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Abstract—The adoption of Artificial Intelligence methods
within the instrumentation and measurements field is nowadays
an attractive research area. On the one hand, making machines
learn from data how to perform an activity, rather than hard
code sequential instructions, is a convenient and effective solution
in many modern research areas. On the other hand, AI allows for
the compensation of inaccurate or not complete models of specific
phenomena or systems. In this context, this paper investigates
the possibility to exploit suitable Machine Learning techniques
in a vision-based ophthalmic instrument to perform automatic
Anterior Chamber Angle (ACA) measurements. In particular,
two CNN–based networks have been identified to automatically
classify acquired images and select the ones suitable for the Van–
Herick procedure. Extensive clinical trials have been conducted
by clinicians, from which a realistic and heterogeneous image
dataset has been collected. The measurement accuracy of the
proposed instrument is derived by extracting measures from
the images of the aforementioned dataset, as well as the system
performances have been assessed with respect to differences in
patients’ eye color. Currently, the ACA measurement procedure is
performed manually by appropriately trained medical personnel.
For this reason, Machine Learning and Vision–Based techniques
may greatly improve both test objectiveness and diagnostic
accessibility, by enabling an automatic measurement procedure.

Index Terms—Artificial Intelligence, Machine Learning, CNN,
Vision–Based Measurement, Van Herick, Computer Vision

I. Introduction
Glaucoma and other eye diseases are affecting more and

more people in the last few years. Prevention is essential to
avoid the progression of that disease, but in some cases, the
screening exams are invasive or quite expensive, and it is
not possible to periodically monitor the eye condition [1]. It
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has been demonstrated that people with a narrower Anterior
Chamber Angle (ACA), i.e. the iridocorneal angle, are more
vulnerable to the most aggressive form of glaucoma, the
Primary Angle Closure Glaucoma (PACG) [2]. Nowadays, the
gold technique used for ACA measurement is the gonioscopy,
but it is invasive and requires high medical skills [3]. Among
the various assessed techniques, one of the most interesting is
the Van Herick (VH) maneuver, which exploits the correlation
between the thickness of the cornea and the ACA [4]. The
ratio between these two thicknesses represents the width of
the ACA, hence allowing to detect the PACG. Van Herick
approach requires a slit lamp, illuminating the limbus with
a 60° angle between the light source and the eye optical
axis [5]. Despite the simplicity of the approach, any PACG
diagnosis derived from the estimation of the ACA with the
van Herick technique must be performed by direct observation
of an expert ophthalmologist with the help of a traditional slit
lamp and a microscope. It appears then clear that, necessarily,
this type of diagnosis is intrinsically subjective and results are
strictly related to the ability and experience of the observing
ophthalmologist [3].
In this paper, we discuss the adoption of suitable Machine

Learning (ML) strategies to define a vision-based approach
for the measurement of ACA. This novel Machine Vision
(MV) method, which aims at overcoming the aforementioned
subjective limitations, relies on a modified optical setup to
perform the Van Herick measurement in a semi-automated
way. In particular, the traditional slit light is obtained with
an RGB LED-based digital light projector (DLP), whereas a
compact CMOS camera acquires images of the human eye.
The collected set of images is then classified by exploiting
suitably designed MV techniques, thus identifying the specific
images used for the automatic measurement of the ACA. That
is, the presented test case perfectly fits the definition of Vision–
Based Measurement (VBM) system, i.e. the application of MV
to the instrumentation and measurement field [6]. The latter
is actually a hot research topic. This article aim is to apply a
solid and well–known ML algorithm to build a smart, accurate
and intelligent measurement system, where the ML algorithm
is evaluated through suitable metrological metrics.
This manuscript represents a technical extension of our

preliminary study [7]. In particular, for the sake of a thorough
and comprehensive assessment of the proposed measurement
instrument, a new and realistic dataset has been acquired on
a significant set of patients during clinical trials, carried out
at IRCCS Fondazione G.B. Bietti Rome, Italy. Furthermore,
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the performance analysis has been extended to consider the
effect of the eye colors and the impact in terms of measure-
ment accuracy. Finally, the manuscript also takes into account
several Machine Learning techniques, discussing a preliminary
comparison of their performance in the considered application,
and then specifically addressing the implementation of the
instrument using the two most promising ones.

