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Abstract
Let X = {X0, . . . , Xm} be a family of smooth vector fields on an open set � ⊆ R

N .
Motivated by applications to the PDE theory of Hörmander operators, for a suitable
class of open sets�, we find necessary and sufficient conditions on X for the existence
of a Lie group (�, ∗) such that the operator L = ∑m

i=1 X
2
i + X0 is left-invariant with

respect to the operation ∗. Our approach is constructive, as the group law is constructed
by means of the solution of a suitable ODE naturally associated to vector fields in X .
We provide an application to a partial differential operator appearing in the Finance.

Keywords Hörmander operators · Prolongation of the BCH operation · Lie algebras
of vector fields · Baker–Campbell–Hausdorff Theorem · Left-invariance
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1 Introduction andMain Results

Let X = {X0, . . . , Xm} be a family of smooth vector fields in an open set � of R
N ,

satisfying Hörmander’s rank condition on � (the precise meaning of this hypothesis
will be given in a moment). We consider the following operator, that is a Hörmander
sum of squares plus a drift:

L =
m∑

i=1

X2
i + X0. (1.1)
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In the papers [4, 7, 9], when � = R
N , it was considered the problem of equipping

Euclidean space R
N with the structure of a Lie group G = (RN , ∗) in such a way

that L be left-invariant on that group. For the sake of clarity, we remind the associated
notion of left-invariance of L: this means that, setting τα(x) := α ∗ x , one has

L(u ◦ τα) = (Lu) ◦ τα on R
N ,

for every functionu ∈ C∞(RN , R) and for everyα ∈ R
N . This problemwasmotivated

by the great advantage of left-invariance in establishing an appropriate harmonic or
potential analysis for L .

For example, left-invariance and homogeneity of L with respect to a family of
(possibly non-isotropic) dilations lead to global (i.e., on the whole of R

N ) maximal
L p-regularity results (see Folland [17]); more generally, left-invariance with respect
to the group operation ∗ allows to write a fundamental solution for L (when it exists)
in the convolution form (see one of us and Lanconelli [9])

�(x, y) = γ (y−1 ∗ x), x �= y in R
N .

Again, left-invariance and suitable decays at infinity of γ and of its second derivatives
allow to develop a global L p-regularity for L viaCalderón-Zygmund singular integrals
in non-homogeneous quasi-metric spaces (see Bramanti, Cupini, Lanconelli, Priola
[12]). The presence of left-invariance is also of paramount help when dealing with a
Harnack inequality for L , as it reduces the Harnack inequality near a general point to
the study of a fixed one (see for instance Sect. 3).

With these applications in mind, in the papers [4, 7, 9] it was studied the problem
of finding necessary and sufficient assumptions on X0, . . . , Xm to be left-invariant
on a Lie group whose manifold is the entire R

N space. In the cited papers the vector
fields X0, . . . , Xm were always required to be real-analytic, and the vector space
structure of the underlying manifold R

N was also used. In [7] it was shown that the
above problem is intimately related to the possibility of prolonging the local Baker-
Campbell-Hausdorff (BCH, in the sequel) multiplication that X0, . . . , Xm determine
onR

N bymeans of their exponentiation, i.e., by considering the family of their integral
curves. In [4] it was proved that this prolongation is always achievable, under aminimal
set of assumptions on the Lie algebra g generated by the Xi ’s, when the latter are Cω.
Unique Continuation played a central role in prolongation issues in the cited papers.

Here we improve the results in [4, 7, 9] in two directions: we consider more general
open sets � instead of R

N , and we remove the Cω assumption, in favor of the less
restrictive and more natural C∞ requirement. We show that this is possible by using a
simple ODE argument, which -most importantly- gives a constructive ODE procedure
in obtaining the Lie group. Roughly put, Unique Continuation of the Cω setting will
be replaced by uniqueness results for ODEs with smooth coefficients. Once these two
goals are achieved, we finally give an application of our results to an operator L as in
(1.1) appearing in Mathematical Finance, for which � is a half-space in R

3.
A few remarks on the literature related to the intertwining of theBCHmultiplication

and ODEs are in order. First of all, if a is any (real or complex) finite-dimensional Lie
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algebra, it is known (see e.g., [8, Chap. 5]) that the BCH multiplication

(x, y) �→ Z(x, y) :=
x + y + 1

2 [x, y] + 1
12 ([[x, y], y] + [[y, x], x]) − 1

24 [x, [y, [x, y]]] + · · · (1.2)

is well-defined near the origin of a. More precisely, if ‖ ·‖ is any norm1 on a satisfying
‖[x, y]‖ ≤ ‖x‖ · ‖y‖ for every x, y ∈ a, it can be proved that the series in (1.2)
converges whenever ‖x‖ + ‖y‖ < ln 2 (see e.g., [5, Theorem 5.3]).

In [21, eq. (7), p. 248], Poincaré first discovered the special ODE solved by the map
t �→ Z(x, t y), in the framework of Lie groups of transformations: he proved

d

dt
Z(x, t y) = ad Z(x, t y)

1 − e−ad Z(x,t y)
(y), (1.3)

where, as usual, ad x(y) = [x, y]. When a is a finite dimensional real Lie algebra, and
x, y are close to the origin, (1.3) is a genuine ODE, not only a formal one, since the
series Z(x, t y) is convergent for |t | ≤ 1.

Other variants of (1.3) can be given for the maps Z(t x, y) or Z(t x, t y) (see e.g., [5,
Sect. 5.3]). For example, the idea of using the (formal) ODE solved by the curve t �→
Z(t x, t y) plays a crucial role in [3, 6, 18] too, where the problem of the convergence
domain of theBCH series is also addressed. The use of theODEs solved by Z returns in
many contexts related toBCH type theorems: see e.g., the Zassenhaus formula in [2] by
Arnal, Casas, Chiralt, or the prolongation problem for the BCH multiplication in [16]
byEggert.Wepoint out that our technique has some commongroundwith the algebraic
approach in the latter paper. Indeed, we shall consider a local multiplication m(x, y)
(strongly related to Z(x, y)) and we shall study the prolongability of t �→ m(x, t y);
in doing this, we rely on the prolongation properties of the solutions to ODEs, as we
now describe.

