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ABSTRACT
We report the detection of thermal Sunyaev-Zeldovich (SZ) effect fluctuations in the intra-
cluster medium (ICM) of Coma cluster observed with Planck. The SZ data links the maxi-
mum observable X-ray scale to the large Mpc scale, extending our knowledge of the power
spectrum of ICM fluctuations. Deprojecting the 2-d SZ perturbations into 3-d pressure fluctu-
ations, we find an amplitude spectrum which peaks at δP/P = 33 ± 12% and 74 ± 19% in the
15′ and 40′ radius region, respectively. We perform tests to ensure fluctuations are intrinsic
to the cluster and not due to noise contamination. By using high-resolution hydrodynami-
cal models, we improve the ICM turbulence constraints in Coma, finding 3-d Mach number
Ma3d = 0.8 ± 0.3 (15’ region), increasing to supersonic values at larger radii (40’), and an
injection scale Linj ≈ 500 kpc. Such properties are consistent with driving due to mergers,
in particular tied to internal galaxy groups. The large pressure fluctuations show that Coma
is in adiabatic mode (mediated by sound waves), rather than isobaric mode (mediated by
buoyancy waves). As predicted by turbulence models, the distribution of SZ fluctuations is
log-normal with mild non-Gaussianities (heavy tails). The substantial non-thermal pressure
support implies hydrostatic mass bias bM = −15% to −45% from the core to the outskirt
region, respectively. While total SZ power probes the thermal energy content, the SZ fluctua-
tions constrain the non-thermal deviations important for precision cosmology. The proposed,
novel approach can be exploited by multifrequency observations using ground based interfer-
ometers and future space CMB missions.

Key words: cosmology: cosmic microwave background – galaxies: clusters: intracluster
medium – observations – theory – turbulence

1 INTRODUCTION

The Planck cosmic microwave background (CMB) mission (Planck
Collaboration et al. 2011) has for the first time allowed us to re-
trieve all-sky maps (Planck Collaboration et al. 2015a; Hill &
Spergel 2014; Khatri 2016) of the Sunyaev-Zeldovich effect (SZ;
Zeldovich & Sunyaev 1969). The chief advantage of Planck over
other past and current satellite and ground based missions is its
multiple frequency channels covering the low frequency Rayleigh-
Jeans as well as the higher frequency Wien region of the CMB
spectrum making the separation of the thermal Sunyaev-Zeldovich
from CMB and foregrounds feasible. As the blackbody photons
from the CMB interact with hot intergalactic/intracluster medium
(IGM, ICM) traveling from the last scattering surface (Sunyaev &
Zeldovich 1970; Peebles & Yu 1970) to us, Compton scattering up-
scatters a fraction of photons to higher energy creating a distortion
from the Planck spectrum IPlanck

ν (Sunyaev & Zeldovich 1972). The
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change in the intensity ∆Iν = Iν − IPlanck
ν of the CMB radiation is

given by (Zeldovich & Sunyaev 1969)

∆Iν = y
2hν3

c2

xex

(ex − 1)2

[
x
(

ex + 1
ex − 1

)
− 4

]
, (1)

where x = hν
kBT , T = 2.725(1+z) is the CMB temperature at redshift

z, ν = ν0(1 + z) is the frequency of CMB photon at redshift z, ν0

is the observed frequency today (z = 0), h is the Planck’s constant,
kB is Boltzmann constant and c is the speed of light. The amplitude
of the distortion, y, is proportional to the integral of the pressure P
along the line of sight,

y =
σT

mec2

∫
ds nekBTe, (2)

where Te and ne are the electron temperature and electron num-
ber density respectively in the ICM plasma, me is the mass of the
electron, σT is the Thomson scattering cross section, and s is the
distance coordinate along the line of sight.

The Sunyaev-Zeldovich amplitude, y, contains information
about the properties of the galaxy cluster which in turn are sen-
sitive to the cosmological parameters. The Planck collaboration
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2 Khatri & Gaspari

as well as independent groups have used the y maps created us-
ing the Planck data to study the clusters themselves as well as to
measure the cosmological parameters (e.g., Hill & Spergel 2014;
Planck Collaboration et al. 2015a,b,c; Ruan et al. 2015) In partic-
ular, the Planck collaboration has used the y parameter measure-
ments of the Coma and Virgo cluster to constrain the average prop-
erties of these clusters (Planck Collaboration et al. 2013, 2015d).
Since these nearby clusters are well resolved by Planck, detecting
y signal out to several Mpc, it opens up the possibility of studying
the y fluctuations – and hence the ICM pressure perturbations – on
large scales, complementing the X-ray studies focusing on smaller
scales (e.g., Schuecker et al. 2004; Churazov et al. 2012; Sanders
& Fabian 2012; Gaspari & Churazov 2013; Gaspari et al. 2014a;
Hofmann et al. 2016 and references within). The smallest scale we
can study with Planck is limited by the angular resolution of 10′

of the 100 GHz channel. We need the 100 GHz channel to be able
to do component separation and minimize contamination from the
other components.