This paper is organized as follows. First, in Section II we
present the current state of advancement and the technique
already presented in the literature for objectively evaluating
Van Herick grading on slit lamp based pictures. In Section
III we sketch the experimental setup and the main goals
of this research activity. Moreover, Section IV presents the
specific ML techniques used and the evaluation techniques.
Specifically, Section IV-A, presents a comparison between
different ML techniques. CNN performances are presented
in Section V. Preliminary results obtained from experiments
in our laboratory are presented in Section VI-B while in
Section VI-C we present results relative to a new dataset
collected with our instrument by expert clinical personnel. The
Paper concludes, after the presentation of the future research
activities, in Section VII.

II. State of Art
As introduced in the previous section, the Van Herick

technique is a very promising approach for non-invasive ACA
measurement [3]. Despite its advantages with respect to other
techniques, some specific limitations of the Van Herick maneu-
ver have narrowed its usage. In recent years, many studies have
been carried out to improve the objectiveness and accuracy of
the VH grading technique [8], [9]. Foster et al. [10] proposed
a new grading scale system to improve the sensitivity of the
evaluation. According to this work, the new scale reduces the
possibility of wrongly diagnosing "open-angle" cases with a
close angle condition. Moreover, Sihota et.al [11] introduced a
modified grading system. However, in order to use these new
grading systems, the opticians are required to have acquired a
good level of training.

To overcome the intrinsic subjectivity of this approach,
an automatic measurement of the ACA could be performed.
Theeraworn et al. [12], [13] present a Support Vector Machine
algorithm able to extract the measurement of the ACA from
slit-lamp images. This approach is very promising, but it still
requires the presence of an operator that correctly sets the
slit lamp and performs the maneuver. In fact, the algorithm
just extracts the information from the images. Other automatic
procedures have been proposed over the years. However, such
works foresee the usage of other techniques such as gonioscopy
[14] or OCT [15], even exploiting Machine Learning tech-
niques. In the first case, the technique is invasive while in
the second the procedure requires an OCT machine, which is
expensive, thus being not suitable for continuous screening.
Moreover, Shimizu et al. have recently presented a portable
device that can be equipped on a smartphone, whose aim is
to replicate slit-lamp microscope system behavior in a cheaper
and more compact design [16]. However, the analysis of the
collected image is still subjective and relies on expert medical
opticians’ evaluation.

Differently, our work is focused on the development of an
instrument that automatically and objectively performs the
VH procedure in a cheap, compact, and portable system.
The proposed automatic Vision–Based Measurement System,
exploits Machine Learning techniques for image classification,
whose behavior is analyzed from a metrological perspective.
Machine Learning techniques, in literature, have been widely
applied to VBM systems [17], especially CNN–based ones.
Indeed, CNNs reviled their suitability for VBM systems in
many different applications [18]. For example, the authors [19]
proposed a CNN-based system for railway network inspection.
Differently, [20] presented a method for head pose estimation
in vehicles, demonstrating high versatility in the application of
CNNs. Furthermore, an interesting review paper [21] summa-
rizes the most widespread Deep Learning (DL) techniques for
Image Classification, with regard to ophthalmic applications.
They identified several CNN network models that proved to be
promising such as, among others, AlexNet [22], GoogleNet,
[23] and ResNet [24]. These networks showed the best results
in the ImageNet Large Scale Visual Recognition Challenge
[25] and are all based on Convolutional Layers.

III. Experimental Setup and Research Goals
The Van Herick procedure used to measure the ACA must

be accomplished with specific alignment constraints [3]. It
has been shown by Leung et al. [26] that both illumination
and observation angles affect the ACA openness assessment.
As a consequence, particular attention was paid during the
realization of the optical setup for such an experimental
evaluation. A schematic diagram of the optical setup used to
perform the Van Herick measurement is shown in Fig. 1.

CMOS
Camera

Optical Axis

Fixation LED

DLP
Light

Source

60°

Semi-re�ecting 
Mirror

Figure 1. Schematic diagram of the optical setup.

