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Abstract

Let f be a continuous function in [0, 1] with f(0) = 0 = f(1) and f > 0 on ]0, 1[. We show that, under additional mild
conditions on f , the minimal speed for travelling waves of

∂u

∂t
=

∂

∂x

[∣∣∣∣
∂u

∂x

∣∣∣∣
p−2

∂u

∂x

]
+ f(u), (0.1)

may be computed via a constrained minimum problem which in turn is related to the solution of a singular boundary
value problem in the half line.

Keywords: travelling wave; nonlinear diffusion; critical speed; constrained minimum

Mathematics subject classification: 34C37, 35C07, 35K57.

1 Introduction

Throughout this note, let f : [0, 1] → R be a continuous function such that f(0) = f(1) = 0 and f(u) > 0 if u ∈ (0, 1).
In the theory of Fisher-Kolmogorov-Petrovski-Piskounov (FKPP) equations, such a function is sometimes referred to as a
function of type A (see e.g. [3]).

Also, let p > 1.
In [4] the notions of admissible speed and critical (i. e. minimal) speed have been introduced for travelling waves to

reaction-diffusion equations driven by the one-dimensional p-Laplacian operator, namely

∂u

∂t
=

∂

∂x

[∣∣∣∣
∂u

∂x

∣∣∣∣
p−2

∂u

∂x

]
+ f(u), (1.2)

The relevant front wave profiles u(x+ ct) with speed c are given by the (monotone) solutions of the second order problem

(|u′|p−2u′)′ − cu′ + f(u) = 0, u(−∞) = 0, u(+∞) = 1. (1.3)

Let q be the conjugate of p, that is 1
p + 1

q = 1. The solutions of the parametric first order boundary value problem (where
we write y+ = max(y, 0))

y′ = q(c y+
1
p − f(u)), 0 ≤ u ≤ 1, y(0) = 0 = y(1), y > 0 in ]0.1[ (1.4)

yield the trajectories of solutions of (1.3) via the relationship

u′ = y(u(t))1/p.

We recall the following assumptions, used in [4].

(Hp) M = Mp := sup0<u<1
f(u)
uq−1 < +∞; (H ′

p) µ := limu→0+
f(u)
uq−1 exists, 0 ≤ µ < +∞.
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It follows from results in [4] that there is a 1-1 correspondence between solutions of (1.3) (up to translation) taking values
in ]0, 1] and solutions of (1.4) that are strictly positive in ]0, 1[. These sets of solutions are nonempty provided (Hp) holds.
Also, basic properties of the profiles and their speeds, now classical in the FKPP theory (p = 2), were extended in [4] to the
p-Laplacian model. In particular, if (Hp) holds, the set of admissible speeds – that is, values of the parameter c such that
(1.4) has a solution – is an interval [c∗,+∞[ where

µ
1
q p

1
p q

1
q ≤ c∗ ≤M

1
q p

1
p q

1
q (1.5)

(the first inequality being valid if the stronger (H ′p) holds). The minimum admissible value c∗ of the parameter c is called
critical speed.

Remark 1.1. An elementary calculation on the basis of (1.4) shows that, given a number a > 0, c is an admissible speed
with respect to f if and only if ca

1
p is admissible with respect to af .

For the case of linear diffusion (p = 2), variational caracterizations of the critical speed c∗ are known: in [1] a variational
formulation is presented, based on the second order ordinary differential equation satisfied by the wave profiles; in [2] the
authors use the first order model that represents the wave trajectories in a phase plane to establish another defining property
of variational type for c∗.

The purpose of this note is to obtain a variational property of c∗ in the framework of (1.3). We shall use some ideas from
[1].

Remark 1.2. It will be useful for our purpose to recall the role played by functions of type B. A function f : [0, 1] → R is
said to be of type B if it is continuous and there exists δ ∈]0, 1[ such that f(s) = 0 if 0 ≤ s ≤ δ or s = 1, and f(s) > 0 if
δ < s < 1.

