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Abstract. In a typical machine learning problem one has to build a model from a finite
training set which is able to generalize the properties characterizing the examples of the
training set to new examples. The model has to reflect as much as possible the set of training
examples but, especially in real-world problems in which the data are often corrupted by
different sources of noise, it has to avoid a too strict dependence on the training examples
themselves. Recent studies on the relationship between this kind of learning problem and the
regularization theory for ill-posed inverse problems have given rise to new regularized learning
algorithms. In this paper we recall some of these learning methods and we propose an accelerated
version of the classical Landweber iterative scheme which results particularly efficient from the
computational viewpoint. Finally, we compare the performances of these methods with the
classical Support Vector Machines learning algorithm on a real-world experiment concerning
brain activity interpretation through the analysis of functional magnetic resonance imaging
data.

1. Introduction

Statistical inference, which means to build a probabilistic model based on a certain type of
a priori knowledge and which is able to make predictions, is finding more and more space in
real-life applications. In several cases, the amount of information at one’s disposal is huge
either because it is relatively easy to get a high number of data or because the size of the data
themselves is big due to the elevate number of features which characterize the problem. Dealing
with such a quantity of information can be very difficult and often the computational power one
can have use of, despite it is in continuous growth, is not sufficient to obtain the desired results
in a reasonable time. Therefore, it is necessary both to look for possible ways to accelerate the
classical machine learning algorithms already existent in literature and to identify new methods
which can compete with the traditional ones in speed, robustness and quality of the results.
Thanks to the strict connection between machine learning and regularization theory for linear
inverse problems already described in many studies (see for example [6, 9] and references therein),
it is possible to exploit many regularization methods originally proposed in the inverse problems
framework in order to build machine learning methods which result very simple both from a
purely intuitive point of view and with regard to the implementation on a computer machine
[7, 14]. These algorithms have been theoretically studied in details but, as far as we know, they
have been rarely used in applications with real data and their performances have been compared
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to the ones of classical machine learning methods mainly in the case of classification problems
with benchmark datasets.
An opportunity to apply and test the methods above in the case of regression problems has
been recently offered by the Experience Based Cognition (EBC) project of the University of
Pittsburgh, Pennsylvania concerning the general problem of inferring subjective experience
through the analysis of functional Magnetic Resonance Imaging (fMRI) data. The fMRI is
a powerful non-invasive technique for the investigation of brain activity resulting from sensory
stimulation or cognitive functions [2]. The focal objective of fMRI data analysis is to disclose the
distributed patterns of activated brain areas involved in specific function and their interactions,
by applying a variety of univariate or multivariate statistical approaches. However, in the last
few years, a growing number of studies have taken a different approach, where the direction
of analysis is reversed in order to probe whether the acquired fMRI signals can be used to
predict perceptual or cognitive states [12]. To this end, many different methods are proposed
in literature (Recurrent Neural Networks, Dynamic Gaussian Markov Random Field, Support
Vector Machines for Regression, Relevance Vector Regression) but so far no one distinguished
itself in such a way that it could be considered universally better than the others. The
challenge issued from the EBC staff in 2006 through the Pittsburgh Brain Activity Interpretation
Competition (http://www.ebc.pitt.edu/2006/competition.html) allows to advance the analysis
of the different approaches on an interesting real-life problem. This competition provided high
quality 3 Tesla Echo-Planar Imaging BOLD-fMRI data from three subjects acquired during
passive viewing of three movie clips and, only for two movies, the rating data representing the
subjective on going relevance of 13 features present in the videos (like for example food, music,
amusement, etc.). The goal of the competition was to find, for each subject, a good prediction
of the rating data relative to the third movie.
In this work, starting from a formulation of the regression problem as an inverse problem,
we introduce some learning algorithms derived by well known regularization methods and we
evaluate their effectiveness on the regression problems arising in the analysis of the fMRI data
made available within the above competition. We consider classical regularization approaches,
such as the Landweber Iterative algorithm [4] and the ν-method [8], and propose a generalization
of the Landweber scheme derived by exploiting recent ideas on the adaptive steplength selections
in gradient methods [21]. These regularization methods are evaluated in comparison with
the state-of-the-art learning methodology Support Vector Machines (SVMs) [17]. From our
experiments we may observe that the regularization techniques, despite their simplicity, are able
to provide an accuracy in the reconstructed behavioral rating very well-comparable with that
of the SVMs. Furthermore, both the ν-method and the generalized Landweber method largely
reduce the iterations required by the standard Landweber algorithm and, in this application,
they seem a valid alternative to the SVMs in terms of computational costs.

