sup _{n \in \mathbb{N}} \int_{0}^{\infty} \frac{\left|v_{n}(s)\right|^{p}}{s^{p}} d s \leq C
$$

Now let $\varepsilon>0$ be given. There exists δ such that $x \leq \delta \Longrightarrow\left|\frac{F(x)}{x^{p}}-\frac{\nu}{p}\right| \leq \varepsilon$. Putting $\eta^{1 / q}=\delta / C$ we have

$$
\int_{0}^{\eta}\left|\nu \frac{\left|v_{n}(s)\right|^{p}}{p s^{p}}-\frac{F\left(v_{n}(s)\right)}{s^{p}}\right| d s=\int_{0}^{\eta}\left(\left|\frac{\nu}{p}-\frac{F\left(v_{n}(s)\right)}{\left|v_{n}(s)\right|^{p}}\right|\right) \frac{\left|v_{n}(s)\right|^{p}}{s^{p}} d s \leq C \varepsilon
$$

Also, we may fix $T>0$ such that

$$
\int_{T}^{\infty}\left|\nu \frac{\left|v_{n}(s)\right|^{p}}{p s^{p}}-\frac{F\left(v_{n}(s)\right)}{s^{p}}\right| d s \leq \varepsilon
$$

and both estimates above hold with v in the place of v_{n}. By the compact embedding of E into $C([\eta, T])$ we have $\left.v_{n}\right|_{[\eta, T]} \rightarrow$ $\left.v\right|_{[\eta, T]}$ uniformly. It follows that

$$
B(v)-2(C+1) \varepsilon \leq \liminf B\left(v_{n}\right) \leq \lim \sup B\left(v_{n}\right) \leq B(v)+2(C+1) \varepsilon
$$

The claim follows by the arbitrariness of ε.
Next let us consider A. Let $\varepsilon>0$ be given and choose a sufficiently large T as before. For each $r>0$, we write

$$
\begin{gathered}
\int_{r}^{\infty} \frac{\left|v^{\prime}(s)\right|^{p}}{p}-\lambda \nu \frac{|v(s)|^{p}}{p s^{p}} d s \leq \int_{r}^{T} \frac{\left|v^{\prime}(s)\right|^{p}}{p}-\lambda \nu \frac{|v(s)|^{p}}{p s^{p}} d s+\varepsilon \\
\leq \liminf \int_{r}^{T} \frac{\left|v_{n}^{\prime}(s)\right|^{p}}{p}-\lambda \nu \frac{\left|v_{n}(s)\right|^{p}}{p s^{p}} d s+\varepsilon \leq \liminf \left(\int_{r}^{\infty}\left(\frac{\left|v_{n}^{\prime}(s)\right|^{p}}{p}-\lambda \nu \frac{\left|v_{n}(s)\right|^{p}}{p s^{p}}\right) d s+\lambda \nu \int_{T}^{\infty} \frac{\left|v_{n}(s)\right|^{p}}{p s^{p}}\right)+\varepsilon \\
\leq \liminf \int_{0}^{\infty}\left(\frac{\left|v_{n}^{\prime}(s)\right|^{p}}{p}-\lambda \nu \frac{\left|v_{n}(s)\right|^{p}}{p s^{p}} d s\right)+2 \varepsilon
\end{gathered}
$$

where in the last inequality we use the fact that by the choice of λ and Hardy's inequality

$$
\int_{0}^{r}\left(\frac{\left|v_{n}^{\prime}(s)\right|^{p}}{p}-\lambda \nu \frac{\left|v_{n}(s)\right|^{p}}{p s^{p}}\right) d s>0
$$