It is known that if f is of type B there exists exactly one admissible speed c∗ of (1.3), that is, (1.4) has a positive
solution for exactly this value of the parameter c. Moreover, if fn is a nondecreasing sequence of functions of type B and
limn→∞ fn(x) = f(x), then with obvious notation limn→∞ c∗(fn) = c∗(f). See [4], section 4.

2 Some equivalent boundary value problems

For convenience, we start by considering a different model, with homogeneity of degree p − 1 in the derivatives. Consider
the problem

(u′p−1)′ − cp−1u′p−1 + f(u) = 0, u(−∞) = 0, u(+∞) = 1 (2.6)

which, by the way, may be seen as the search for travelling waves of the form u(x+ ct) for the quasilinear parabolic equation
in one spacial dimension

∂(up−1)
∂t

=
∂

∂x

[∣∣∣∣
∂u

∂x

∣∣∣∣
p−2

∂u

∂x

]
+ f(u), (2.7)

Related quasilinear PDEs have been considered in the literature, for example from the point of view of subtle analytic
properties of solutions: see e.g. [5].

The homogeneity appearing in the quasilinear term of (2.6 ) is used in the following way. If we perform the change of
variable s = ekt with k > 0, and define v(s) = u(t), this problem is seen to be equivalent to the following boundary value
problem in [0,+∞[

(v′p−1)′ +
1
kp
f(v(s))
sp

= 0, v(0) = 0, v(+∞) = 1, v′ > 0 (2.8)

provided
cp−1 = k(p− 1).

Another convenient interpretation of the problem (2.6) is given by the first order model that describes a phase portrait
of the second order equation. Letting ϕ denote the function such that u′ = ϕ(u) we easily see that ϕ satisfies

(p− 1)ϕp−2ϕϕ′ = cp−1ϕp−1 − f(u)

so that ψ = ϕp solves
ψ′ = q

(
cp−1ψ

1
q − f(u)

)
, ψ(0) = 0, ψ(1) = 0, ψ > 0 in ]0, 1[. (2.9)

Acording to what has been recalled in the Introduction, (2.9) has solutions provided that

(Hq) Mq := sup0<u<1
f(u)
up−1 < +∞.
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Moreover, writing (2.9) as

ψ′ = p

(
cp−1 q

p
ψ

1
q − q

p
f(u)

)
(2.10)

we assert that the set of admissible speeds c is an interval [c∗,+∞[ where c∗p−1 ≤ M
1
p
q p. If, in addition, we assume the

stronger assumption

(H ′
q) ν := limu→0+

f(u)
up−1 exists, 0 ≤ ν < +∞

then we also have the lower estimate
c∗p−1 ≥ ν

1
p p. (2.11)

The preceeding considerations may be summarized in the following statement.

Proposition 2.1. Let f be of type A and (Hq) hold, or let f be of type B. Then the following are equivalent:

• (2.6) has a monotone solution with u′ > 0 in some interval ]−∞, b[, and u(b−) = 1

• (2.9) has a solution which is positive in ]0, 1[

• (2.8) with k = cp−1

p−1 has a (concave) solution with v′ > 0 in some interval ]−∞, β[, and u(β−) = 1.

Remark 2.2. b = +∞ (and therefore also β = +∞) if q ≤ 2 and sup0<u<1
f(u)

(1−u)q−1 < +∞. See [4], sction 6. In this case
the heteroclinics that solve (2.6) are nondegenerate, never taking the value 1. The same can be said of the solution of the
corresponding problem (2.8).

Remark 2.3. If f is of type B, (2.8) is solvable only for k = k∗ := (c∗)p−1

p−1 .

Proposition 2.4. Suppose that ψ solves (2.9) with c > c∗. Then

lim
u→0

ψ(u)
up

<

(
cp−1

p

)p
.

Proof. See [4], Theorem 3.3 and page 175, in view of (2.10).