While X-ray telescopes such as Chandra and XMM-Newton
provide us with extensive details on the density and temperature of
the ICM plasma (Tx ≈ 1-10 keV), the X-ray emissivity is ∝ ne nion,
where nion is the ion number density, i.e., limited to the core re-
gion due to the steep negative density gradient. The SZ signal can
instead be detected with significance at much larger radii, grant-
ing the complementary view to X-ray observations. On the other
hand, it should be noted that the temperature decline limits the
SZ signal (∝ ne Te) at large radii too (Hallman et al. 2007). Us-
ing high-resolution 3-d simulations, Gaspari & Churazov (2013)
and Gaspari et al. (2014a) have shown that the plasma perturba-
tions in all the thermodynamic variables (density, entropy, pressure;
ρ,K, P) are tightly related to the dynamical level of the cluster, i.e.,
how strong the turbulent motions are. In particular, the peak of the
Fourier amplitude spectrum, Aρ(kpeak), of the relative density pertur-
bations, δρ/ρ̄ is linearly tied to the 3-d Mach number of gas motions
as (Gaspari & Churazov 2013)

Ma3d ≈ 4 Aρ(kpeak) ≈ 2.4 AP(kpeak), (3)

where Ma3d =
√

3 Ma1d = σv/cs, σv is the turbulent velocity dis-
persion, cs is the ICM adiabatic sound speed and Ma1d is the 1-d
Mach number. In the last equality we have assumed adiabatic per-
turbations with adiabatic index γ = 5/3 and AP is the amplitude of
pressure fluctuations δP/P̄. The cascade of the spectrum is instead
related to the microphysics of the plasma. If thermal conduction
(diffusion of internal energy via plasma electrons) is dominant, the
density (or temperature) amplitude spectrum becomes steeper than
that of the velocity field by up to factor of 5 (Fig. 2 in Gaspari et al.
2014a). For weaker diffusion, both slopes tend to the Kolmogorov
power spectrum, Pk ∝ k−11/3 (Ak ∝ k−1/3). However, the density and
velocity slopes do not follow each other linearly at progressively
smaller scales, as thermodynamic quantities are not pure passive
scalars. The simple analytic conversion in Eq. 3 between velocity
and thermodynamic fluctuations should be thus used only near the
injection scale (spectrum peak), i.e., between total variances.

In this paper, we will for the first time use the Compton y
fluctuations, δy/y, to retrieve pressure fluctuations δP/P, and thus
assess the level of gas motions at scales larger than that probed
via X-ray surface brightness in Coma galaxy cluster (Churazov
et al. 2012; Gaspari & Churazov 2013). We will show that sub-
stantial pressure fluctuations (δP/P̄ ' γ δρ/ρ̄) of the order 30 per-
cent are present at several 100 kpc, while gradually fading at radii

r & 1 Mpc. This implies gas turbulent motions1 with Mach number
Ma3d ≈ 0.8, i.e., subsonic yet significant turbulence, as the average
sound speed of Coma is cs ≈ 1500 km s−1. This is consistent with
motions driven by mergers and cosmological flows (e.g., Lau et al.
2009; Vazza et al. 2009, 2011; Miniati 2014; Battaglia et al. 2015;
Schmidt et al. 2016).