Letting $\varepsilon \rightarrow 0$ and then $r \rightarrow 0$ the claim follows.
Step 4 The case $\nu q^{p} \theta<1$. Now assume $\nu q^{p} \theta<1$. Take $z_{n} \in E, z_{n} \neq 0$ with $\frac{J\left(z_{n}\right)}{\Gamma\left(z_{n}\right)} \rightarrow \theta$. Since F is constant outside $[0,1]$ we may assume that $0 \leq z_{n} \leq 1$. Put $\rho_{n}=\left(\Gamma\left(z_{n}\right)\right)^{-1}, v_{n}(s)=z_{n}\left(\rho_{n} s\right)$, so that

$$
\Gamma\left(v_{n}\right)=\rho_{n} \Gamma\left(z_{n}\right)=1, \quad J\left(v_{n}\right)=\rho_{n} J\left(z_{n}\right)=\frac{J\left(z_{n}\right)}{\Gamma\left(z_{n}\right)} \rightarrow \theta
$$

Since v_{n} is bounded in E we may assume $v_{n} \rightharpoonup v \in E$. Hence

$$
0 \leq I_{\theta}(v) \leq \liminf I_{\theta}\left(v_{n}\right)=\lim J\left(v_{n}\right)-\theta=0
$$

Certainly $v \neq 0$, otherwise by Step 2 we obtain the contradiction

$$
\theta \geq \frac{1}{\nu q^{p}}
$$

We have seen that $I_{\theta}(v)=0$, that is, $\frac{J(v)}{\Gamma(v)}=\theta$. Hence I_{θ} attains a minimum at v and so v is a solution of (3.12) with $\lambda=\theta$. (It is easy to see that v satisfies the boundary conditions.) Therefore (2.9) has a solution ψ with $c^{p-1}=(p-1) \theta^{-1 / p}$. Let $k=\theta^{-1 / p}$. The function v is related with ψ by

$$
v(s)=u\left(\frac{\ln s}{k}\right), \quad \text { where } \quad u^{\prime}(t)=\psi(u(t))^{1 / p} \forall t \in \mathbb{R}
$$

Assume, in view of a contradiction, that $c>c^{*}$. Then by Proposition 2.4

$$
\lim _{u \rightarrow 0} \frac{\psi(u)}{u^{p}}<\left(\frac{k}{q}\right)^{p}
$$

Let $\delta>0$ be fixed so that

$$
\left.\left.\frac{\psi(x)}{x^{p}}<\left(\frac{k}{q}\right)^{p} \quad \forall x \in\right] 0, \delta\right]
$$

and let η be such that

$$
0 \leq s \leq \eta \Rightarrow v(s) \leq \delta
$$

Since $v^{\prime}(s)=\frac{\psi(v(s))^{1 / p}}{k s}$ we obtain

$$
v^{\prime}(s)<\frac{v(s)}{q s} \quad 0<s \leq \eta
$$

Integrating in [s, s_{0}] where $0<s<s_{0}<\eta$ we see that there exists a constant $C>0$ such that

$$
v(s) \geq C s^{1 / q}, \quad 0<s \leq s_{0}
$$

This is impossible since the fact that $v \in E$ implies $\lim _{s \rightarrow 0} \frac{v(s)}{s^{1 / q}}=0$.
Step 5 If $\nu q^{p} \theta=1$ then $\theta^{1 / p}=\frac{p-1}{c^{* p-1}}$. The critical speed for a given f may be approached by the critical speeds c_{n} of an increasing sequence of functions of type B (see Remark 1.2). Denote by θ_{n} the corresponding minima, by Step 4 we have $\theta_{n}^{1 / p}=\frac{p-1}{c_{n}^{* p-1}}$. Obviously $\theta_{n} \geq \theta$ so that

$$
\theta^{-1 / p} \geq \frac{c_{n}^{* p-1}}{p-1} \rightarrow \frac{c^{* p-1}}{p-1} \geq \theta^{-1 / p}
$$

where the last inequality comes from (2.11) and our assumption.