The optical setup consists of two main devices. Firstly, a
digital CMOS camera Basler Dart (daA1600-60uc S-Mount,
Basler© AG, Ahrensburg, Germany) is positioned in front of
the analyzed eye, aligned with its optical axis. A 16 mm focal
length lens (Evetar Lens M12B1618IRM12 F1.8) is also used
in the optical setup. Secondly, a LED DLP (DLP2010EVM-
LC, Texas Instruments©, Dallas, Texas, U.S.) was used as the
illumination unit, instead of the traditional slit light. The DLP
relies on modern micro-mirror technology to project structured
light onto a specific target. The illumination unit was placed
at a 60-degree rotation angle with respect to the eye and
camera optical axis as shown in Fig. 1. Moreover, the DLP
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has been configured to emit a uniform red slit light that scans
the whole surface of the eye under examination. Thus, during
the measurement procedure, the emitted slit light scans the eye
from the external corner of the sclera towards the nose. This
scan takes place during the frames acquisition with the digital
CMOS camera. A fixation target, i.e. a small light pointer, was
placed on the eye-camera optical axis, through a 45° semi-
reflecting mirror, to help the patient to look straight ahead.
The patient’s head is then placed on a chin rest to guarantee
the steadiness and alignment to the optical setup. A single
measurement procedure has been designed to perform two
entire scans of the eye in 4 seconds, allowing for a total of
120 raw pictures to be collected at 30 fps. The entire sys-
tem is connected to a Windows® based embedded computer
(Lattepanda Alpha 864s) with an Intel® Core™ m3-8100Y
processor unit. The computer runs a Python-based graphics
user interface (GUI) that is in charge of peripheral control
(Camera and DLP) as well as real-time image processing.
Actually, the set of images previously acquired by the camera
are then processed by the Machine Learning algorithm, aiming
at the identification of the central images.

As previously mentioned, the Van Herick technique foresees
the comparison of the depth of the peripheral anterior chamber
with the thickness of the cornea. This measure can be derived
when a narrow slit of light shines within the limbus, i.e. the
edge between the cornea and the sclera. As a consequence,
within the entire set of images acquired during the scan, only
a few of these (referred to as central images) can be used to
measure the ACA. Both previous and subsequent acquisitions,
where the light is placed respectively on the left and on the
right of the limbus, must be discarded. Indeed, since the patient
eye position may change between different measurements, an
a–priori images selection can not be performed. Consequently,
a wider area must be scanned.

The outcome of a single measurement, that is, the dataset
coming from the acquisition system consists of two scans
of the entire eye, each one composed of 60 images with a
1600G1200 px resolution. As an example, a set of images
acquired during a scan is represented in Fig. 2.

60 Images

approx 3 “Center” Images“Left” “Right” 

Figure 2. Example of a set of images acquired during a scan.

The approach we followed in this work is based on a Con-
volutional Neural Network (CNN), solving a three-class image
classification problem. The CNN takes as inputs the images
acquired by the setup and performs the classification activity
by tagging the images as left, central or right respectively
labeled with 0, 1, 2.
In the following, after a comparative analysis among differ-

ent ML approaches, we identified the two CNNs that revealed
most suitable to solve the classification problem. Both of them

have been then specifically analyzed, through an objective
approach presented in Sec. VI. As a last remark, as outlined
in Section II, to the best of our knowledge there are no
other contributions in the literature addressing an automatic
procedure to perform the Van Herick maneuver, whereas other
works focus on the of ML techniques to process images
acquired with the standard manual Van Herick technique. As
a result, it is not possible to identify a literature baseline, with
which to compare our approach.
For this reason, in this work, the behavior of the clas-

sification algorithm is evaluated by means of two different
approaches:
1) We firstly used classical Machine Learning metrics, like

accuracy, precision and recall to evaluate the network
behaviour and choose the best model. These tasks have
been addressed in Sections IV and V.

2) Secondly, we have tested the developed network by
means of a metrological evaluation strategy, described
and presented in Section VI. It is worth observing that
the test data used to carry out this last evaluation have
not been used for the network training, neither for the
accuracy, precision and recall evaluations.

IV. ML–based classification Technique
In the following, the Neural Network design is specifically

addressed. At first, we choose the best ML techniques for
the considered application, by a comparative approach. An
investigation of the adopted CNNs is then proposed.

A. Typical metrics and ML Algorithm Comparison
Typically, a first evaluation of the network performance

includes the analysis of the accuracy. This is simply calculated
as the percentage of correctly labeled data (HC ) over the total
observations (HC + H 5 ):

022DA02H(%) = HC

HC + H 5
∗ 100. (1)

Accuracy, however, becomes a not representative metric if
the validation dataset is unbalanced. Among all the central
predictions obtained by the network (Total Positive, TotP), a
group of them (True Positive, TP) is well predicted while
others are not (False Positive, FP). Moreover, it is possible
that the network wrongly labels some central images as right
or left, namely False Negative (FN). Given these definitions,
precision and recall are defined as:

'420;; (%) = )%

)% + �# ∗ 100. (2)

%A428B8>=(%) = )%

)% + �% ∗ 100, (3)

Recall indicates the network ability to mark all the real
Central images as Central. On the other hand, precision
represents the network capability not to label left and right
images as central. If the number of False Positives (i.e. left and
right images marked as central) decreases, precision increases.
In general, it would be important to obtain high values of

both recall and precision, but for the application considered
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in this work, the precision is more important. Indeed, if some
left or right images are wrongly interpreted as central, the
measurement outcome taken from those images becomes in-
trinsically less accurate. Considering the aforementioned met-
rics, different ML techniques have been tested and evaluated
to identify the most suitable one for the application at hand.
As underlined in Section II, image classification problems
can be solved by exploiting CNN-based architectures. To this
aim, several networks structures have been trained, since the
level of complexity of the given problem does not preclude
the selection of any specific model, nor imposes an a priori
choice of one model with respect to another. Therefore, we
tested and compared the classification performance of the
most commonly used CNN structures, as well as of a linear
Space Vector Machine classifier (SVM) and of a K-means
unsupervised classification algorithm.