3 A constrained minimum problem

The purpose of this section is to relate (2.6) with the nonlinear singular boundary value problem

(v′p−1)′ + λ
f(v(s))
sp

= 0, v(0) = 0, v(+∞) = 1, v′ > 0 (3.12)

where λ is a positive parameter.

Let us fix some notation. We still denote by f the extension of f with zero value outside [0, 1] and set

F (u) =
∫ u

0

f(z) dz.

In addition we consider the space of functions

E = {v ∈ AC([0,+∞[,R) | v′ ∈ Lp(0,+∞) , v(0) = 0.}
and the following real functionals on E

J(v) =
1
p

∫ +∞

0

|v′(s)|p ds, Γ(v) =
∫ +∞

0

F (v(s))
sp

ds.
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Remark 3.1. 1. If V is a subset of E such that J(V ) is bounded, then by Hőlder’s inequatity there exists a number C > 0
such that

|v(s)| ≤ Cs
1
q ∀s ≥ 0, ∀v ∈ V.

2. The assumption (Hq) is sufficient for Γ to be well defined and C1 in E. In fact this follows from Hardy’s inequality:

∫ +∞

0

|v′(s)|p ds < qp
∫ +∞

0

|v(s)|p
sp

ds ∀v ∈ E \ 0.

Set

θ = inf
v∈E\0

J(v)
Γ(v)

. (3.13)

Theorem 3.2. Let f be of type B, or of type A and such that (H ′
q) holds. We have νqpθ ≤ 1. If νqpθ < 1 then the inf in

(3.13) is attained. In any case θ1/p = p−1
c∗p−1 where c∗ is the least admissible value of c so that (2.9)has solutions.

Proof. Step 1 νqpθ ≤ 1. Let ξ(x) = inf0<z≤x
F (z)
zp . Because of (H ′

q) limx→0 ξ(x) = ν
p . Let α > 1

q and define

vr(s) = min(sα, rα) for r > 0 small. Then J(vr) = αprαp−p+1

p(αp−p+1) and Γ(vr) > ξ(rα)
∫ r
0
sαp−p ds. It follows that J(vr)

Γ(vr) <
αp

pξ(rα) .
Taking the limit as r → 0 and then the limit as α→ 1

q yields the statement.

Step 2 Let un → 0 weakly in E, un bounded in L∞(0,∞) and Γ(un) = 1.
Then lim inf J(un) ≥ 1

νqp . For each r > 0, denote by Jr and Γr the functionals obtained by replacing the integration

interval with [0, r]. Since Γ − Γr is obviously weakly sequentially continuous in E, we have lim Γr(un) = 1 for each r > 0.
Similarly to step 1, we write η(x) = sup0<z≤x

F (z)
zp ; then F (x) ≤ η(x)xp and limx→0 η(x) = ν

p . Using Hardy’s inequality and

noting that there exists a constant C such that sups>0
|un(s)|
s1/q ≤ C for all n, we obtain

J(un) ≥ Jr(un) ≥ q−p
1
p

∫ r

0

un(s)p

sp
ds ≥ Γr(un)

pqpη(Cr1/q).

Applying liminf as n→∞ and then the limit as r → 0 we conclude.

Step 3 Consider the functional Iλ = J − λΓ and let λ ≤ 1
qpν . Then if vn converges weakly

to v in E and vn is bounded in C[0,+∞[, we have Iλ(v) ≤ lim inf Iλ(vn).
Let us decompose

Iλ = A+B, A(w) = J(w)− λν

∫ ∞

0

|w(s)|p
psp

ds, B(w) = λ

(
ν

∫ ∞

0

|w(s)|p
psp

ds−
∫ ∞

0

F (w(s))
sp

ds

)
.

We prove our claim by showing that

limB(vn) = B(v), A(v) ≤ lim inf A(vn).