2. Learning as an inverse problem

The problem of learning from examples can be stated in this way: given a set of examples
{(xi, yi) : i = 1, . . . , n} ⊆ X × [−M, M ], with X compact subset of R

m and M > 0, find the
solution fλ of the minimization problem

min
f∈H

1

n

n
∑

i=1

V (yi, f(xi)) + λ‖f‖2
K , (1)

where V (·, ·) is a positive loss function, ‖ · ‖K is a norm in a Reproducing Kernel Hilbert Space
H defined by the positive definite kernel K and λ is a positive regularization parameter which
handles the trade-off between complexity of the solution and error on the training set.
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The particular choice

V (yi, f(xi)) = |yi − f(xi)|ε := max(|yi − f(xi)| − ε, 0) (2)

where ε ≥ 0, leads to the so-called Support Vector Machines for Regression (SVMR) algorithm
[9, 17]. The solution of (1) in the case of the loss function (2) can be found through the technique
of Lagrange multipliers. The result is that the solution of the problem (1) can be written as

f(x) =
n

∑

i=1

(α∗
i − αi)K(x, xi) + b, (3)

where α∗ and α are the solution of the quadratic problem

min 1

2

∑n
i,j=1

(α∗
i − αi)(α

∗
j − αj)K(xi, xj) + ε

∑n
i=1

(α∗
i + αi) −

∑n
i=1

yi(α
∗
i − αi)

sub. to
∑n

i=1
(α∗

i − αi) = 0, 0 ≤ α∗
i , αi ≤

1

2nλ
, i = 1, . . . , n,

(4)

and their knowledge leads to the threshold b through the Kuhn-Tucker conditions.
SVMR represent a classical approach in machine learning and have been deeply studied in the
last decades. In recent years it has been shown [6, 9] that the general machine learning problem
can be restated as a linear inverse problem and several algorithms typically used to reconstruct
a stable solution of a linear unstable inverse problem have been adapted to the machine learning
framework. This connection can be easily seen by considering the quadratic loss function

V (yi, f(xi)) =
n

∑

i=1

(yi − f(xi))
2 (5)

and by introducing the sampling operator Sx : H −→ R
n defined by (Sxf)i = f(xi), i = 1, ..., n.

From the relation

‖Sxf − y‖2
n =

1

n

n
∑

i=1

(yi − f(xi))
2, (6)

where ‖·‖n is 1/n times the Euclidean norm in R
n and y = (y1, . . . , yn)T , we can notice that the

solution fλ of the minimization problem (1) with the loss function (6) is equal to the Tikhonov
regularized solution of the linear inverse problem Sxf = y [16].
The explicit form of the solution fλ can be obtained from the representer theorem [18], for which

fλ(x) =

n
∑

i=1

αiK(x, xi), α = (K + nλI)−1y, (7)

where K is the kernel matrix defined by (K)ij = K(xi, xj) and α = (α1, . . . , αn)T .
We observe from (7) that the role of the positive parameter λ is to stabilize the matrix inversion
problem which in general is numerically unstable. Generalizations of this approach are given in
[7] by considering suitable functions gλ : Mn(R) −→ Mn(R) (where Mn(R) denotes the set of
square matrices of order n with entries in R) which define corresponding algorithms by means
of

fλ(x) =
n

∑

i=1

αiK(x, xi), α =
1

n
gλ

(

K

n

)

y. (8)

For instance, two possible functions gλ are the following:
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• gλ

(

K

n

)

=

(

K

n
+ λI

)−1

(Tikhonov regularization algorithm);

• gt

(

K

n

)

= τ

t−1
∑

i=0

(

I − τ
K

n

)i

(Landweber iterative algorithm [4]).