In Table I the results of the performance comparison among
the aforementioned techniques are reported. Namely, the per-
formance of the different machine learning approaches over a
test data-set, composed by 8677 non-augmented images, have
been assessed in terms of validation accuracy (VAL-ACC),
center class prediction recall (CTR-REC) and precision (CTR-
PR), single frame prediction time (SFPD) and the respective
standard deviation over the whole test data set. It is worth
observing that, the test data-set used for the comparison has
not been used before during the training phase. Moreover, the
total number of parameters of each CNN, regarding convolu-
tional layers only, have been reported to give an idea of overall
networks complexity.

Table I
Classification Method Comparison

Method VAL-ACC CTR-PR CTR-REC SFPD (ms) f SFPD (ms) Parameters
AlexNet 98.82 % 86.04 % 86.04 % 29.98 3.43 6088768
VGG16 99.02 % 88.44 % 87.18 % 33.42 3.53 14713536
ResNet50 98.29 % 79.56 % 82.05 % 39.94 6.28 23581440
SVM 92.90 % 26.92 % 7.98 % 0.39 0.21 -

K-means 59.31 % 3.73 % 12.82 % 0.71 0.25 -

Among the different ML techniques, CNNs show a superior
performance in terms of accuracy if compared to both the lin-
ear SVM classifier and the unsupervised k-means approaches.
It is worth noting that the SVM accuracy is quite high while
prediction of center images is not equally acceptable. Indeed,
the linear classifier can correctly predict most of the left or
right images, while confusing the central images. The same
can be said for the k-means ML algorithm, but with even worst
performances: In this case, the unsupervised method failed
to recognize a common pattern among the presented training
images, hence resulting in a significantly lower performance
in the validation phase.

From Table I, AlexNet and VGG16 [27] are the networks
providing the best performance in terms of precision and
recall, and in general with respect to all the paramenters. As a
general consideration, the medical operator needs to review
the images classified as ‘central’ just after the procedure,
possibly repeating the measurement if the acquisition was not
successful. Besides the accuracy of the classification, also the
overall time taken by the CNN to label all the acquired images
is an important performance index. From Table I Alexnet
revealed a lower complexity in terms of total parameters (last

column of Table I) and showed to be slightly faster than
VGG16, that is however able to provide better values of
precision and recall. For these reasons, both will be considered
in the following analysis, and as potential candidates for the
implementation within the proposed VBM.

B. Convolutional Neural Network Design

As described in the previous section, both AlexNet [22]
and VGG-16 [27] structures can be finally chosen for this
application. Different Alexnet and VGG-16 settings have been
tested during an extensive experimental campaign, where a
trial and error methodology has been adopted. In particular,
several typical parameters, such as precision and recall, have
been used to optimize the training activity. Afterwards, the
best training configuration for our application has been chosen
and it is presented in this section. Moreover, as the adopted
method is a supervised ML technique, we took particular
care of the labelling process. The collected images have been
carefully divided into the three classes, by exploiting the
guidelines of expert ophthalmologists. Relu has been adopted,
both for AlexNet and VGG-16, as it is a commonly used
activation function [28], that is in charge to manage the Input-
Output behavior of neurons. Moreover, in this situation, it
achieves excellent performances and it demonstrated to learn
faster. AlexNet structure, as typical CNNs, is formed by both
Convolutional and Pooling layers, where the latter are placed
between each convolutional layer and the subsequent one.
Specific image patterns are identified by means of a Kernel
slicing on the entire layer. Afterwards, a common practice
consists in the usage of a pooling layer, that downsamples the
input patterns, aiming to increase the robustness of the network
to slight variations of the detected features. The extraction
of such meaningful features is done taking the maximum
from each kernel acquisition, namely max pooling. Finally,
the last fully connected layers and the softmax activation
compute the probability of each image to belong to each
of the 3 classes. A slight modification has been made in
respect to the typical AlexNet structure: we used a bilinear
interpolation algorithm to obtain resized 400G300 px input
images. It is worth noting that downsized images are used
only for classification purposes, while the ACA measurement
will be performed with native resolution ones. Indeed, there are
no network performance improvements when using the typical
227G227 px AlexNet input size. Likely, an higher quality of
the image is, for our purposes, more important than a fine
tuning of layers and kernel sizes. Fig. 3 shows the network
structure we used.
As it is possible to see from Fig. 3, the dropout technique,

which consists on the deactivation of some randomly chosen
neurons, is used to reduce inter–dependency between fully
connected layers, thus preventing over–fitting. The Dropout
Rate has been set to 50%.