It is crucial to understand the physics of the ICM, as hot
gaseous haloes have been found to be ubiquitous from massive
galaxy clusters to elliptical and spiral galaxies (e.g., Anderson et al.
2015). Remarkably, the cascading large-scale turbulence in the hot
halo can also drastically alter the accretion mode onto the cen-
tral supermassive black hole, igniting ‘chaotic cold accretion’ (e.g.,
Gaspari et al. 2015). The presence of significant non-thermal pres-
sure support has important implications not only for the diffuse
gas physics, but also for cosmology. Being the largest collapsed
structures, galaxy clusters are highly sensitive to the cosmological
parameters. To achieve high-precision cosmology, however, we re-
quire precise estimates of the cluster masses, minimizing errors and
scatter. The usual approach of using the average SZ and X-ray sig-
nal, which can only give an estimate of thermal pressure support,
gives a biased estimate of the cluster mass. This bias, which comes
from the non-thermal pressure contributions (assuming hydrostatic
equilibrium2 ), has been typically estimated by using numerical
simulations (e.g., Dolag et al. 2005; Vazza et al. 2011; Iapichino
et al. 2011; Battaglia et al. 2012; Nelson et al. 2014; Biffi et al.
2016 and references within). The non-thermal pressure has also
been studied using analytical methods guided by both simulations
and observations (e.g., Chaudhuri et al. 2012, 2013; Shi et al. 2015).
Observationally the evidence for the non-thermal pressure support
is indirect via the discrepancy between the X-ray, SZ or dynami-
cal masses and the masses derived via weak or strong lensing (e.g.,
Mahdavi et al. 2008; Zhang et al. 2010; von der Linden et al. 2014;
Smith et al. 2016). Radio observations can constrain the magnetic
field strength via Faraday rotation measure, which is typically a
few µG (e.g., Ferrari et al. 2008; Bonafede et al. 2010), and thus
can estimate the magnetic pressure role. The SZ fluctuations open
up the possibility to directly probe the turbulence contribution to
the non-thermal pressure support, which we expect to be dominant
from cosmological simulations (e.g., Avestruz et al. 2016).

For the first exploratory study, we choose Coma cluster. Coma
(or Abell 1656) is one of the biggest clusters in angular size visi-
ble to us with highest signal to noise ratio in Planck data and in a
relatively uncontaminated part of the sky. It is thus the ideal ob-
ject to start looking for y-fluctuations which are expected to be
weaker than the average y signal. The Coma cluster is situated at
a redshift of z = 0.0232 (Abell et al. 1989). The physical distance
depends on the cosmological parameters and we take the distance
of the Coma cluster to be 93 Mpc (choosing the same cosmology
as in Churazov et al. 2012). At this distance 10′ = 270.5 kpc and
40′ ≈ 1 Mpc. A crude estimate of the virial radius is R200 ≈ 2 R500,
where R500 = 1.31 Mpc. Coma is classified as a hot, massive galaxy
cluster (Mvir ≈ 1015 M�) with average core plasma temperature
8.5 keV and electron density ne ' 4×10−3 cm−3, which decreases to
10−4 cm−3 at R500 (cf. XMM profiles in Gaspari & Churazov 2013,
Fig. 1). Coma is an archetypal non-cool-core cluster with radiative
cooling time greater than the Hubble time. The main objective of

1 Turbulence should be here interpreted as large scale eddies, sometimes
referred to as ‘bulk motions’ given the long turnover timescale.
2 Part of the bias may come from deviations from spherical symmetry or
failure of hydrostatic equilibrium assumption.
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Figure 1. We show 20◦ × 20◦ region centered on the Coma cluster in LIL map. The R200 ≈ 2.62 Mpc region is marked with a circle at the center of the map.
The three 1◦ regions used to test for typical contamination in this part of the sky are also marked with circles and labeled R1,R2,R3. The bright cluster at the
top-right edge of the plot is ACO 1795.

the current investigation is finding the level of SZ fluctuations and
SZ power spectrum of Coma cluster, carefully assessing the role of
projection and contamination, and to provide the first exploratory
analysis which can be leveraged and extended by future SZ sur-
veys. The paper is organized as follows. In §2, we describe how to
retrieve SZ fluctuations from Planck data on top of the average y
profile. In §3, we deproject the y (2-d) power spectrum into the 3-d
power spectrum of pressure perturbations, δP/P. In §4, we discuss
the key physical implications arising from SZ fluctuations, focus-
ing on ICM turbulence constraints, thermodynamics, and the mass
bias related to non-thermal pressure. In §5, we summarize the main
conclusions and discuss future prospects.

2 SZ FLUCTUATIONS IN COMA CLUSTER

The Planck collaboration has released the Sunyaev-Zeldovich ef-
fect maps (Planck Collaboration et al. 2015a) calculated from two
different algorithms NILC (Needlet Internal Linear Combination)
(Delabrouille et al. 2009) and MILCA (Modified Internal Linear
Combination Algorithm; Hurier et al. 2013). Several independent

groups have also used Planck data to construct the SZ effect maps
(Hill & Spergel 2014; Khatri 2016). We will use the MILCA and
NILC maps as well as the SZ map from Khatri (2016) based on
pixel based parameter fitting algorithm LIL (Linearized Iterative
Least-squares) developed in Khatri (2015). The main difference be-
tween the Planck collaboration maps and our LIL map is that in
MILCA/NILC, which use internal linear combination methods, the
local monopole is removed while LIL preserves the monopole or
the average SZ signal. In addition, the ILC methods determine the
contamination spectrum from the data separately in different parts
of the sky and try to remove all contamination components includ-
ing the CO emission. The LIL method on the other hand ignores
the CO emission and fits for a parametric contamination model in
each pixel in the sky. This is not a problem as the CO emission is
negligible in the Coma region of the sky. We refer to Khatri (2016)
for detailed comparison of LIL with NILC/MILCA algorithms. We
will use all three, NILC, MILCA and LIL, maps for our analysis. As
we will see, all three methods agree and choosing one map over the
other does not affect our results and conclusions. The three maps,
calculated with different algorithms, have different levels of con-
tamination from other components. The comparison of LIL maps