We illustrate more closely the prolongation problem we are concerned with in this
paper, and our technique in solving it. We suppose � ⊆ R

N is an open set satisfying
the following assumption:

(S): � is C∞-diffeomorphic to R
N .

This is true, for example, in the meaningful case when � is a star-domain.
Let X (�) denote the vector space of the smooth vector fields on �. We think of

any X ∈ X (�) as a first order differential operator acting on C∞(�), say

X = a1(x)
∂

∂x1
+ · · · + aN (x)

∂

∂xN
, where the a′

i s are smooth on �.

With no ambiguity, we interchangeably denote by Xx both the map

� 
 x �→ (a1(x), . . . , aN (x)),

1 Such a norm always exists: indeed, since a is finite-dimensional, the bilinearity of the bracket grants the
existence ofM > 0 such that ‖[x, y]‖ ≤ M ‖x‖·‖y‖; thus the newnormM‖·‖ satisfies ‖[x, y]‖ ≤ ‖x‖·‖y‖
for every x, y ∈ a.

123



  290 Page 4 of 21 S. Biagi et al.

or the derivation (at x) associated with X as a PDO acting on C∞(�). Given x ∈ �,
we use the notation

t �→ 	X
t (x), (1.4)

to denote the maximal integral curve of X starting at x , i.e., the maximal solution γ (t)
(valued in �) of the Cauchy problem

γ̇ (t) = Xγ (t), γ (0) = x .

We know that γ ∈ C∞(I ,�), where I is an open interval containing 0.
We henceforth fix a family X0, . . . , Xm of vector fields in X (�), and we write

g := Lie{X0, . . . , Xm}

to denote the Lie sub-algebra of X (�) Lie-generated by this family through iterated
Lie-bracketing. More explicitly, g is the smallest Lie sub-algebra of X (�) containing
X0, . . . , Xm . Following the hypotheses in [4], we make the next assumptions:

(H): X0, . . . , Xm satisfy Hörmander’s bracket generating condition on �, i.e.,

dim{Yx ∈ R
N : Y ∈ g} = N for every x ∈ �;

(C): any X ∈ g is complete, i.e., 	X
t (x) is defined for every t ∈ R and x ∈ �;

(D): dim(g), as a vector subspace of X (�), is N (where � ⊆ R
N ).

We aim to prove via a purely ODE argument that, under conditions (S, H, C, D), �

can be equipped with the structure of a Lie group G = (�, ∗) such that g coincides
with the Lie algebra Lie(G) of G; moreover, we give an explicit construction of G

(see Theorem 1.5 for the precise statement). In particular, L in (1.1) is a left-invariant
operator on � equipped with this group structure.

Before providing some remarks related to our assumptions, we give an example of
a set of vector fields of relevance in Mathematical Finance fulfilling them.

Example 1 Let us consider, on R
3 (whose points we denote by (x, y, t)),

X0 := x
∂

∂ y
− ∂

∂t
, X1 := x

∂

∂x
.

The (ultra-parabolic) second order PDO L = X2
1 +X0 is relevant in the study of Asian

options (see Sect. 3). The Lie algebra generated by X0, X1 is

g = span

{

X0, X1, [X1, X0] = x
∂

∂ y

}

,

so that g is 3-dimensional. Note that g is not nilpotent, as

[X1, · · · [X1︸ ︷︷ ︸
ntimes

, X0]] = x
∂

∂ y
, for every n ∈ N.

123



Left-Invariance for Smooth Vector Fields and Applications Page 5 of 21   290 

Moreover, X0, X1 satisfyHörmander’s condition on the open set {x �= 0}.We consider
one of the two connected components of the latter: to make a choice,

� := {(x, y, t) ∈ R
3 : x > 0}.

Since � is convex, it is a star-domain, and is clearly diffeomorphic to R
3. It is not

difficult to show that, for any X ∈ g, when the starting point P lies in �, then the
integral curve 	X

t (P) remains in �, and is defined for any t ∈ R (we carry out this
computation in Example 2): thus, hypothesis (C) is also satisfied. Summing up, our
assumptions (S, H, C, D) are fulfilled on�. In Example 2, we show a simple procedure
to equip � with the structure of a Lie group with Lie algebra g.

A few remarks on our assumptions are in order.

Remark 1.1 Hypothesis (D) should not be confused with (H): for example, if

X0 = ∂

∂x1
, X1 = x1

∂

∂x2
in R

2,

then (H) is satisfied, but (D) is not, as g = Lie{X0, X1} is 3-dimensional. We also
stress that X0 and X1 are linearly independent as vector fields in the vector space
X (R2), even if X1 is null as a derivation at the origin (or on the {x1 = 0} axis).
Remark 1.2 We explicitly point out that, in view of assumptions (H, D), the complete-
ness assumption (C) is actually equivalent to requiring that the generators X0, . . . , Xm

of g are complete (see, e.g., [10]), which may be considerably shorter to check than
(C). Moreover, (H, C, D) are necessary for the solution of our problem, and they are
mutually independent: see [4].

Remark 1.3 When we ask of g = Lie{X0, . . . , Xm} to coincide with Lie(G), we are
thinking of Lie(G) as a subset of X (�), the elements of the latter being thought of
as first order PDOs. We cannot be content with obtaining an isomorphism between
Lie{X0, . . . , Xm} and Lie(G); the latter could be easily deduced by an abstract Theo-
rem of Lie, stating that, given any finite-dimensional (real) Lie algebra a, there exists
a Lie group G with Lie algebra Lie(G) isomorphic to a.