We start with the assertion about B. By assumption, taking Remark 3.1 into account, we may fix a constant C > 0 such
that

|vn| ≤ C, |v| ≤ C, sup
s>0

|vn(s)|
s1/q

≤ C, sup
s>0

|v(s)|
s1/q

≤ C, sup
n∈N

∫ ∞

0

|vn(s)|p
sp

ds ≤ C.

Now let ε > 0 be given. There exists δ such that x ≤ δ =⇒ |F (x)
xp − ν

p | ≤ ε. Putting η1/q = δ/C we have

∫ η

0

∣∣∣∣ν
|vn(s)|p
psp

− F (vn(s))
sp

∣∣∣∣ ds =
∫ η

0

(∣∣∣∣
ν

p
− F (vn(s))

|vn(s)|p
∣∣∣∣
) |vn(s)|p

sp
ds ≤ Cε

Also, we may fix T > 0 such that ∫ ∞

T

∣∣∣∣ν
|vn(s)|p
psp

− F (vn(s))
sp

∣∣∣∣ ds ≤ ε

and both estimates above hold with v in the place of vn. By the compact embedding of E into C([η, T ]) we have vn|[η,T ] →
v|[η,T ] uniformly. It follows that

B(v)− 2(C + 1)ε ≤ lim inf B(vn) ≤ lim supB(vn) ≤ B(v) + 2(C + 1)ε.
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The claim follows by the arbitrariness of ε.
Next let us consider A. Let ε > 0 be given and choose a sufficiently large T as before. For each r > 0, we write

∫ ∞

r

|v′(s)|p
p

− λν
|v(s)|p
psp

ds ≤
∫ T

r

|v′(s)|p
p

− λν
|v(s)|p
psp

ds+ ε

≤ lim inf
∫ T

r

|v′n(s)|p
p

− λν
|vn(s)|p
psp

ds+ ε ≤ lim inf
(∫ ∞

r

( |v′n(s)|p
p

− λν
|vn(s)|p
psp

)
ds+ λν

∫ ∞

T

|vn(s)|p
psp

)
+ ε

≤ lim inf
∫ ∞

0

( |v′n(s)|p
p

− λν
|vn(s)|p
psp

ds

)
+ 2ε

where in the last inequality we use the fact that by the choice of λ and Hardy’s inequality
∫ r

0

( |v′n(s)|p
p

− λν
|vn(s)|p
psp

)
ds > 0.

Letting ε→ 0 and then r → 0 the claim follows.

Step 4 The case νqpθ < 1. Now assume νqpθ < 1. Take zn ∈ E, zn 6= 0 with J(zn)
Γ(zn) → θ. Since F is constant outside

[0, 1] we may assume that 0 ≤ zn ≤ 1. Put ρn = (Γ(zn))−1, vn(s) = zn(ρns), so that

Γ(vn) = ρnΓ(zn) = 1, J(vn) = ρnJ(zn) =
J(zn)
Γ(zn)

→ θ.

Since vn is bounded in E we may assume vn ⇀ v ∈ E. Hence

0 ≤ Iθ(v) ≤ lim inf Iθ(vn) = lim J(vn)− θ = 0.

Certainly v 6= 0, otherwise by Step 2 we obtain the contradiction

θ ≥ 1
νqp

.

We have seen that Iθ(v) = 0, that is, J(v)
Γ(v) = θ. Hence Iθ attains a minimum at v and so v is a solution of (3.12) with λ = θ.

(It is easy to see that v satisfies the boundary conditions.) Therefore (2.9) has a solution ψ with cp−1 = (p − 1)θ−1/p. Let
k = θ−1/p. The function v is related with ψ by

v(s) = u(
ln s
k

), where u′(t) = ψ(u(t))1/p ∀t ∈ R.

Assume, in view of a contradiction, that c > c∗. Then by Proposition 2.4

lim
u→0

ψ(u)
up

< (
k

q
)p.