Analogously, Fig. 4 represents the VGG-16 architecture,
which is basically formed by the same components already
discussed for the AlexNet one. Actually, the difference resides
in the number and dimensions of the various layers.
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Figure 3. AlexNet [22] structure.
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Data preparation is a fundamental task to be done before
the training stage. Hundreds of acquisitions were made and the
data have been manually split into the three classes to train the
network. Data are normalized between 0 and 1, and then 70%
of the total have been used to train the network, while the other
portion for validation purposes. One important feature of the
available dataset is the low number of central images (i.e. those
ones to be identified with the network), usually three or four
out of 120 images acquired during the measurement procedure.
To over the hump, data augmentation techniques have been
adopted. Data augmentation usually foresees the generation
of modified training examples, applying different and pre–
tuned image transformations, e.g. horizontal and vertical shifts,
rotations and brightness modification, only to name a few.
This technique is typically used to generalize the behavior of
the network, trying to generate new and meaningful examples
targeted for the application. Instead, we used data augmenta-
tion also to generate more central images, this way giving the
possibility to train the network with comparable amounts of
left, right and central images. The data augmentation technique

has been applied to the already labelled images, to ensure that
the augmented images are correctly labelled. In Table II are
listed our data augmentation parameters.

Table II
Data Augmentation Setup Parameters.

Horizontal Shift Range (% of the width) (−1%, 1%)
Vertical Shift Range (% of the height) (−1%, 1%)

Rotation Range (deg) (−7, 7)
Brightness Multiplication Factor Range (0.5 − 1.75)
Zoom Range (% of the picture size) (90% − 110%)

Indeed, little movements to the right and to the left, rotations
and zooms may occur. Furthermore, different brightness levels
could take place in different surrounding environments. It is
worth observing that we generated more central images than
the other two classes, aiming to increase the precision of the
classification of the central images. After the data preparation
stage, the prepared data set had the properties listed in Table
III

Table III
Train Data Set Properties.

Original Original Training Augmented Total Training

Left 8537 5976 5711 11637
Central 593 416 14994 15410
Right 7877 5513 5471 10984

In Table III, as said before, the original images have been
splitted in validation and training data, being respectively the
30% and 70% of the total. Afterwards, only the training images
have been augmented.

V. Neural Network Evaluation
The CNN AlexNet and VGG-16 described in Section IV-B

have been implemented in Python, within the Keras (Tensor-
flow Version 2.1.0) framework and trained according to the
set–up described in Table IV. Clearly, as the hyper-parameters
have been chosen after a trial-and-error stage, the final settings
can be slightly different for each CNN.

Table IV
CNN training settings.

AlexNet VGG-16

Optimizer SGD Adam
Learning Rate (LR) 10−2 2 · 10−4

Epochs 75 150
Batch Number (BN) 128 332

Loss Function SCC SCC
Validation Data (% of original images) 30 30

At each training stage, the error gradient was calculated
through the Stochastic Gradient Descent (SGD) algorithm
for Alexnet, and by exploiting the Adam optimizer [29] for
the VGG-16 approach. By controlling the error gradient the
optimizer updated the weights so that the error decreased step
by step. The next weights choice was done by evaluating the
error cost, through a specific loss function. Given the training
settings of Table IV, considering the n–th observation was
labeled as a specific class 2 with probability ?=,2 and N
was the total number of observations, the Sparse Categorical
Crossentropy (SCC) loss function was expressed as:
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!>BB(?=,2) = −
1
#

#∑
==1
[;>6(?=,2)] . (4)