When applying this abstract theorem to the Lie algebra g, the existence of some
Lie group G with Lie(G) only isomorphic to g is of little use for the left-invariance of∑m

i=1 X
2
i + X0 on�. Thus, we shall avoid the aforementioned Theorem of Lie, which

works up to an isomorphism and is all but constructive. To the contrary, the main asset
of our technique is that it gives an explicit2 construction of the group law via ODEs.

Remark 1.4 There is an interesting operation that one may consider in our frame-
work of complete vector fields: if we take a linear basis {W1, . . . ,WN } of g =
Lie{X0, . . . , Xm}, the following map is well-posed:

� × R
N 
 (x, λ) �→ 	

λ1W1+···+λNWN
1 (x).

2 In explicit cases, this construction can also be computer-implemented via Mathematica™.
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Unfortunately, this operation between x and λ does not directly work in providing a
Lie group on � turning L into a left-invariant operator. Instead, the right choice is to
replace λ1W1 + · · ·+λNWN with “Log(y)” where Log is a local inverse function for
the map g 
 W �→ Exp(W ) := 	W

1 (ω0). Now the local map

(x, y) �→ f (x, y) := 	
Logy
1 (x)

has the disadvantage of not being defined for every y in �. Our task in what follows
(see Theorem 1.5 below) is to prove that this map can always be prolonged on � × �

in such a way that the position x ∗ y := f (x, y) gives a Lie group (�, ∗) solving our
problem. One can produce simple examples of Lie algebras g of vector fields fulfilling
our assumptions where Log is not globally defined whereas f is globally extendable;
see Example 3 in Sect. 2.

The following is themain result of the paper, already partially announced inRemark
1.4.

Theorem 1.5 Let X0, . . . , Xm be smooth vector fields on the open � ⊆ R
N , where

� satisfies assumption (S). Let g be the Lie algebra Lie-generated by X0, . . . , Xm.
Suppose that conditions (H, C, D) are fulfilled by g on �. Let ω0 ∈ � be fixed.

Then, the map valued in � defined by

Exp : g −→ �, X �→ Exp(X) := 	X
1 (ω0)

(where 	X
1 has been defined in (1.4)) has an injective restriction to a suitable small

neighborhood, U say, of the vanishing vector field in g. We set V := Exp(U), the latter
providing a neighborhood of ω0 in �. Moreover, let us denote by Log the inverse map
of

Exp|U : U −→ V .

Finally, we consider the function

M : � × V −→ �, M(a, b) := 	
Log(b)
1 (a). (1.5)

Then, M can be smoothly prolonged to a multiplication (x, y) �→ x ∗ y defined on
the whole of � × � equipping � with a Lie group structure G = (�, ∗) with identity
ω0, and such that Lie(G) (thought of as a set of vector fields in �) is equal to g.

In particular, the following Hörmander operator is left-invariant on �

L =
m∑

i=1

X2
i + X0.

In order to describe our approach to the proof of Theorem 1.5, we stress the role of
(S), which is sufficient to reduce Theorem 1.5 to the case when � = R

N . Indeed, if
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(S) holds true, then there exists a C∞-diffeomorphism � : � → R
N . For any X ∈ g,

we denote by X̃ the smooth vector field on R
N that is �-related to X , i.e.,

X̃x = d�−1(x)�(X�−1(x)), ∀ x ∈ R
N . (1.6)

Roughly put, X̃ is nothing but the vector field corresponding to X in the change of
variable associated to �. As is well known, by the natural behavior of the Lie-bracket
under �-relatedness, this also defines a linear map, denoted by d�, from X (�) to
X (RN ) sending X to X̃ . Let us denote by g̃ the Lie-algebra generated by X̃0, . . . , X̃m .

Then, it is not difficult to show that X̃0, . . . , X̃m satisfy (H, C, D) on R
N . This is a

consequence of the following facts (see e.g., [5, Cor. 4.11]):

�(	X
t (ω)) = 	

d�(X)
t (�(ω)), ∀ ω ∈ �, X ∈ g; (1.7)

g̃ = d�(g). (1.8)

Now, suppose that we can find a Lie group G̃ = (RN , ∗̃) with Lie algebra g̃ (and
identity �(ω0)). Then, it is not difficult to show that the pulled-back operation

a ∗ b := �−1(�(a) ∗̃ �(b)), a, b ∈ �

turns � into a Lie group G = (�, ∗) that is isomorphic to G̃ via � (and identity ω0);
moreover, thanks to (1.8), the Lie algebra of G is exactly g, as desired.

All this being said, it is non-restrictive from now on to assume that� = R
N , where

(with no need to change notation) we assume that smooth vector fields X0, . . . , Xm

are given, fulfilling assumptions (H, C, D). Thus, we replicate on R
N the construc-

tion of a local multiplication analogous to M in (1.5), and we aim to prove that this
multiplication can be globally prolonged to a group law with assigned Lie algebra
g = Lie{X0, . . . , Xm}.

As a matter of fact, in order to be sure that Theorem 1.5 can be obtained from the
particular case of R

N , we will need to compare the operation M and its replica on
R

N , and the integral curves of the original vector fields on � with their copies on R
N .

This will be rigorously carried out in Remark 1.8.
Given X ∈ g and x ∈ R

N , thanks to assumption (C), the integral curve 	X
t (x) is

defined on R; in view of the exponential BCH-formalism, it is convenient to denote
	X

t (x) by exp(t X)(x). Thus, the following map is well posed

exp(X)(x) := exp(t X)(x)
∣
∣
t=1.