MNRAS 000, 000–000 (0000)
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Figure 2. The measured y profile of Coma cluster in different y maps
(Sec. 2) and the best fit β-model profile to the LIL map. The points for
LIL and MILCA have been slightly offset from the center of the bin in the x
direction to make them easily distinguishable. The distance to Coma of 93
Mpc is used. The size of a bin is 3′ or 81 kpc.

with NILC/MILCA maps serves as a test against non-SZ contami-
nation.

The average SZ and pressure profiles and related properties of
the Coma cluster have been studied in detail in Planck Collabora-
tion et al. (2013). We are interested in the fluctuations in the SZ
signal and related ICM pressure. To study the fluctuations in SZ,
δy(θ)/ȳ(θ), we want to remove the average profile ȳ(θ), where θ is
the two dimensional position vector in the plane of the sky and θ
is its magnitude or the distance from the center of the cluster. We
assume spherical symmetry, so that ȳ depends only on the radial
distance θ. As can be seen in Fig. 1, such an assumption is a fair
approximation. The 2-d to 3-d deconvolution (Abel transform) can
be done exactly only under the assumption of spherical symme-
try since the projection invariably leads to loss of information. Al-
though there have been studies to correct for the asphericity when
doing a statistical study involving large number of clusters (e.g. Fox
& Pen 2002), such an attempt for a single cluster would be highly
sensitive to the model of asphericity used. This is especially clear
from Fig. 1 where it can be seen that the departure from sphericity
is non-trivial and it is a matter of choice what part of the anisotropy
we assign to the departure of average model from sphericity, i.e. the
static background, and what part we assign to dynamical processes
such as mergers and turbulence.

We extract the average profile, ȳ, by averaging in rings of
width 3 arcmin around the SZ peak in the Coma cluster at galactic
coordinates (l = 57.3◦, b = 87.99◦)3. The profile is shown in Fig.
2 for NILC, MILCA and LIL maps. Since LIL also has monopole
contribution from background SZ signal, we have subtracted an es-
timated ybackground = 10−6 from the profile (Khatri & Sunyaev 2015).
The β-model has been found to be a good fit to the SZ profile in
South Pole Telescope (SPT) clusters (Plagge et al. 2010). Defining
the β-model as

ȳβ(θ) =
y0(

1 + θ2/θ2
c
)β (4)

3 This is approximately half a pixel (∼ 0.5′) away from the center used
by Planck collaboration. Such a difference is much smaller than the map
resolution and does not affect the results.

Figure 3. Fluctuations (LIL map) of y, δy(θ) in Coma cluster with the av-
erage profile, estimated in rings of 3 arcmin and linearly interpolated, sub-
tracted. The circle marks R200 ≈ 2.62 Mpc region of the Coma cluster.

Figure 4. Fractional fluctuations of y (LIL map), δy(θ)/ȳ in Coma cluster.
The outer circle marks R200 ≈ 2.62 Mpc region of the Coma cluster. The
inner blue circle marks 60′ radius. The white circle with radius 15′ encloses
the group of galaxies NGC 4839. The fluctuations become nonlinear as we
move away from the the center of the cluster.

MNRAS 000, 000–000 (0000)
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we get the best fit values to the LIL profile at θ < 1200 kpc of
y0 = (65.5±0.31)×10−6, θc = (419.6±9.26) kpc, β = 1.07±0.024
where θ is the radial distance from the center of the cluster in the
2-d plane of the sky. At θ & 1200 kpc we see a deviation from
the β-profile. In particular, the flattening in the observed profile at
∼ 2000 kpc coincides with the recently reported identification of a
shock in the SZ map of Coma at a distance of ∼ 75’ from the center
by Erler et al. (2015). We note that this feature is absent from the
profile reported by Planck Collaboration et al. (2013). However the
radial bins used by Planck Collaboration et al. (2013) are much
larger than the size of this feature and it is most likely averaged
out in their profile. For comparison4, the X-ray surface brightness
profile of Coma has core radius of 272 kpc and steeper slope, SBx ∝