In this context, the Learning Rate (LR), which represents
how quickly the network learns, was surely a key parameter,
that has been chosen after several experimental tests. Weights
were updated at each step proportionally to the LR and to
the calculated error. Both training and validation data have
been divided into BN chunks that were individually loaded in
memory to increase computational efficiency.
It is worth noting that in our test case the train dataset

was used several times to feed the network, 75 and 150
Epochs for AlexNet and VGG-16, respectively. The training
has been stopped when the loss and accuracy did not improve
for several consecutive epochs, to avoid overfitting. Results
are encouraging since it is possible to achieve high accuracy
values, already presented in Table I. Despite this, a more
accurate analysis is needed, and a deeper evaluation is now
conducted by means of different metrics. Indeed, the objective
of the network is to identify images belonging to the center
class, that has very low validation examples. For this reason,
high accuracy values can be obtained also if the central class
is not well predicted. Moreover, there is an impact of the
threshold value on the precision. The threshold is defined as
the probability level above which an observation is labeled
as center. The resulting recall and precision curves obtained
are shown in Fig. 5 and Fig. 6 for AlexNet and VGG-16,
respectively.
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Figure 5. Precision and Recall: AlexNet

An evident effect is that, as the threshold increases, re-
call decreases with increasing precision. Indeed, a threshold
increase reflects on a lower number of total positive, i.e.
)>C% = )% + �%. The growth of the precision is a clear
indication that the total positive decrease goes together with a
decrease of false positives that mostly become true negatives.
The recall decrease is slighter than the precision increase. This
allows choosing a high value of the threshold to increase the
precision of the whole network. It is worth observing that all
the reasoning is made on the global number of test sequences,
but high values of the threshold may involve in a small number
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Figure 6. Precision and Recall: VGG-16

of total positive for a single data–set. For this reason, in
this work the chosen threshold is 89%, allowing to achieve
a precision much greater than the 80% for both the CNNs.
The trained network can be finally used to predict central

images on the newly acquired data set. The classification
algorithm can be run in the described embedded system, with
additional few seconds of execution that does not increase
the acquisition time, as it is performed after the scans are
completed. This is surely an important aspect to underline, as
it is demonstrated that patient’s ability to look steady toward
the fixation target, is time-limited.

VI. Test results
The performance of the networks and the instrument were

tested by exploiting the evaluation technique presented in
Section VI-A. The images were collected in grey scale by ex-
tracting the red channel from the original images, to emphasize
the light line. In distinction, the reference image was collected
in RGB to simplify the iris recognition. In the following,
results obtained by two different datasets are presented: i) the
preliminary results with the old dataset, already presented in
our previous work [7], and ii) the clinical results obtained
with the new dataset, collected by expert ophthalmologists
at IRCCS Fondazione G.B.Bietti. For both datasets written
informed consent was obtained from all patients via an agree-
ment document.
The original dataset was acquired by the authors at OptoLab,

Department of Engineering "Enzo Ferrari", UNIMORE, Mod-
ena, Italy. Six different subjects have been tested five times,
for a total of 60 eye scans (i.e. 30 measurements). The number
of center images chosen by the network ranged from 3 to 5
per each measurement. The total amount of analyzed images
was 125. The six subjects on which the measurements were
carried out were chosen with different colors of the iris to
exclude this variable as a likely possible source of error in the
validation phase.
The new acquired dataset, instead, has been collected on

a total of 36 different subjects by expert ophthalmologists
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in a clinical environment. As before, the number of center
images chosen by the network ranged from 3 to 5 per each
measurement. The total amount of analyzed central images
was 140. In this work, the preliminary results have been
compared with the new ones and an analysis of the influence
of the iris pigmentation on the networks performances is
presented. It is also worth observing that, in the following,
all the histograms reporting the resulting error between the
light line and limbus position have been derived by using the
AlexNet network. Those related to the use of the VGG network
have not been presented, as they are not informative and the
comparison between the two networks has been conducted
only by analyzing the mean and standard deviation values of
the considered error.

A. Metrological Evaluation Technique
The goodness of the CNNs performance is evaluated, from a

metrological point of view, through the study of the difference
in pixels between the position of the limbus and the position
of the light line on the eye surface: the lower this difference
the higher the CNN accuracy. This procedure has been divided
into 4 steps: i) recognition of the iris from a reference image
to have a reference for the intensity profile extraction; ii)
extraction of the limbus position from a reference image
captured at the first instant of the measurement procedure;
iii) evaluation of the line position for every image labeled
as central; iv) computation of the difference between these
two positions. It is worth observing that all the procedure is
conducted in a semi-automatic way, thus revealing to be not
directly applicable to identify the center images. Indeed, the
aim is to build a totally automatic VBM system.

The extraction of the limbus position is performed by
considering the limbus intensity profile, that can be fitted as
an error function such as the one in Eq.(5), where A, B, C and
D are fitting parameters that change for each reference image.
Then, the maximum of the fit function derivative, Eq.(6), is
computed to represent the limbus position, -;8<1DB .