Here τ = (supx∈X K(x, x))−1 and the role of the regularization parameter is played by the
iteration number t (λ = t−1). To compute the vector α, we observe that this algorithm can
be rewritten in the iterative form

αi = αi−1 +
τ

n
(y − Kαi−1), i = 1, . . . , t, α0 = 0. (9)

These regularized learning algorithms have recently received an increasing interest due to both
theoretical and computational motivations. On one hand, new theoretical results have been
obtained by better understanding the connection between learning algorithms and regularization
methods in inverse problems [1, 6, 7, 20]. On the other hand, despite their simplicity and low
computational requests, the regularized algorithms have already shown promising performances
in comparison with state-of-the-art approaches, such as SVMs, on both benchmark datasets and
real-life test problems [14, 15]. This scenario strongly encourages to further investigate such
kind of approaches in order to overcome possible disadvantages and design improved schemes.
For instance, it could be useful to consider accelerated versions of the Landweber iterative
algorithm, that often exhibits a very slow convergence rate. To this end, we describe two
iterative approaches that are based on generalizations of the standard Landweber iteration.
The first approach is the so called ν–method that can be stated as follows:

αi = αi−1 + ui(αi−1 − αi−2) +
ωi

n
(y − Kαi−1), i = 1, . . . , t, α0 = 0, (10)

where, given ν > 0,

ui =
(i− 1)(2i− 3)(2i + 2ν − 1)

(i + 2ν − 1)(2i + 4ν − 1)(2i + 2ν − 3)
, ωi = 4

(2i + 2ν − 1)(i + ν − 1)

(i + 2ν − 1)(2i + 4ν − 1)
.

The good convergence rate of this method is well known in inverse problems [8]: it needs the
square root of the number of iterations required by standard Landweber algorithm. Recently,
numerical experiments on classification problems have shown its effectiveness also as learning
algorithm [14].
The second approach is derived by observing that iterations (9) can be seen as the steps of
a standard gradient method, with constant steplength τ , applied to the minimization of the
quadratic function

ϕ(α) =
1

2
αT K

n
α−

yT

n
α.

Very effective strategies are nowadays available to accelerate standard gradient methods, mainly
based on an appropriate rules for updating the steplength parameter at each iteration (see for
example [5, 11, 21] and references therein). Following these acceleration strategies, we may
generalize the Landweber iterative scheme by substituting the fixed parameter τ with a variable
parameter:

αi = αi−1 +
τi−1

n
(y − Kαi−1), i = 1, . . . , t, α0 = 0. (11)

According to this revisal, the coefficient α in (8) becomes

α =
1

n



τ0 +

t−1
∑

i=1

τi





i−1
∏

j=0

(

I − τj
K

n

)







 y.
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Gradient methods with adaptive steplength selection have shown promising results on several
inverse problem applications [3, 10, 19]; however, to our knowledge they have not been exploited
in the framework of the regularization learning algorithms. Thus, a deep analysis should be
carried out to identify the selection rules able to ensure an improved convergence rate and good
generalization performances. Nevertheless, this goal is beyond the aims of this work and we
simply show the interesting behaviour of one of these updating rules on the regression problems
considered in our computational study. We focus on the steplength selection exploited in the
monotone gradient algorithm called Adaptive Steepest Descent (ASD) method [21]:

{

τi = τMG
i if τMG

i /τSD
i > γ ,

τi = τSD
i − 0.5τMG

i otherwise,
(12)

where γ ∈ (0, 1) and

τSD
i = argmin

τ∈R

ϕ(αi − τgi) =
gT

i gi

gT
i

(

K

n

)

gi

, τMG
i = argmin

τ∈R

‖g(αi − τgi)‖ =
gT

i

(

K

n

)

gi

gT
i

(

K

n

)2
gi

,

with gi = g(αi) = ∇ϕ(αi). The values τSD
i and τMG

i are the steplengths used by the well
known Steepest Descent (SD) and the Minimal Gradient (MG) methods, respectively, for which
the inequality τMG

i ≤ τSD
i holds. By equipping the iterative scheme (11) with the steplength

selection (12), we obtain a generalization of the standard Landweber method, denoted in the
following as L-ASD.