Let δ > 0 be fixed so that
ψ(x)
xp

< (
k

q
)p ∀x ∈]0, δ]

and let η be such that
0 ≤ s ≤ η ⇒ v(s) ≤ δ.

Since v′(s) = ψ(v(s))1/p

ks we obtain

v′(s) <
v(s)
qs

0 < s ≤ η.

Integrating in [s, s0] where 0 < s < s0 < η we see that there exists a constant C > 0 such that

v(s) ≥ Cs1/q, 0 < s ≤ s0.

This is impossible since the fact that v ∈ E implies lims→0
v(s)
s1/q = 0.

Step 5 If νqpθ = 1 then θ1/p = p−1
c∗p−1. The critical speed for a given f may be approached by the critical speeds cn of

an increasing sequence of functions of type B (see Remark 1.2). Denote by θn the corresponding minima, by Step 4 we have
θ
1/p
n = p−1

c∗n
p−1. Obviously θn ≥ θ so that

θ−1/p ≥ c∗n
p−1

p− 1
→ c∗p−1

p− 1
≥ θ−1/p

where the last inequality comes from (2.11) and our assumption.
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Remark 3.3. The condition νqpθ < 1 holds for instance if
∫ 1

0

f(x) dx > (p− 1)qpν.

In fact, with v(s) = min(s, 1) we obtain

Γ(v) ≥
∫ ∞

1

F (1)
sp

ds ≥
∫ 1

0
f(x) dx
p− 1

.

Hence Γ(v) > qpν and, since J(v) = 1, the claim follows.

4 Conclusion

We now come back to the caracterization of the critical speed for (1.2) where f is of type A.
The front wave profiles with speed c are the monotone solutions of the second order boundary value problem

(|u′|p−2u′)′ − cu′ + f(u) = 0, u(−∞) = 0, u(+∞) = 1 (4.14)

under assumption H ′
p). As recalled in the Introduction, the admissible values of c are those for which (1.4) has solutions.

Consider the space of functions

F = {v ∈ AC([0,+∞[,R) | v′ ∈ Lq(0,+∞) , v(0) = 0.}
In the previous section we have given a variational characterization of the least value c such that (2.9) is solvable. By

interchanging p and q, noting that (2.9) can also be read as (2.10) and taking into account Remark 1.1, we easily obtain the
following statement.

Theorem 4.1. Let f be a function of type A and assume (H ′
p). Define

γ = inf
v∈F\0

1
q

∫ +∞
0

|v′(s)|q ds
∫ +∞
0

F (v(s))
sq ds

.

Then the critical speed for (4.14) is the number c∗ given by

γ =
q

pc∗q
.

Moreover γ is attained if µpqγ < 1.

Remark 4.2. In Theorem 3.2, the minimizer, say, v̄, yields the heteroclinic that solves (2.6) via the change of variable

ū(t) = v̄(e
c∗p−1t

p−1 ).
In Theorem 4.1 the relationship between the minimizer and the solution of (1.3) is less direct unless, of course, p = 2. In

this case, after defining ū as above, one obtains a solution ψ of

ψ′ = p
(
cq−1ψ

1
p − f(u)

)
, ψ(0) = 0, ψ(1) = 0

by ψ = ϕq where ū′ = ϕ(ū). Then the heteroclinic w(t) that solves (1.3) is recovered via w′ = ψ(w)
1
p .
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[1] M. Arias, J. Campos, A. Robles-Pérez and L. Sanchez, Fast and heteroclinic solutions for a second order ODE related
to the Fisher-Kolmogorov’s equation, Calculus of Variations and Partial Differential Equations, 21 (2004), 319–334.

[2] R. D. Benguria, M. C. Depassier, V. Méndez, Minimal speed of fronts of reaction-convection-diffusion equations, Phys.
Rev. 69 (2004), 031106.

[3] H. Berestycki, L. Nirenberg, Travelling fronts in cylinders, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 497-572.
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