(1+θ2/θ2
c )−1.75; Gaspari & Churazov (2013). If we assume spherical

symmetry, we can get the pressure profile from the SZ profile using
Abel transform,

P̄(r) =
mec2

σT

1
π

∫ r

∞

dy
dθ

dθ(
θ2 − r2)1/2

=
P0(

1 + r2/r2
c
)β+1/2 , (5)

where r is the radial distance from the center in 3-d, r2 = θ2 + z2, z
is the distance along the line of sight direction and

P0 =
mec2

σT

y0

rc

Γ(β + 0.5)
√
πΓ(β)

, (6)

where Γ is the usual gamma function.
We will use the β−model fit of the profile to just simplify the

calculation of the window functions that will come up when we
calculate the fluctuations. To extract the final relative perturbations,
we subtract instead the actual measured average profile ȳ, linearly
interpolated between the bins from the total signal y to get the map
of y fluctuations, δy(θ) = y(θ) − ȳ. This way we are not dependent
on the arbitrary choice of an idealized model (e.g., β- or Arnaud
profile). The map of δy is shown in Fig. 3 in a 2◦×2◦ region around
the Coma cluster for LIL map and the fractional fluctuations δy/ȳ
are shown in Fig. 4. The β-model fit will however be useful when
we test for contamination in our results.

We will calculate the angular power spectra using the publicly
available software PolSpice (Szapudi et al. 2001; Chon et al. 2004)
which also calculates the covariance matrix. The calculation is sim-
ilar to Hivon et al. (2002) and Tristram et al. (2005) but is done in
correlation space instead of harmonic space which makes the de-
convolution of masks much faster. We convert the angular power
spectrum to Fourier power spectrum using the flat sky approxima-
tion (Jaffe & Kamionkowski 1998). See Appendix A for a short
derivation and also for the definition of our Fourier transform con-
vention which differs from that in Churazov et al. (2012); Gaspari
& Churazov (2013). The Planck collaboration provides half-ring
maps which have the same signal as well as almost the same noise
amplitude but the noise between them is uncorrelated. We will use
the cross-power spectra of half-ring y-maps so that the uncorrelated
white noise is automatically canceled. All the power spectra in this

4 X-ray studies use a different β′ definition starting from the density profile
ρ ∝ (1 + r2/r2

c )3β′/2. The projected isothermal profile for y would then be
∝ (1 + θ2/θ2

c )1/2−3β′/2, i.e., β′ = (2β + 1)/3 ' 1.05 for Coma. the X-ray
brightness profile is instead ∝ (1 + θ2/θ2

c )1/2−3β′ , which is steeper as X-ray
emissivity ∝ ρ2. Coma X-ray data fits β′ ' 0.75; such discrepancy with SZ
arises because the isothermal assumption is violated outside the core.
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Figure 5. Power spectrum of fluctuations of y, δy = y − ȳ, in Coma with
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data point is at the center of the k bin while the other data points are slightly
offset to make them distinguishable from each other.
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Figure 6. Power spectrum of fluctuations of y, δy = y− ȳ, in Coma and three
test regions around Coma in LIL map. Note that the cross power spectrum
between the two half ring maps in the test regions is in fact negative for
all points except the last indicating that these test regions are dominated
by noise. The errors are dominated by sample variance and are therefore
proportional to the power spectrum on large scales for same binning.

paper have been corrected for the effect of the masks and the 10′

FWHM (full width half maximum) beam of the SZ maps.
We show the power spectrum of the Coma SZ fluctuations,

δy = y − ȳ in LIL, MILCA and NILC maps in Fig. 5 calculated
after masking the rest of the sky. The amplitude Aδy of the power
spectrum Pδy is plotted. The mask is a map consisting of 1s in the
region occupied by Coma and 0s everywhere else which leaves 60′

radius region at the position of the Coma cluster unmasked. We
apodize the mask before multiplication with the y-map to avoid
high frequency artifacts in power spectrum due to the sharp edge in
the mask. The apodization is done using a 15′ Gaussian replacing
the 1s in the mask by 1−exp

(
−9θ2/(2θ2

ap)
)

with θap = 15′. All three
maps agree very well. There is slightly larger noise in LIL map
which shows up as bigger error bar in the smallest scale bin. The bin
sizes were chosen to be large enough to minimize the correlation
between the neighbouring bins, which are expected when we do not

MNRAS 000, 000–000 (0000)



6 Khatri & Gaspari

have full sky, and small enough so that there are enough bins that
the shape of the power spectrum is not washed out.