3. Application to fMRI data

In this section we want to investigate the effectiveness of the above regularized learning
algorithms on the regression problems arising in the real-life experiment provided by the
Pittsburgh Brain Activity Interpretation Competition.
We considered only the data relative to a single subject. They consisted of:

- three matrices (corresponding to three different movie clips), each one with dimensions of
order 103 × 105. The number of columns of the matrix represents the number of voxels
(i.e., volumetric pixels) in which the brain is sampled, and the values of each column gives
the discretized temporal evolution of the fMRI signal in a single voxel. Therefore, each row
provides a sort of 3-D picture of the brain in each single time bin;

- two sets of 13 arrays containing the feature ratings (values between 0 and 1) of 13
different categories assigned by the subject during the vision of the first two clips, lasting
approximately 20-minute each.

The lack of the behavioral ratings relative to the third clip leads us to consider in this paper
only the first and the second clips to be able to estimate the quality of our results. In particular,
we train the algorithms with the first clip and test the model on the second clip; an inversion of
the roles between training and test sets provided similar results.
In the first step of our approach an accurate pre-processing of the data had to be done in order
to substantially decrease the computational cost due to the huge dimensions of the examples
and the effects of noise. In fact, one of the most recognized problems of fMRI data is the low
signal-to-noise ratio due to the presence of several sources of noise and artifacts with respect
to the amplitude of the fMRI response. This pre-processing phase essentially included a voxel
selection on the basis of a minimum threshold for the signal followed by the application of a
low-pass filter to remove high frequencies due to noise. Furthermore, the voxels were re-sampled
in cubes of 27 voxels contiguous in the space; the value of each cube was defined by averaging
the values of its voxels. In this way, the size of the examples associated to the time bins was
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reduced to the order 103.
At this point we applied the learning algorithms to the pre-processed data by using a Gaussian
kernel. The variance σ of the Gaussian and the intrinsic parameters of the methods (i.e., the
number of iterations t for the iterative schemes and the real positive numbers λ and ǫ for
the SVMR algorithm) are chosen via a 10-fold cross validation applied to the training set. The
parameters ν = 1 and γ = 0.55 are used in the ν-method and the L-ASD algorithm, respectively.
All the experiments are carried out on a computer equipped with an 1.8GHz AMD Sempron
3100+ in a Windows XP environment; the regularized algorithms are implemented in Matlab
7.0.4 while the binaries of the SVMlight code (ver. 6.01) [13] are used for the SVMs approach.
The predictions of the temporal evolutions for the category “Faces” of the first subject are
presented in figure 1 together with the theoretical ones.
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Figure 1. Real (dashed grey lines) and predicted (solid black lines) temporal evolutions of the
feature rating “Faces” by using: (a) the SVMR algorithm; (b) the ν-method; (c) the L-ASD
method; (d) the Landweber iterative scheme. The values in (a), (b) and (c) have been suitable
shifted (of 3, 2 and 1 unit respectively) for the sake of graphic presentation.

Moreover, in table 1 we give two different ways to estimate the prediction error, i.e., by
calculating the number ρ2 = ‖fλ − y‖2/‖y‖2 and the Pearson correlation coefficient ρP (fλ, y)
defined by

ρP (fλ, y) =

∑n
i=1

(

(fλ)i − f̄λ

)

(yi − ȳ)
√

∑n
i=1

(

(fλ)i − f̄λ

)2
·

∑n
i=1

(yi − ȳ)2
(13)

where f̄λ and ȳ denote the arithmetic means of fλ and y, respectively.
Looking at the reconstructions errors, as well as at the comparison between the form of the

predictions and the real feature ratings, we can make the following considerations:

• the regularized learning algorithms introduced in the paper well compare state-of-the-art
SVM methods and the reconstructions obtained are essentially the same. This fact is
coherent with the results obtained in the classification framework [14];

• the errors shown in table 1 are consistent with the ones published in the competition web
page (http://www.ebc.pitt.edu/2006/competition.html). We remark that we have used just
the first movie as the training set in order to evaluate the performance of the methods on
the second clip. A training set containing both the first and the second clip would probably
lead to a more accurate model.