Next we choose any x0 ∈ R
N which will serve as the identity element of the group:

the choice is totally immaterial, thus we take once and for all x0 = 0 (a choice that
can be achieved at any time through a Euclidean translation). As we did in Theorem
1.5, we consistently denote by Exp the map

g 
 X �→ exp(X)(0), or equivalently, Exp(X) := 	X
1 (0). (1.9)
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Since g is finite dimensional by (D), we can fix a norm ‖ · ‖ on g (all norms being
equivalent). Assumptions (H, D) imply that there exists an open neighborhood U of
0 ∈ g such that Exp|U : U −→ V := Exp(U) is a C∞ diffeomorphism; we denote its
inverse by Log. Next, we define a local multiplication by setting

m : R
N × V −→ R

N , m(x, y) := exp(Log(y))(x). (1.10)

We may say thatm is a “half-local” operation, in that x can vary throughout the space,
whilst y lies in the small V . Note that, by the very definition of m (and of Exp and
Log) one has, for every X ∈ g,

m(x,Exp(t X)) = 	X
t (x), for every x ∈ R

N and every t near 0. (1.11)

This is a key identity, because it expresses the multiplicationm in terms of the integral
curves of the vector fields in g, at least when the second factor is of the exponential
form Exp(t X). It is a crucial link between group theory (the left-hand side) and ODE
theory (the right-hand one). Furthermore, (1.11) easily implies that

m(x, y) = 	
Log(y)
1 (	

Log(x)
1 (0)), for every x, y ∈ V ,

so that the operation m is expressed, in the small, by the composition of two integral
curves. Now, it is the BCH series in (1.2) that naturally intervenes if one makes the
composition of two flow-maps of the form exp(X) and exp(Y ): indeed one has the
following non-trivial result.

Theorem 1.6 [BCHTheorem forODEs]Letgbe aLie subalgebra ofX (RN ) satisfying
assumptions (C) and (D). Then there exists ε > 0 such that theBCHseries3 Z(X ,Y ) =∑

n Zn(X ,Y ) is convergent for any X ,Y ∈ g with ‖X‖, ‖Y‖ < ε. For any such X
and Y , one has

exp(Y )
(
exp(X)(x)

) = exp(Z(X ,Y ))(x), ∀ x ∈ R
N . (1.12)

In the Cω case, this result is contained in [7]; for the more general case of C∞, see
the Appendix 5 of the present paper.

By using (1.12) and the associativity-in-the-small of the map (X ,Y ) �→ Z(X ,Y ),
one can prove without difficulties that (x, y) �→ m(x, y) defines a local Lie group. By
shrinking V if necessary, the associativity of m reads as follows (note that x can be as
large as we please):

m(m(x, y), z) = m(x,m(y, z)), for every x ∈ R
N and every y, z ∈ V . (1.13)

3 We agree that Zn(x, y) is the Lie polynomial obtained from Z(x, y) in (1.2) by grouping together the
homogeneous Lie-polynomials of degree n in x and y jointly.
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Most importantly for us, any Z ∈ g enjoys a suitable left-invariance “in the small”,
this being the identity

Zm(x,y) = ∂m

∂ y
(x, y) Zy, for every x ∈ R

N and y ∈ V . (1.14)

Here we denoted by ∂m/∂ y the differential with respect to y only. Actually, (1.14)
can be obtained by differentiating (1.13) with respect to z at 0, and using the fact that
(1.14) is valid when y = 0 thanks to this calculation:

Zx = d

dt

∣
∣
∣
t=0

	Z
t (x)

(1.11)= d

dt

∣
∣
∣
t=0

m(x,Exp(t Z)) = ∂m

∂ y
(x, 0) Z0.

For the details, one can argue as in [4, Theorem 3.8].
Our main task is then to show that the local-Lie-group structure defined by m can

be prolonged throughout R
N × R

N , as the next lemma states:

Lemma 1.7 Let X0, . . . , Xm be smooth vector fields on R
N . Let g be the Lie alge-

bra Lie-generated by X0, . . . , Xm. Suppose that conditions (H, C, D) are fulfilled by
X0, . . . , Xm and g. Finally, let m be the map constructed in (1.10) via ODEs.

Then m can be prolonged to a multiplication (x, y) �→ x ∗ y defined on R
N × R

N

equipping R
N with a Lie group structure G = (RN , ∗) such that Lie(G) is equal to

g. Conditions (H, C, D) are also necessary for the latter fact to hold.

Lemma 1.7 is both an improvement of [9, Th.1.1] (the latter assuming the existence
of a Cω prolongation of m, along with (H, C, D)), and an improvement of [4, Th.1.4]
(the latter assuming (H, C, D) under the Cω regularity of X0, . . . , Xm).

Our proof of Lemma 1.7, which we now briefly describe, is consistent with its
purely ODE nature (for the details, see Sect. 4). Fixing x, y ∈ R

N , we consider the
curve

γx,y(t) := m(x, t y),

defined at least for |t | small (depending upon y). Notice that we are implicitly using
the vector-space structure of R

N when defining γx,y(t).
Thanks to Hörmander’s condition (H) and to assumption (D), we can fix a basis

J1, . . . , JN of g such that the matrix J (x) whose columns are J1(x), . . . , JN (x) is
non-singular for every x ∈ R

N . It is not difficult to show that the curve t �→ γx,y(t),
say z(t) shortly, satisfies a (non-autonomous) Cauchy problem

ż(t) =
N∑

k=1

ak(t, y) Jk(z(t)), z(0) = x, (1.15)

where J1, . . . , JN are as above, and the ak’s are smooth functions. Notice that the
reason why the coefficient functions ak’s do not depend upon x is to attribute to
(1.14). Indeed, (1.15) can be obtained by the calculation

ż(t) = ∂m

∂ y
(x, t y) y = ∂m

∂ y
(x, t y) J (t y)(J (t y))−1y

(1.14)= J (m(x, t y))(J (t y))−1y,
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and then we denote by ak(t, y) the k-th component of (J (t y))−1y. Now, a prolonga-
bility result for ODEs proved in [4, Th.1.1] ensures that z(t) exists for every t ∈ R.
The trigger for the prolongation is once again ascribed to (1.14).