It is interesting to note there is a maximum at 1 Mpc (∼R500)
and a decline, which corroborates the idea (§3) that this scale is the
dominant dynamical scale, even for absolute fluctuations – such
scale is commonly associated with major mergers and cosmologi-
cal filamentary inflows. This interpretation comes with a caveat. On
small scales we expect suppression of power because of the integra-
tion along the line of sight which suppresses small scale power in
the 2-d projected map. On large scales we expect decrease in power
because the outskirts of the cluster become important and there the
amplitude of the average SZ signal declines. In particular, the above
mentioned effects would shift the peak in the projected power spec-
trum. The peak is on the same scale as the large fluctuation visible
slightly off center in the δy map in Fig. 5.

In order to test that the fluctuations we are seeing are intrinsi-
cally from the cluster and not SZ effect from background sources
or contamination, we randomly select three test regions near the
Coma cluster, but at least few degrees away from both Coma and
Virgo clusters. Since there is no dominant cluster in these regions,
any fluctuations would be dominated by background SZ signal and
contamination. The regions chosen are at similarly high galactic lat-
itudes and so should have the similar magnitude of contamination.
The centers of the three test regions in galactic coordinates (l, b) are
(171.6, 84.0), (75, 81.0) and (315, 86.0) and we will label them as
“region 1/R 1”, “region 2/R 2”, and “region 3/R 3” respectively, as
shown in Fig. 1.

We apply the same procedure that we used to calculate the
fluctuation power spectrum of Coma to these three regions. The
results are shown in Fig. 6 for the LIL map. We expect that all
contamination and non-Coma signal in the Coma regions would be
similar to that in the test regions. From our null test in Fig. 6 we
see that our power spectrum is dominated by the SZ anisotropies
originating in Coma. The last bin is affected by contamination (at
1σ − 2σ level) giving a positive signal in the test regions; at the
smallest scale, we thus expect some contribution from contamina-
tion, albeit not fully overwhelming the intrinsic Coma signal. We
note that this test just shows the typical contamination in this part of
the sky is small compared to our signal. The actual contamination
in the Coma cluster could be smaller since we expect the galactic
contamination to be smaller, or could be larger if there are addi-
tional radio and infrared point sources in the Coma cluster that we
cannot account for by looking at other regions of the sky. The con-
tribution of the point sources to the NILC, MILCA and LIL maps
is very different (Khatri 2016) with NILC probably the cleanest in
this respect. The fact that the results from the three maps agree so
well with each other gives us confidence that the contribution of
point sources and other extra-galactic and galactic contamination
is negligible. Also, there are no strong point sources detected in
the region of interest in the Planck point source catalogs (Planck
Collaboration et al. 2015e).

3 PRESSURE FLUCTUATIONS IN COMA CLUSTER

We want to calculate the 3-d power spectrum of fractional pressure
fluctuations δP/P. We can write the 2-d SZ power spectrum, Py, as
a convolution of the 3-d pressure power spectrum PP with a window
function (Appendix B for a derivation; see also Peacock 1999) as

Py(kθ) =

∫
dkz

2π

∣∣∣W̃(kz)
∣∣∣2 PP (|kθ + kz|) , (7)

0
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Figure 7. The window function W(θ, z) at several values of the projected
distance θ from the center. As we get away from the center, the window pro-
file becomes broader increasing the suppression of the small scale power.

where Py is the power spectrum of fractional y fluctuations δy/ȳ,
PP is the power spectrum of fractional pressure fluctuations, δP/P̄,
kθ is the Fourier vector in the 2-d x-y plane of the sky and kz is the
Fourier vector along the line of sight direction ẑ, non-bold quan-
tities are the scalar amplitudes of the corresponding vectors and
W̃(kz) is the Fourier transform in the ẑ direction of the weight func-
tion defined by

W(θ, z) ≡
mec2

σT

P̄(θ, z)
ȳ(θ)

, (8)

with θ = (θx, θy) is the position vector in the x-y plane of the sky in
the flat sky approximation so that its magnitude θ is the projected
distance from the center of the cluster. Note that the window func-
tion, plotted in Fig. 7 in real space for several values of projected
distance θ for the best fit β-model profile, is in general a function of
position on the sky, θ, which we have ignored in deriving the equa-
tion 7. This is a good approximation for the central part of the clus-
ter. We show in Fig. 8 the Fourier space window function |W̃(kz)|2

at several values of projected distance θ from the center of Coma
calculated using our best fit profiles in Eqs. 4 and 5. Assuming
|W̃(kz)|2 to be independent of θ is therefore a rough approximation
which becomes more and more accurate as we confine ourselves to
the smaller and smaller projected region of the cluster.