Remark 3.3. The condition $\nu q^{p} \theta<1$ holds for instance if

$$
\int_{0}^{1} f(x) d x>(p-1) q^{p} \nu
$$

In fact, with $v(s)=\min (s, 1)$ we obtain

$$
\Gamma(v) \geq \int_{1}^{\infty} \frac{F(1)}{s^{p}} d s \geq \frac{\int_{0}^{1} f(x) d x}{p-1}
$$

Hence $\Gamma(v)>q^{p} \nu$ and, since $J(v)=1$, the claim follows.

4 Conclusion

We now come back to the caracterization of the critical speed for (1.2) where f is of type A.
The front wave profiles with speed c are the monotone solutions of the second order boundary value problem

$$
\begin{equation*}
\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}-c u^{\prime}+f(u)=0, \quad u(-\infty)=0, u(+\infty)=1 \tag{4.14}
\end{equation*}
$$

under assumption H_{p}^{\prime}). As recalled in the Introduction, the admissible values of c are those for which (1.4) has solutions.
Consider the space of functions

$$
F=\left\{v \in A C \left(\left[0,+\infty[, \mathbb{R}) \mid v^{\prime} \in L^{q}(0,+\infty), \quad v(0)=0 .\right\}\right.\right.
$$

In the previous section we have given a variational characterization of the least value c such that (2.9) is solvable. By interchanging p and q, noting that (2.9) can also be read as (2.10) and taking into account Remark 1.1, we easily obtain the following statement.

Theorem 4.1. Let f be a function of type A and assume $\left(H_{p}^{\prime}\right)$. Define

$$
\gamma=\inf _{v \in F \backslash 0} \frac{\frac{1}{q} \int_{0}^{+\infty}\left|v^{\prime}(s)\right|^{q} d s}{\int_{0}^{+\infty} \frac{F(v(s))}{s^{q}} d s}
$$

Then the critical speed for (4.14) is the number c^{*} given by

$$
\gamma=\frac{q}{p c^{* q}}
$$

Moreover γ is attained if $\mu p^{q} \gamma<1$.
Remark 4.2. In Theorem 3.2, the minimizer, say, \bar{v}, yields the heteroclinic that solves (2.6) via the change of variable $\bar{u}(t)=\bar{v}\left(e^{\frac{c^{*} p-1}{p-1}}\right)$.

In Theorem 4.1 the relationship between the minimizer and the solution of (1.3) is less direct unless, of course, $p=2$. In this case, after defining \bar{u} as above, one obtains a solution ψ of

$$
\psi^{\prime}=p\left(c^{q-1} \psi^{\frac{1}{p}}-f(u)\right), \quad \psi(0)=0, \psi(1)=0
$$

by $\psi=\varphi^{q}$ where $\bar{u}^{\prime}=\varphi(\bar{u})$. Then the heteroclinic $w(t)$ that solves (1.3) is recovered via $w^{\prime}=\psi(w)^{\frac{1}{p}}$.

Aknowledgements. The first author was supported by MIUR (Italian Ministry for Education, University and Research). The second author was supported by Fundação para a Ciência e a Tecnologia (PEst-OE/MAT/UI0209/2013).

References

[1] M. Arias, J. Campos, A. Robles-Pérez and L. Sanchez, Fast and heteroclinic solutions for a second order ODE related to the Fisher-Kolmogorov's equation, Calculus of Variations and Partial Differential Equations, 21 (2004), 319-334.
[2] R. D. Benguria, M. C. Depassier, V. Méndez, Minimal speed of fronts of reaction-convection-diffusion equations, Phys. Rev. 69 (2004), 031106.
[3] H. Berestycki, L. Nirenberg, Travelling fronts in cylinders, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 497-572.
[4] R. Enguiça, A. Gavioli and L. Sanchez, A class of singular first order differential equations with applications in reactiondiffusion, Discr. Cont. Dyn. Systems - Ser. A 33 (2013), 173-191.
[5] Tuomo Kuusi, Rojbin Laleoglu, Juhana Siljander, José Miguel Urbano, Hölder continuity for Trudinger's equation in measure spaces, Calc. Var. Partial Differential Equations 45 (2012), no. 1-2, 193-229.