We are then entitled to define

x ∗ y := γx,y(1) for every x, y ∈ R
N .

This is clearly a prolongation of m(x, y); in Sect. 4 we show in details that (RN , ∗) is
as required by Lemma 1.7.

Remark 1.8 The proof of Theorem 1.5 follows from Lemma 1.7, once one recognizes
that, whatever the diffeomorphism � : � → R

N , the map m constructed in (1.10) is
consistent (through �) with the map M of Theorem 1.5: more precisely,

�(M(a, b)) = m(�(a),�(b)).

Indeed, the latter is equivalent to

�(	
Log(b)
1 (a)) = 	

˜Log(�(b))
1 (�(a)), (1.16)

where Log and L̃og are, respectively, the inverse maps of the Exp-maps naturally
associated with the vector fields X0, . . . , Xm in � and the vector fields

X̃0 = d�(X0), . . . , X̃m = d�(Xm) in R
N ,

and when the integral curves start, respectively, from ω0 and �(ω0). Now, by using
(1.7), identity (1.16) follows from

d�(Log(b)) = L̃og(�(b)),

which is another consequence of (1.7) (with t = 1 and ω = ω0).

2 A Few Illustrative Examples

In order to illustrate our construction, we consider a few explicit examples.

Example 2 Let X0, X1 be the vector fields on the set� of Example 1.We choose some
point of � that will play the role of the identity, say ω0 = (1, 0, 0). We compute the
map

Exp : g −→ �, X �→ exp(t X)(ω0)
∣
∣
t=1.

Setting X2 := [X1, X0], we take

X = −τ X0 + ξ X1 + η X2, (ξ, η, τ ) ∈ R
3,
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and we solve the ODE (system) γ̇ = Xγ , γ (0) = (x0, y0, t0), i.e.,

⎧
⎨

⎩

γ̇1(t) = ξ γ1(t) γ1(0) = x0
γ̇2(t) = −τ γ1(t) + η γ1(t) γ2(0) = y0
γ̇3(t) = τ γ3(0) = t0.

We get

exp(X)(x0, y0, t0) = γ (1) =
(

x0 e
ξ , y0 + (η − τ)x0

eξ − 1

ξ
, t0 + τ

)

,

where (eξ − 1)/ξ := 1 if ξ = 0. Choosing (x0, y0, t0) = ω0 = (1, 0, 0), we get

Exp(−τ X0 + ξ X1 + η X2) =
(

eξ , (η − τ)
eξ − 1

ξ
, τ

)

.

Notice that Exp : g → � is globally invertible with inverse

Log(x, y, t) = −t X0 + ln x X1 +
(

t + y
ln x

x − 1

)

X2,

where ln x/(x − 1) := 1 when x = 1. The map M in (1.5) is everywhere well-posed
and, after simple computations, we discover that it is equal to

M(a, b) = exp(Log(b))(a) = (a1b1, a2 + a1b2, a3 + b3) .

Changing notation, the group law on � is therefore

(x, y, t) ∗ (x ′, y′, t ′) = (
x x ′, y + x y′, t + t ′

)
. (2.1)

Since the Jacobian matrix at (1, 0, 0) of the left translation

(x ′, y′, t ′) �→ (x, y, t) ∗ (x ′, y′, t ′)

is equal to

⎛

⎝
x 0 0
0 x 0
0 0 1

⎞

⎠ ,

the vector fields associated with the columns of the latter furnish a basis for the Lie
algebra of (�, ∗); as the latter vector fields are

x
∂

∂x
, x

∂

∂ y
,

∂

∂t
,
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we recognize that the original vector fields X0 and X1 are indeed left-invariant on
(�, ∗), as predicted by Theorem 1.5.

The typical issue that can arise when dealing with non-invertible Log-maps is not
visible in the previous example, where Log is globally invertible. For an example
presenting this issue, see the next case:

Example 3 Let us consider on R
3 the vector fields

X1 = ∂

∂x1
, X0 = cos x1

∂

∂x2
+ sin x1

∂

∂x3
.

It is easy to see that g := Lie{X0, X1} is 3-dimensional (whence condition (D) is
fulfilled), and it also satisfies hypotheses (H) (as is simple to check) and (C) (for any
vector field in g has bounded coefficients). The associated Exp map is given by

Exp
(
ξ1X1 + ξ2X0 + ξ3[X1, X0]

)

=
(

ξ1, ξ2
sin ξ1

ξ1
+ ξ3

cos ξ1 − 1

ξ1
,−ξ2

cos ξ1 − 1

ξ1
+ ξ3

sin ξ1

ξ1

)

.

We remark that Exp is neither injective, nor surjective. After tedious computations, it
can be verified that the associated map M(a, b) is equal to

(
a1 + b1, a2 + b2 cos a1 − b3 sin a1, a3 + b2 sin a1 + b3 cos a1

)
.

By means of our Theorem 1.5, it follows that L = X2
1 + X0 is left invariant on

G = (R3, ∗), with a ∗ b = M(a, b) as above.

3 An Application to Asian Options

Before embarking in the proof of the results presented in the Introduction, we sketch
an application of the left-invariance in Theorem 1.5. We consider the vector fields in
Example 2.