We can further simplify Eq. 7 if we confine ourselves to small
scales so that kz � kθ. We see from Fig. 8 that the window function
drops very sharply on small scales and the contribution to the con-
volution integral from kz/(2π) & 5×10−4 kpc−1 would be small jus-
tifying this approximation for physical scales . 2000 Mpc. In this
limit, the relation between 2-d SZ power spectrum and 3-d pressure
power spectrum reduces to (Churazov et al. 2012)

Py(kθ) ≈ PP (kθ)
∫

dkz

2π

∣∣∣W̃(kz, θ)
∣∣∣2

≈ N(θ) PP (kθ) . (9)

For θ = {0, 100, 200, 500, 1000, 2000} kpc we get N =

{7.4, 7.2, 6.6, 4.6, 2.7, 1.4} × 10−4 respectively. We can check the
last approximation explicitly by using an input 3-d power spec-
trum and performing the convolution integral. For a power law
power spectrum exponentially cut off at small and large scales,
Pp(k) = k−n exp (−kc/k) exp (−k), we show the ratio of 3-d to 2-
d power spectrum in Fig. 9 for different parameters n and kc and
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approximation is shown as the horizontal line.

different projected distances. The default values are n = 11/3 and
kc = 10−3 kpc−1 unless specified otherwise. The approximation in
Eq. 9 is quite accurate on small scales but starts to deteriorate on
large scales where it is sensitive to the exact form of the power
spectrum, in particular the cutoff scale kc. Because of the informa-
tion lost in projection it is impossible to accurately deconvolve the
power spectrum; we will thus use for the rest of the paper the ap-
proximation in Eq. 9 with N = 7×10−4. Although in terms of power
spectral density Pk the ratio N appears to be large, if we consider
the amplitude spectrum Ak (Eq. C3) – which is dimensionless hav-
ing the same units as the corresponding real space perturbation and
is the power per unit logarithmic k interval – the AP(k)/Ay(k) ratio
remains near unity at large scales, increasing only by a factor of a
few for scales smaller than 500 kpc (see Fig. 10).

We now have all ingredients to calculate the power spectrum
of SZ fluctuations for Coma and use Eq. 9 to scale the 2-d SZ fluc-
tuation power spectrum to 3-d pressure fluctuation power spectrum.
We first divide the SZ fluctuation map of Fig. 3 by the average pro-
file to get a map of fractional perturbations of SZ shown in Fig.
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Figure 10. The ratio of pressure (3-d) and SZ (2-d) fluctuations amplitude
spectrum for different 3-d power-law slopes and projected distances θ. The
Eq. 9 approximation is shown as the straight lines. Note that the amplitude
ratio remains near unity at large scales, regardless of projection effects. For
a comparison to the X-ray window see Zhuravleva et al. (2012). The green
curve uses an aggressive exponential cutoff for illustrative purposes; more
likely, the 3-d spectrum merges with the cosmological power spectrum on
scales larger than the cluster size, which is beyond our reach.

4. Since the profile ȳ → 0 at large distances from the center, the
fractional fluctuations, δy/ȳ would diverge and far from the clus-
ter the noise and contamination would start getting amplified and
will dominate the overall power spectrum. The power spectrum is
therefore a strong function of the maximum radius we decide to
use for calculating the power spectrum. We show in Fig. 11 the
power spectrum of pressure fluctuations, δP/P̄, for different values
of maximum radius from the center of Coma, θmax, i.e. we mask
the regions beyond the maximum radius in the map leaving only
the region θ < θmax unmasked. We further apodize the mask with
θap = 15′ Gaussian as defined in the previous section for θmax > 30′

and use θap = 5′ for θmax 6 30′5. We note that formally we re-
trieve electron pressure via SZ signal, however, since we are only
interested in relative fluctuations, the ion component is secondary
here. Moreover, Gaspari & Churazov 2013 found that the ion and
electron temperature differ only by 1 - 15 percent (core to outskirts,
respectively) in typical ICM turbulence simulations. Note that the
errors on large scales are dominated by the sample variance. The
sample variance is a function of bin size and for large bin size the
variance does not rise as fast on large scales as we would expect
for unbinned or logarithmically binned data since we are averaging
many modes even on large scales.