5 (G) = � + � 2√
c

∫ � (G−�)

0
4−C

2
3C (5)

5 ′(G) = � · � 2√
c
4−�

2 (G−�)2 (6)

Conversely, since the light line intensity profile can not be
easily fitted by a standard distribution, the -;8=4 position of
the light line is estimated as in [30] [31]:

-;8=4 =

∑
8 �8G8∑
8 �8

, (7)

where G8 is the single–pixel x-coordinates, while �8 is the single
pixel intensity. The error between the limbus position -;8<1DB
and the line position -;8=4 is finally computed as:

� = -;8<1DB − -;8=4 . (8)

The value of � can be positive or negative (i.e. left or right,
respectively) based on the light line position with respect to
the limbus on the images selected by the neural network.

The error E measurement is evaluated through a statistical
analysis with a histogram of the error occurrences, observing
its center of gravity and standard deviation.

B. Preliminary Results
In the following, the results obtained with the dataset

collected in the OptoLab Laboratory are presented. A typical
reference image, from which the limbus position -!8<1DB is
extracted, is depicted in Fig. 7(a). In particular, a reference
image is collected for each measurement. Furthermore, in Fig.
7(b) the limbus intensity profile, extracted in correspondence
to the eye center y-coordinate, is plotted along with its fitting
as an error function (orange solid line) and its derivative (light
green solid line). The maximum of the derivative represents
the limbus position. In Fig. 8 a typical center image used
to extract light line position is shown. After retrieving the
position of the Limbus -!8<1DB and of the light line -!8=4,
exploiting Eq.8 the displacement � is computed.
In Fig. 9, the histogram of the error � occurrences, for

the AlexNet network, is shown. As it is possible to see, the
histogram has a Gaussian-like behavior with parameters:
` = 5.99 px and f = 5.92 px. By exploiting the same
technique with the VGG-16 approach, it is possible to derive
` = 6.27 px and f = 6.3 px. Actually, VGG-16 results in
a higher error and standard deviation. Despite this, as the
values are greatly lower than the light line thickness, both
networks can not perform better, and both errors are totally
negligible.
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Figure 7. Typical reference image used to estimate the limbus position (a);
the corresponding intensity profile along the y-coordinate of the eye center
(•) (green line in (a)), the fitting error function (•) and, its derivative (•) (b).

C. Clinical Results
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Figure 8. Typical center image used to estimate the light line position; The
intensity profile of the line is extracted along the y-coordinate of the eye center
(green line).
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Figure 9. Histogram of occurrences of the error between the limbus and
line position in pixel considering the preliminary dataset with the AlexNet
network. The (•) line represents the Gaussian fitting of the histogram.

To evaluate the influence of different iris pigmentation on
network capability to extract center images, a new dataset
has been collected on a total of 36 volunteers by specialized
ophthalmologists. It is worth noting that, for each volunteer,
a different number of measurements have been performed, as
to monitor the progression of the glaucoma several measures
are needed. The dataset includes eyes of four different colors:
brown, blue, black, and green. The exploitation of this novel
dataset, acquired by professionals, is surely of fundamental
importance to analyze the accuracy of the whole system. The
number of measurements comprised in this new dataset for
each color is presented in Tab. V. It is worth observing that,
for each measurement, the number of central images can be
different, so that the analysis was conducted by using 35
images for each iris pigmentation. More precisely, the balanced
dataset has been obtained by randomly removing a few images
for some eye colors.

Table V
New dataset properties.

Color Number of Measurements

Black 14
Brown 13
Green 11
Blue 12

As before, the error between the limbus and the line
position, in pixel, is evaluated. The error distribution histogram
of the complete dataset, as well as the Gaussian line-fit, is

depicted in Fig. 10, considering the AlexNet network. The
mean experimental error is ` = 4.12 with standard deviation
f = 5.67, as also summarized in Tab. VI, where a comparison
with the VGG-16 network has been conducted.
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Figure 10. Histogram of occurrences of the error between the limbus and line
position in pixel for the new dataset, exploiting the AlexNet network. The (•)
line represents the Gaussian fitting of the histogram.