The applicative interest of the differential operator

L =
(

x
∂

∂x

)2

+ x
∂

∂ y
− ∂

∂t
(x, y, t) ∈ � := (0,∞) × R

2 (3.1)

is motivated by the financial problem of pricing arithmetic average Asian options.
Indeed, consider the stochastic process

{
Xt = x0 eσWt− σ2

2 t

Yt = y0 + ∫ t
0 Xτdτ,

(3.2)
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where σ > 0 and (Wt )t≥0 is a Wiener process. The first component (Xt )t≥0 is a
Geometric Brownian Motion starting from x0 at t = 0, and it describes the evolution
of the price of some financial asset in the Black & Scholes setting, while (Yt )t≥0 is
its time integral and appears whenever the payoff of the option depends on the past
average of the price of the asset.

The stochastic differential equation of the process (Xt ,Yt )t≥0 is

{
dXt = σ XtdWt , X0 = x0,

dYt = Xtdt, Y0 = y0,

and the density p = p(x, y, t) of (Xt ,Yt )t≥0 is a smooth function which is a classical
solution to the forward Kolmogorov equation

σ 2

2

(

x
∂

∂x

)2

p(x, y, t) − x
∂

∂ y
p(x, y, t) − ∂

∂t
p(x, y, t) = 0.

Note that, up to a plain change of variable, it is not restrictive to assume σ 2

2 = 1;
moreover the further change of variable (x, y, t) �→ (x,−y, t) transforms the above
operator into L appearing in (3.1). Theorem1.5 asserts that this operator is left invariant
on (�, ∗), where ∗ is as in (2.1).

The composition law ∗ in Example 2 was first considered by Monti and Pascucci
in [19], and has been used in the articles [1, 14, 20] for the proof of asymptotic
bounds of the density p, these bounds relying on a Harnack inequality and on the
translation-invariance of the equation Lp = 0.

In order to outline the proof of the bounds, we introduce some notation and we
recall a statement of the Harnack inequality. For every r ∈ (0, 1], we set

Hr = {
(x, y, t) ∈ R

3 : |x − 1| < r , −r2 < t ≤ 0, |y + t | < r3
}
,

Sr = {
(x, y, t) ∈ Hr : t < −r2/2

}
.

Then the following estimate holds: there exist two universal constants M > 1, and
θ ∈ (0, 1), such that

sup
Sθr

u ≤ M u(1, 0, 0),

for every non-negative solution u to Lu = 0 defined in an open neighborhood of the
set Hr . The translation-invariance property of the differential operator L provides us
with the following more general statement of the Harnack inequality:

sup
Sθr (x0,y0,t0)

u ≤ M u(x0, y0, t0), (3.3)
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where, for every (x0, y0, t0) ∈ (0,∞) × R
2, we have set

Hr (x0, y0, t0) =
{
(x, y, t) ∈ R

3 : |x − x0| < r x0, −r2 < t − t0 ≤ 0,

|y − y0 + x0(t − t0)| < r3
}
,

Sr (x0, y0, t0) = {
(x, y, t) ∈ Hr (x0, y0, t0) : t < t0 − r2/2

}
,

and the function u is defined in an open neighborhood of the set Hr (x0, y0, t0). We
remark that the constant in the Harnack inequality (3.3) does not depend on the point
(x0, y0, t0).

The proof of the lower bound of the density p is based on the construction of the
so-called Harnack chains. By this, we mean a finite sequence of points

(x0, y0, t0), . . . , (xk, yk, tk)

of the domain A of a non-negative function u, such that

u(x j , y j , t j ) ≤ Mu(x j−1, y j−1, t j−1), for j = 1, . . . , k.

Clearly, the invariant Harnack inequality (3.3) is a useful tool in the construction of
Harnack chains. Once a Harnack chain is given, we immediately find that

u(xk, yk, tk) ≤ Mku(x0, y0, t0).

As the Harnack constant is Mk , once a starting-point (x0, y0, t0) and an end-point
(x, y, t) are given, it is important to find a Harnack chain of minimal length k whose
last point (xk, yk, tk) agrees with (x, y, t).

Optimal Control Theory is used in the article [14] in order to find an optimal
Harnack chain, and this optimal choice provides us with accurate asymptotic bounds
of the density p. This method extends the one introduced by Aronson and Serrin in
the study of uniformly parabolic operators. We refer to the papers [11] for a detailed
description of this method, and to [13] for its application to stochastc processes.

4 The Proof of Lemma 1.7

We tacitly inherit all the notations in Sect. 1. We resume the proof of Lemma 1.7
starting from (1.11).

Given x, y ∈ V , we know that Log(x),Log(y) ∈ U are well-defined in g, and
we have the following computation, linking our local operation m with the BCH
multiplication: by using (1.12), one can easily shrink V in such a way that, for any
x, y ∈ V , one has

m(x, y) = m(x,Exp(Log(y)))
(1.11)= 	

Log(y)
1 (x) = 	

Log(y)
1 (Exp(Log(x)))
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(1.9)= 	
Log(y)
1 (	

Log(x)
1 (0))

(1.12)= 	
Z(Log(x),Log(y))
1 (0),

which means, again by (1.9), that

m(x, y) = Exp
(
Z
(
Log(x),Log(y)

))
, for every x, y ∈ V . (4.1)

This result and the associativity of the (local) operation (X ,Y ) �→ Z(X ,Y ) (see e.g.
[8, Sec. 5.3]) show that, by shrinking V , m is “locally associative”, i.e.,

m(x,m(y, z)) = m(m(x, y), z), for every x ∈ R
N and every y, z ∈ V . (4.2)

Thus, (x, y) �→ m(x, y) defines a local Lie group, with identity 0 and local inversion

x−1 = Exp(−Log(x)), ∀ x ∈ V ,

such that any X ∈ g is “locally left-invariant”. By the last statementwemean, precisely,
the following identity

Xm(x,y) = ∂m

∂ y
(x, y)Xy, ∀ X ∈ g, x ∈ R

N , y ∈ V . (4.3)

The proof of the latter has already been sketched in the Introduction.
Our task here is to show that the local-Lie-group structure defined by m can be

prolonged throughoutRN . This is accomplished via a prolongation argument forODEs
which we now describe.

