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ABSTRACT

In a proper edge-coloring of a cubic graph an edge uv is called poor or rich, if the set of colors of
the edges incident to u and v contains exactly three or five colors, respectively. An edge-coloring
of a graph is normal, if any edge of the graph is either poor or rich. In this note, we show that
some snarks constructed by using a method introduced by Loupekhine admit a normal edge-col-
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of snarks

oring with five colors. The existence of a Berge-Fulkerson Covering for a part of the snarks consid-
ered in this paper was recently proved by Manuel and Shanthi (2015). Since the existence of a
normal edge-coloring with five colors implies the existence of a Berge-Fulkerson Covering, our

main theorem can be viewed as a generalization of their result.

1. Introduction

In graph theory the Petersen coloring conjecture asserts that
the edges of every bridgeless cubic graph G can be colored
by using as set of colors the edge-set of the Petersen graph
P, such that adjacent edges of G are colored with adjacent
edges of P. The conjecture is well-known and is considered
hard to prove as it implies classical conjectures in the field
such as the Berge-Fulkerson conjecture and the Cycle
Double Cover conjecture (see [5, 8, 19]). Jaeger in [8] intro-
duced an equivalent formulation of the Petersen coloring
conjecture. More precisely, he showed that a bridgeless cubic
graph satisfies this conjecture, if and only if, it admits a nor-
mal edge-coloring with at most five colors (see exact defini-
tions later). Let yx\(G) denote the minimum number of
colors in a normal edge-coloring of G. Usually, it is called
the normal chromatic index of G. In this terms, the Petersen
coloring conjecture amounts to proving that every bridgeless
cubic graph has normal chromatic index at most five. To
the best of our knowledge, the smallest known upper bound
for y)(G) in an arbitrary bridgeless cubic graph is 7 (see [2,
12]). The situation is similar in the larger class of all simple
cubic graphs (not necessarily bridgeless): there are cubic
graphs with normal chromatic index 7, on the other hand,
in [12] two of the authors have shown that any simple cubic
graph admits a normal 7-edge-coloring. One may wonder
whether the upper bound 7 can be improved in other inter-
esting subclasses of cubic graphs. Related with this question,
in this paper we show that a class of snarks obtained with a
method introduced by Loupekhine, admits a normal edge-
coloring with five colors. Let us remark that this result
implies the main result in [11].

Now, let us give all necessary definitions and notions
used in the paper. We consider finite and undirected graphs.
They contain neither loops nor parallel edges.

For a graph G, the set of vertices and edges of G are
denoted by V(G) and E(G), respectively. Let Jg(v) be the set
of edges of G that are incident to the vertex v of G. Assume
that G and H are two cubic graphs. If there is a mapping
¢ : E(G) — E(H), such that for each v € V(G) there is w €
V(H) such that ¢(9g(v)) = Oy(w), then we refer to ¢ as an
H-coloring of G. If G admits an H-coloring, then we
write H < G.

Let P be the Petersen graph (Figure 1). The Petersen col-
oring conjecture of Jaeger states:

Conjecture 1. (Jaeger, 1988 [9]) For any bridgeless cubic
graph G, we have P < G.

It is shown in [13] that the Petersen graph is the only
connected, bridgeless cubic graph that can color all bridge-
less cubic graphs. The conjecture is difficult to prove, since
it implies the classical Berge-Fulkerson conjecture [5, 18]
and (5,2)-cycle-cover conjecture [3, 15]. For our aim, we
only need to recall the statement of the former one.

Conjecture 2. (Berge-Fulkerson, 1972) Any bridgeless cubic
graph G contains six (not necessarily distinct) perfect match-
ings such that any edge of G belongs to exactly two of them.

We will call Berge-Fulkerson Covering of G any set of six
perfect matchings which satisty the condition in Conjecture 2.

2. Normal 5-edge-colorings

A k-edge-coloring of a graph G is an assignment of colors
{1,....k} to edges of G, such that adjacent edges receive
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Figure 1. The graph P.

different colors. For an edge-coloring ¢ of G and a vertex v
of G, let S.(v) be the set of colors that edges incident to
v receive.

Definition 1. Assume that uv is an edge of a cubic graph G,
and let ¢ be an edge-coloring of G. We say that the edge uv is
poor or rich with respect to ¢, if |S.(u)US.(v)|=3 or
[Sc(u) US.(v)| =5, respectively. An edge is normal (with
respect to c) if it is poor or rich.

Edge-colorings in which all edges are poor are trivially 3-
edge-colorings of G. On the other hand, edge-colorings hav-
ing only rich edges have been considered before, and they
are called strong edge-colorings [1]. In the present paper,
we focus on the case when all edges must be normal.

Definition 2. An edge-coloring ¢ of a cubic graph is normal,
if any edge is normal with respect to c.

In [8], Jaeger has shown that:

Proposition 1. (Jaeger, [8]) Let G be any cubic graph. Then
P < G, if and only if G admits a normal 5-edge-coloring.