By comparing the results obtained from the two datasets,
respectively of Fig. 9 and 10 it is possible to notice that both
revealed similar standard deviations (slightly lower for the new
dataset). This result is totally reasonable as the two datasets
present similar number of statistical samples (slightly higher
for the new dataset). Moreover, it is possible to underline
that in both situations the mean error is similar, but always
positive. Indeed, we decided, by suitably labeling the training
data, to instruct the network to choose central images which
present the line slightly inside the iris, rather than slightly
outside. Actually, when the line is somewhat inside the iris, it
is still possible to see the refraction of the light, and derive the
Van Herick grade. To evaluate the iris pigmentation influence
we extract the error distribution histogram for each color, as
shown in Fig. 11, that refers to the AlexNet network. The
same reasoning can be made referring to the results obtained
with the VGG-16 network, presented in Tab. VI. Moreover, the
VGG-16, as before, still results in a higher error and standard
deviation. As said before, this comparison still depends on the
specific hardware used (in particular the light line thickness)
which makes substantially this error totally negligible.
According to the Table VI, the best results have been

obtained for black and brown eyes. Differently, green and blue
eyes show a slightly higher mean error and standard deviations.
This trend is reasonable since we used red-colored light line.

Table VI
Mean and standard deviation of the

error E between the limbus and the light line
position for different iris pigmentation.

AlexNet VGG-16
Color ` (px) f (px) ` (px) f (px)

Black 1.09 4.36 2, 6 3, 2
Brown 1.20 4.28 3, 7 5, 9
Green 6.69 5.19 6, 2 5, 6
Blue 7.51 5.48 7, 2 6, 2
Total 4.12 5.67 5, 37 6, 1

For this reason, the system acquires the red RGB channel
from the images, to better highlight the line. This operation
leads to different light line intensities, depending on the
specific eye pigmentation. In Fig. 12 it is possible to observe
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the mean maximum line intensity per eye pigmentation.
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Figure 11. Histograms of occurrences of the error � between the limbus
and the light line position for different eye pigmentation, were obtained with
the AlexNet network. (a) black eyes, (b) brown eyes, (c) green eyes and (d)
blue eyes. In every figure the • line represents the Gaussian fitting for each
histogram.
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Figure 12. Histogram of the mean intensity of the light line for each different
eye color.

The mean maximum intensity is retrieved by extracting ten
contiguous horizontal line intensity profiles from ten different
center images per color. The profiles have been extracted in
correspondence with the eye y-center. As it is possible to see
in Fig. 12 the brown eyes show the highest light line intensity,
while the blue eyes present the lowest maximum intensity. The
rationale of the aforementioned behavior is that brown eyes
have a higher red component with respect to green and blue
eyes. For this reason, brown eyes images are clearer, resulting
in a lower mean error. Black iris represents an exception as
it shows a lower mean maximum intensity while performing
better in terms of mean error. In this case, the results are
reasonable because black is a neutral color, thus its behavior
does not depend on the specific RGB channel acquired. At the
same time, black is the iris color that shows a better contrast
with respect to the white color of the sclera, which probably
leads to a better light line recognition by the neural network.

VII. Conclusions and Future Work
The use of Machine Learning techniques to extract measure-

ment information from ophthalmic images is a very promising
technique that can overcome some critical aspects of the
manual Van Herick approach. After a research phase where
different ML techniques have been tested, CNN networks
proved to perform better in terms of precision and accuracy
for our specific test case. Both Alexnet and VGG-16 structures
proved to be suitable for the considered application. Indeed,
AlexNet revealed to be less resource-demanding, providing
slightly lower prediction times. Besides, VGG-16 is a little
more accurate, and considering that due to the specific em-
ployed hardware and the fact that the analysis is made after
the image collection phase, the proposed Neural Networks
provide very good results in the center images choice while
maintaining optimal computational complexity.
In this work, a new dataset has been collected by an expert

ophthalmologist. This extensive measurement activity is of
fundamental importance to, on the one hand, evaluate the
neural network with realistic statistical samples. On the other
hand, these measures have been taken in different environ-
mental conditions with the respect to the training images.
Moreover, the effect of different iris pigmentation has been
observed. The presented results show low mean and standard
deviation values of the error between the light line and the
limbus positions. Moreover, also the maximum error observed
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during the experiment, i.e. � ≈ 18 px, is visually comparable
to the line width. Moreover, the trained CNN has proven
to work as expected in different environmental conditions,
in a realistic clinic field, and with eyes of different colors.
More precisely, the detection of the line on darker irises,
i.e. black and brown, reported a noticeable lower average
` error than eyes with lighter colors. For this reason, as a
future improvement, the system will be automatically able to
change the light line color, depending on the specific patient’s
iris pigmentation. After the center images are identified, a
Vision–Based algorithm is currently under development to
measure the displacement between the slit light that hits the
cornea and the refracted light inside the anterior chamber. A
refined tuning of the Vision–Based system will be carried
out, based on a comprehensive inter–subject experimental
campaign. Moreover, the ongoing activity is aimed at a careful
analysis of the measurement uncertainty.
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