The behaviour of the three regularized learning algorithms is compared in terms of the number
of iterations in table 2, where for each method and for each test problem we report the number
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Table 1. Reconstruction errors for the Landweber iterative scheme, the L-ASD method, the
ν-method and the SVMR algorithm on five different categories.

Amusement Faces Language Motion Sounds

Landweber
ρ2 0.7555 0.3041 0.3382 0.3934 0.6829
ρP 0.4356 0.4002 0.6866 0.5361 0.4775

L-ASD
ρ2 0.7571 0.2993 0.3328 0.3954 0.6910
ρP 0.4413 0.4300 0.6973 0.5383 0.4762

ν-method
ρ2 0.7626 0.2991 0.3326 0.3969 0.6993
ρP 0.4455 0.4309 0.6972 0.5358 0.4690

SVMR
ρ2 0.7627 0.3083 0.3214 0.3998 0.7389
ρP 0.4521 0.3909 0.7222 0.5263 0.4543

of iterations that in average provides the best reconstruction error in the 10-fold cross validation
process (that is, the values assigned to the parameter t to obtain the results in figure 1 and table
1). The accelerated versions seem to behave in a similar way and to imply a very interesting
gain in the number of iterations with respect to the standard Landweber scheme (that, in our
experiment, has been stopped to 100000 iterations; increasing the number of iterations does not
provide better results). This means that the training of the accelerated algorithms is a much
less expensive task than the training of the Landweber algorithm.

Table 2. Optimal number of iterations for the Landweber iterative scheme, the L-ASD method
and the ν-method for the five categories of table 1. The asterisk means that the maximum
number of iterations has been reached.

Amusement Faces Language Motion Sounds
Landweber 100000∗ 100000∗ 100000∗ 100000∗ 100000∗

L-ASD 1114 2350 2666 1669 1472
ν-method 1225 2000 1853 1189 2193

Finally, we shortly discuss the computational costs of the regularized algorithms with respect
to the SVMs. To this end, we need to take into account both the cost to prefix the parameters
of the methods by means of the 10-fold cross validation and the training cost for computing
the coefficients that define the predictors (3) and (8). Concerning the parameter choices, we
remark that in the SVMs approach the additional parameter ε needs to be prefixed, with a
significant increase of the computational time for the cross validation phase. In the training
phase, the standard Landweber algorithm is largely penalized by its slow convergence rate while
for the ν-method and the L-ASD method no remarkable differences with the SVMs approach
are observed (this last sentence could not hold in case of learning problems with many more
examples, where the management of the large kernel matrix could become an expensive task
in the regularized methods, while specialized software is available for a long time to face these
situations in the SVMs framework).
Summarizing, the simplicity, the reconstruction accuracy and the good convergence rate make
the two accelerated regularized learning methods very well suited for the considered application.

4. Conclusions and future work

In this work we mesh the clear connection between regularization theory for inverse problems and
statistical learning with recent acceleration techniques for classical gradient methods to introduce
a new learning algorithm, that can be seen as an accelerated version of the standard Landweber
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iterative algorithm. Then, we apply the proposed algorithm together with other schemes
derived from the inverse problems framework, the Landweber algorithm and the ν-method,
to an actual regression problem concerning brain activity interpretation through functional
Magnetic Resonance Imaging and compare them with the SVMs learning algorithm. The
numerical results show that the proposed method behaves similarly to the ν-method, providing
essentially the same accuracy of the SVMs and a much faster convergence rate with respect to
the Landweber algorithm; furthermore, it preserves the simplicity and the low computational
cost of the regularized learning algorithms. Thus, both the new accelerated scheme and
the ν-method appear valid alternative to the standard SVMs approach for the considered
regression problem. Further improvements have to be done both on the algorithms (different
accelerations can be tried and their regularization properties must be deeply investigated) and
the applications (different data pre-processing phases could be considered including a more
specific voxel selection).
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