Let us fix a linear basis {J1, . . . , JN } of g as follows (in this choice, we use
assumptions (H), (D)):

J (0) = identity matrix, and det(J (x)) �= 0 for every x ∈ R
N ; (4.4)

here we have denoted by J (x) the matrix whose j-th column is the N × 1 vector
whose entries are the coefficients of the vector field J j with respect to the coordinate
partial derivatives.

Fixing x, y ∈ R
N , we consider the curve

γx,y(t) := m(x, t y), (4.5)

defined at least for |t | small. As described in the Introduction, one can prove that
z(t) := γx,y(t) satisfies the following non-autonomous Cauchy problem

ż(t) =
N∑

k=1

ak(t, y) Jk(z(t)), z(0) = x, (4.6)
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where the vector fields Jk are as in (4.4) and the functions ak are given by

(
a1(t, y), . . . , aN (t, y)

)T = (
J (t y)

)−1 · y. (4.7)

Since the Jk’s satisfy the invariant-type condition (4.3), we are entitled to apply the
prolongability result for ODEs in [4, Th.1.1], ensuring that γx,y(t) exists for every
t ∈ R. We are then allowed to set

� : R
N × R

N −→ R
N , �(x, y) := γx,y(1). (4.8)

It is clear that � is smooth and it prolongs m. All that remains to prove is that �

defines on R
N a Lie group whose Lie algebra is g. We claim that both the associativity

of (x, y) �→ x ∗ y := �(x, y) and the left-invariance of any X ∈ g derive from the
following identity:

X�(x,y) = ∂�

∂ y
(x, y)Xy, ∀ X ∈ g, x, y ∈ R

N , (4.9)

which is a global version of (4.3). While the left-invariance of X ∈ g is clearly a
restatement of (4.9), the associativity of ∗ follows from the fact that (4.9) also implies
that the curve t �→ x ∗(y∗(t z)) satisfies the sameCauchy problem solved by γx∗y,z(t);
thus, when t = 1 one gets x ∗ (y ∗ z)) = (x ∗ y) ∗ z.

Hence (4.9) is the core of the argument and we now prove it:

Proof of identity 4.9 Let the Jk’s be as in (4.4). It is not difficult to check that z(t) :=
γx,y(t) in (4.5) solves the Cauchy problem (4.6), compactly written (with the notation
in (4.4)) as

ż(t) = J (z(t))J (t y)−1y, z(0) = x .

By the prolongability result for ODEs in [4, Th.1.1], we know that z(t) exists for
any t ∈ R; hence the map � in (4.8) is well posed and smooth. As the two curves
s �→ γx,t y(s), γx,y(ts) solve the same Cauchy problem, we have γx,y(t) = �(x, t y)
for any t . From the latter, we easily get

d

dt
{�(x, t y)} = J (�(x, t y))J (t y)−1y (for any x, y ∈ R

N ). (4.10)

After differentiation the sides of (4.10) with respect to y, we get the matrix ODE

d

dt

{
t
∂�

∂ y
(x, t y)

}
= ∂

∂ y

{
J (�(x, t y)) J (t y)−1 y

}
. (4.11)

Next, we have the following very technical fact: let us consider the structure constants
of g with respect to the basis {J1, . . . , JN }, that is {Ck

i, j }i, j,k≤N satisfy

[Ji , J j ] = ∑N
k=1 C

k
i, j Jk, ∀ i, j ∈ {1, . . . , N }. (4.12)
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For any fixed j ∈ {1, . . . , N }, we consider the matrix C( j) := (Ck
i, j )k,i≤N ; then one

has (for every z ∈ R
N )

C( j) J (z)−1z =
J (z)−1 ∂ J j

∂z
(z) z − J (z)−1

(
∂ J1
∂z

(z) J j (z) · · · ∂ JN
∂z

(z) J j (z)

)

J (z)−1z. (4.13)

Indeed (4.13) follows by re-writing (4.12) under its obvious matrix form (then by
multiplication times J (z)−1 on the left, and J (z)−1z on the right). We claim that

∂�

∂ y
(x, y) = J (�(x, y)) J (y)−1, ∀ x, y ∈ R

N . (4.14)

By right multiplication of (4.14) times J (y), we get the desired (4.9) with X replaced
by J1, . . . , JN ; then (4.9) will follow by linearity. Thus, all that we have to prove is
(4.14). To this end, we fix x, y ∈ R

N , and we prove that

t
∂�

∂ y
(x, t y) = t J (�(x, t y)) J (t y)−1, ∀ t ∈ R. (4.15)

We denote by A(t) and B(t), respectively, the left-hand and the right-hand sides of
(4.15). If we show that A(t) = B(t) for any t , then (4.14) will follow by taking t = 1.
Considering that A(0) = 0 = B(0), we show that A and B solve the same (matrix
linear) ODE. By (4.11), we see that A solves

A′(t) = J (�(x, t y))
∂

∂ y

(
J (t y)−1 y

)
+

N∑

k=1

(J (t y)−1 y)k
∂ Jk
∂ y

(�(x, t y)) A(t).

(4.16)

We finally claim that B(t) solves the same ODE (4.16): indeed, if one inserts B(t) in
place of A(t) in (4.16), after a tedious computation, one discovers that the claimed
needed identity is equivalent to the technical identity in (4.13). This ends the proof of
(4.9). ��
Finally, we sketch a short argument for the existence of the neutral element and of the
group inversion.