This implies that Conjecture 1 can be re-stated in the fol-
lowing way:

Conjecture 3. For any bridgeless cubic graph G, y\(G) < 5.

Our previous considerations imply that Conjecture 3 holds
for 3-edge-colorable cubic graphs. This means that the non-3-
edge-colorable cubic graphs are the main obstacle for proving
Conjecture 3. Let us note that in [6] Conjecture 3 is verified
for some non-3-edge-colorable bridgeless cubic graphs. Also, in
[16] the percentage of edges of a bridgeless cubic graph, which
can be made normal in a 5-edge-coloring, is estimated.

The following well-known result says that Conjecture 3
implies Conjecture 2.

Proposition 2. Let G be a bridgeless cubic graph. If G admits a
normal 5-edge-coloring, then it admits a Berge-Fulkerson covering.

Proof. (Sketch) The existence of a normal 5-edge-coloring is
equivalent to the existence of a Petersen Coloring ¢ : E(G) —
E(P) of G. The preimages of the six distinct perfect matchings
of P give a Berge-Fulkerson covering of G (see also [13]). O

3. Loupekhine snarks

In many contexts, among all non-3-edge-colorable cubic
graphs, ones with some additional restrictions are more
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Figure 2. The component B(P).

studied in order to avoid trivial cases. Even if there are
many interesting definitions of what non-trivial could mean
(see for instance [4, 14]), here we stick to the largely used
definition of snark as a non-3-edge-colorable cyclically
4-edge-connected cubic graph of girth at least 5.

A classical method to construct snarks was proposed by
Loupekhine in early 70s and it appears firstly in a paper of
Isaacs in 1976 (see [7]).

Here, we present such a method in a bit more general
context, in order to simplify our presentation. In particular,
we do not really care whether the resulting graph is a snark
or not. We will make use of the same terminology and nota-
tions in [10].

Let G be a bridgeless cubic graph and let abc be a path of
length two in G. Consider the induced subgraph B(G) of G
obtained by removing the vertices a, b and c. Assume that the
path abc is chosen in a way that B(G) has exactly 5 vertices of
degree 2, while every other vertex has degree equal to 3. We
denote by a', a® the two vertices of degree 2 in B(G) corre-
sponding to the vertices distinct from b and adjacent to a in
G. Analogously, we denote by b', ¢' and ¢* the other vertices
of degree 2 in B(G) (see Figure 2 for an example).

Let k>1 and Gi,Ga, ..., Gk be arbitrary bridgeless cubic
graphs. For all i =1,...,k, consider the graph B; = B(G;)
and denote by a;,a?, b}, c}, c? its vertices of degree 2, accord-
ing to the notation introduced above. We assume that for
each i, the path a’b'c’ is chosen so that these vertices exist in
B;. Consider the disjoint union of the k graphs B; = B(G;).
For all i =1,...,k, add the pair of edges ajc} ; and ajc},,
between two of the vertices of degree 2 in B; and two of the
vertices of degree 2 in B;y; (indices larger than k are taken
modulo k).

The new graph Gf has exactly k vertices of degree 2, say
b},bj,....b. Let G¢ be a graph with exactly k vertices of
degree one, say dy,d,, ..., dy, and all other vertices of degree
3. If we identify every vertex b} of GP with a vertex d; of
GY, we obtain a cubic graph, denoted by Gk.

Proposition 3. Let k> 1. Assume that G{ contains no edge
whose removal leaves a graph containing a component with
all vertices of degree two or three. Then Gi is a bridgeless
cubic graph.

Loupekhine proved that, for a suitable choice of the
graph GY, if k>1 is odd and the graphs Gi, G, ..., Gy are
snarks, then Gf is a snark as well. For this reason, all snarks
obtained in this way are usually called Loupekhine snarks or
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Figure 3. A normal 5 edge-coloring in the first subsequence of Gf.

4 4 4
1 2 & 3 o 2 | 1 4 2 P
2
2 _3 5 . 3 ¢ 5 3_ 2 2 _3 5 >3
Figure 4. A normal 5 edge-coloring in the second subsequence of Gf.
L-snarks. Here, we extend this terminology to all graphs B,ii,...,Br+s and Bisi1,...,Bx with r and s odd. Note that

obtained by using the described method and in what follows
we refer to them as L-graphs.

Definition 3. Let G be an L-graph.

e If every connected component of G{ is either an isolated
edge or a star with three vertices of degree 1, then G is
said to be an L;-graph.

o If every subgraph B; is isomorphic to B(P) (see Figure 2),
where P is the Petersen graph, then G is said to be an
LP-graph.

e An LP;-graph is a graph which is both an L,-graph and
an LP-graph.