As regards the former issue we observe that, since Log(0) = 0 ∈ g, we have

�(x, 0) = x for every x ∈ R
N ;

on the other hand, if y ∈ R
N is arbitrarily fixed, from the very definition of � (see

(4.8)) we have �(0, y) = γ0,y(1), where t �→ γ0,y(t) is the unique solution (defined
on R) of the Cauchy problem

ż(t) =
N∑

k=1

ak(t, y) Jk(z(t)), z(0) = 0.
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Since the curve z(t) = t y solves this problem (as it can be directly checked by using
(4.7)), we conclude that γ0,y ≡ z on R, whence

�(0, y) = z(1) = y.

Now that we have proved that 0 is the neutral element of �, we turn to demonstrate
that every fixed x ∈ R

N possesses an inverse with respect to �.
First of all, since the map ι : V → R

N defined by

ι(y) := Exp(−Log(y))

provides a local inversion with respect to m, there exists an open and convex
neighborhood W ⊆ V of 0 such that ι(W ) ⊆ V and (see also [4, Lemma 3.7])

m(w, ι(w)) = m(ι(w),w) = 0 for every w ∈ W . (4.17)

Moreover, by exploiting (4.4) and arguing exactly as in the proof of [4, Corollary
3.10], we recognize that the map

τα : R
N −→ R

N , τα(y) := �(α, y) = α ∗ y,

is a local diffeomorphism in R
N , hence is open (for every fixed α ∈ R

N ). From this,
by using the associativity of ∗, we can write

R
N =

⋃

n∈N

{

w1 ∗ · · · ∗ wn | w1, . . . , wn ∈ W

}

. (4.18)

Now, by combining (4.17) with the fact that � ≡ m on R
N ×W (since W is convex),

it can be deduced from (4.18) that both the equations

x ∗ y = 0 and y ∗ x = 0,

have the same unique solution y = i(x): indeed, if we write (by (4.18))

x = w1 ∗ · · · ∗ wn,

for suitable w1, . . . , wn ∈ W (not necessarily unique), we have

i(x) = ι(wn) ∗ · · · ∗ ι(w1).

As a consequence, the map i does not actually depend on w1, . . . , wn and it defines a
global inversion map for ∗. Furthermore, by the Implicit Function Theorem, it readily
follows that i is smooth on R

N .
Summing up, G = (RN , ∗) is a Lie group on R

N , with neutral element e = 0 and
inversion map given by i; moreover, by (4.9), Lie(G) = g.
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5 Appendix: A BCH Theorem for ODEs

We give the proof of Theorem 1.6, of which we tacitly inherit the notation.

Proof of Theorem 1.6 The existence of ε can be obtained as in Dynkin’s classical result
[15], since g is finite-dimensional by (D) (hence equipped with some norm turning it
into a Banach algebra).

Let now X ,Y ∈ g satisfy ‖X‖, ‖Y‖ < ε; we also fix any x ∈ R
N . For t ∈ [0, 1]

we consider the functions

F(t) := exp(tY )(exp(X)(x)), G(t) := exp(Z(X , tY ))(x).

They are well-posed due to assumption (C) (as Z(X , tY ) converges and is an element
of g); moreover they are smooth. We claim that F ≡ G on [0, 1]; the identity F(1) =
G(1) gives the desired (1.12).

Hence we are left with the claimed equality of F and G on [0, 1]: since F(0) =
G(0) = exp(X)(x), by uniqueness results for Cauchy problems, all that remains to
prove is that F and G satisfy the same ODE. By the very definition of an integral
curve, one has F ′(t) = YF(t), for any t ∈ [0, 1]. Thus we aim to prove that

G ′(t) = YG(t), t ∈ [0, 1]. (5.1)

This is less trivial to prove. We argue as follows. Let us fix any linear basis J1, . . . , JN
of g; for ξ ∈ R

N we use the notation ξ · J for
∑N

j=1 ξ j J j . Then there exists a

smooth R
N -valued map ξ(t) such that Z(X , tY ) = ξ(t) · J on [0, 1]. Since g is finite

dimensional, it is simple to calculate the differential of the function ξ �→ 	
ξ ·J
t (x). In

the sequel we denote by dx f the differential of a smooth map f at the point x . We
have the following computation

G ′(t) = dx
(
	

ξ(t)·J
1

)
⎡

⎣ead (ξ(t)·J ) − 1

ad (ξ(t) · J )

( N∑

j=1

ξ ′
j (t)J j

)
⎤

⎦

x

. (5.2)

On the other hand, by the results in [3, Th.3.1] we have

N∑

j=1

ξ ′
j (t)J j = d

dt
Z(X , tY ) = −ad Z(X , tY )

e−ad (Z(X ,tY )) − 1
Y .
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Observe the use of an analog of Poincaré’s identity (1.3). Inserting this in (5.2), and
since Z(X , tY ) = ξ(t) · J , we get

G ′(t) = dx
(
	

ξ(t)·J
1

) [
ead (ξ(t)·J )Y

]

x
= dx	

ξ(t)·J
1

[
d	ξ(t)·J

−1 Y
]

x

= dx
(
	

ξ(t)·J
1

)
(

d
	

ξ(t)·J
1 (x)

	
ξ(t)·J
−1

(
Y

	
ξ(t)·J
1 (x)

))

= d
	

ξ(t)·J
1 (x)

(
	

ξ(t)·J
1 ◦ 	

ξ(t)·J
−1

)(
Y

	
ξ(t)·J
1 (x)

)
= Y

	
ξ(t)·J
1 (x)

.

(5.3)

In the second equality we used the identity d	X−t Y = ead (t X)(Y ) (valid for any t and
any X ,Y ∈ g), another simple consequence of assumptions (C), (D). Since ξ(t) · J =
Z(X , tY ), we have 	

ξ(t)·J
1 (x) = G(t), so that (5.3) gives G ′(t) = YG(t) and the proof

of (5.1) is complete. ��
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