In [11], the authors prove that a very special family of
LP;-graphs admits a Berge-Fulkerson covering. In the next
section, we strongly generalize their result by proving the
existence of a normal 5-edge-coloring for a larger class of
LP,-graphs which properly contains the class of LP;-graphs
studied in [11]. Hence, by Proposition 2, we have that all of
them admit also a Berge-Fulkerson covering.

4. Main result

Now we construct a normal 5-edge-colorings for a class of
LP;-graphs. Later, we will prove that our class properly con-
tains all graphs considered in [11].

For any odd k>1, let Gt be an LP;-graph, and, as
described in Section 3, we consider its decomposition in the
two subgraphs GP and GY. Recall that, since Gf is an LP;-
graph, G? is the disjoint union of copies of B(P) and every
connected component of G is either K, or a star Kj 3 with
four vertices.

Firstly, we construct a normal 5-edge-coloring of Gf. We
consider the k consecutive copies of B(P), say By, ..., By, and
we subdivide them in three subsequences Bj,...,B,,

all the three subsequences have an odd number of copies of
B(P) since k is also odd.

Color the subgraph of G? induced by the subsequence
By, ..., B, as in Figure 3.

Color the subgraph of G? induced by the subsequence
B,i1, ..., By as in Figure 4.

Color the subgraph of Gf induced by the subsequence
B, is+1, ..., Bk as in Figure 5.

By a direct check, the defined coloring is normal for each
of the previous subgraphs and it remains normal also when
we consider the entire subgraph Gf. Moreover, all the k ver-
tices of degree 2 are incident to edges with colors 1 and 2.

Now, consider a subgraph G{ which satisfies the follow-
ing additional properties:

P1) every copy of K, in G{ connects two vertices of GF
in the same subsequence;

P2) every copy of Ki 3 in G{ connects its vertex of degree
3 with three vertices of G} in three different subsequences.

Color every edge of G{ incident a vertex of the first sub-
sequence with the color 3, incident a vertex of the second
subsequence with the color 4 and incident a vertex of the
third subsequence with the color 5.

For all G{ which satisfy the two additional constraints,
the presented coloring is a normal 5-edge-coloring of Gj.
Then, we are now in position to state our main result.

Theorem 1. Let Gi be an LP;-graph and let B;...By be the k
blocks in GP. If the k blocks can be partitioned in three subse-
quences of odd length in such a way that properties P1 and
P2 hold, then Gk admits a normal 5-edge-coloring.

Now, let us show that the class of LP;-graphs presented
in [11] satisfy the assumptions of Theorem 1.

For any odd k>1, the LP,-graph considered in [11] is
the one having the following decomposition in G{ and G.
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Figure 5. A normal 5 edge-coloring in the third subsequence of Gf.

Figure 6. A twist between two copies of B(P).

The subgraph G{ has a unique star and denote its three
vertices of degree one by z1,2x/2)41 and z|x/3) 2. Moreover,
each copy of K, connects pairwise the vertices zii,,zk—;
fori=0,..,k/2] — 2.

We use the same patterns of coloring in Figures 3, 4, 5
where B|x/2)43, - B1,...Bjx2) is the first subsequence, the
unique block Bji/yj41 gives the second subsequence and the
unique block B3+, is the third one.

Hence, every element of this family of LP;-graphs satisfies
both assumptions of Theorem 1 and then it is contained in
our larger class of LP;-graphs.

Now, we briefly explain how we can slightly modify the
coloring presented above in order to exhibit a normal 5—
edge-coloring also for another class of Loupekhine graphs
which contains the so called Loupekhine snarks of the
second kind [17]. First of all, let us define this class. We
will call twist the operation that replaces two edges
between two consecutive blocks in G? in the way described
in Figure 6.

Definition 4. An LP,-graph is a graph which is obtained
from an LP;-graph with a twist of the two edges between
two consecutive selected blocks.

Observe that we do not really construct new examples of
graphs if we perform additional twists between other blocks
of the graphs so obtained. Indeed, it is easy to prove that an
even number of twists produces a graph isomorphic to the
original one. Hence, by applying an odd number of twists
we obtain the same graph obtained by using a unique twist.
Moreover, it is not relevant the pair of blocks where the
twist is applied: indeed, given an LP;-graph Gk, all LP,-
graphs obtained starting from Gi with a twist between two
arbitrary consecutive blocks are isomorphic.

Hence, without loss of generality, we can always apply
the twist to the two edges with color 3 between the last
block in the second subsequence and the first block in the

third subsequence. With such a configuration, we maintain
clearly the same pattern of coloring described before for the
entire graph and the following holds.

Theorem 2. Let G,é be an LP,-graph and let B;...By be the k
blocks in GP. If the k blocks can be partitioned in three subse-
quences of odd length in such a way that properties P1 and
P2 hold, then Gt admits a normal 5-edge-coloring.

We would like to stress that it remains largely open the
general problem of proving that the normal chromatic num-
ber of any Loupekhine snark is five, and it is still open even
if we restrict our attention to the class of snarks among
LP;-graphs.
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