As expected, the fluctuations when normalized to the average
profile P̄ are larger when we use a larger extraction radius. For com-
parison, we show the amplitude of density fluctuations retrieved
from the latest Chandra X-ray observation (Gaspari & Churazov
2013; updated version of the data shown in Churazov et al. 2012)6.
Our smallest extraction radius of 15’ is larger than the half-size of

5 Apodization is beneficial for reducing the edge effects while calculating
the power spectrum, but it should not be so large that most of the signal is
obscured. Large apodization implies using less data, hence larger error bars.
6 As in Gaspari & Churazov (2013), we prefer to compare only with the
more robust and improved Chandra data, as XMM has 40× lower on axis
angular resolution. There are, in addition, systematic differences between
Chandra and XMM instrument (e.g. Schellenberger et al. 2015)
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8 Khatri & Gaspari

Figure 11. Amplitude spectrum of pressure fluctuations for varying extraction radius θmax (LIL maps), for Planck and Chandra data (violet; Gaspari &
Churazov 2013). This key plot shows that large radii have significantly larger perturbations, and thus stronger turbulence motions (Ma3d & 0.8), consistently
with cosmological mergers and inflows. The injection scale is constrained to be at ≈ 500 kpc, given the decline of amplitude at small k. The power spectrum
labeled “-NGC4839 60’ ” is obtained by masking 15’ radius region with 15’ apodization centered on the NGC 4839 group of galaxies. Note that the Chandra
power spectrum is calculated in box of half-size 7’ which is below the Planck resolution. The half-size of the box at the Coma distance is ∼ 200 kpc which
coincides with the peak in the X-ray derived power spectrum. The SZ and X-ray data thus probe mutually exclusive different regions of the cluster (outer and
inner part, respectively). Extrapolating the Chandra inertial range (cyan band) shows the 2 datasets are consistent within errors in the inner extraction region.

the X-ray extraction region of 7’. This fact combined with our SZ
map resolution of 10’ means we are probing different regions of the
Coma cluster in SZ and X-rays. In the smallest disc we have also
non-negligible contribution from contamination. The amplitude is
however still consistent with γ Aρ within 2-σ, where Aρ is the 3-
d amplitude of power spectrum of density fluctuations δρ/ρ̄ from
Chandra, and γ = 5/3 is the adiabatic index (§3.1 for the discus-
sion). We point out that the decrease in the large scale power in
X-ray data is an artifact of approaching the limited box size. This
becomes clear when we compare the Chandra and XMM data in
Churazov et al. (2012) (their Fig. 13). The XMM box size is 12’
and the downturn in power spectrum happens at larger scales in
the XMM data compared with the Chandra data. There is also dis-
crepancy on large scales between the XMM and Chandra pointing
to systematic effects related to the box size (see Fig. 14 in Chura-
zov et al. 2012). E.g., above 300 kpc, Churazov et al. (2012; sec-
tion 5.1) claim a factor of 2 uncertainty in systematic errors. If we
extrapolate our amplitude to the core size of 7’ probed by X-ray
observations, the agreement between the X-ray and SZ improves.
Similarly, if we extrapolate the X-ray cascade to several 100 kpc
scale, the inertial range joins the SZ green and red points within
errorbars (cyan band). Keeping in mind the discussed uncertainties
and the fact we are probing different extraction regions of the clus-
ter, the SZ results are consistent with the X-ray data.

The 60’ radius region includes the group of galaxies NGC
4839 which is falling into the Coma cluster (Briel et al. 1992; Neu-
mann et al. 2001). This group is marked with a white circle in Fig.
4 and shows up as a bright spot in the normalized fluctuations. To
estimate the contribution of this group to the fluctuation signal, we
mask 15’ radius region around the hot spot (which coincides with
the X-ray source in ROSAT all sky survey; Briel et al. 1992). In
addition we apodize the combined mask for the 60’ region analysis

with 15’ Gaussian as explained above, down-weighting the contri-
bution from extended 15’-30’ radius region around the group. Com-
parison of the two 60’ power spectra – with and without masking
the group – shows that the contribution from the group is small, de-
creasing the amplitude at large scales by 20 - 30 percent. We note
that the group lies outside the 30’ radius and, taking into account
the fact that we extend our masks by apodization, it does not con-
tribute to the fluctuations calculated in the 40’ and smaller radius
regions. It should also be noted that the hot plasma is volume filling
within the cluster and internal groups. So cutting regions of the sky
will inevitably also remove some turbulence perturbations intrinsic
to Coma.

To test whether we are seeing actual anisotropies from Coma
or the contamination from non-Coma background SZ or fore-
grounds, we again use our test regions. We compare the test regions
in LIL and NILC maps with the Coma region in LIL, NILC and
MILCA maps in Fig. 12 for θmax = 60′, 30′, 20′, 15′. We plot A2

k in
these plots since when we are dominated by noise in the test regions
the cross spectrum between the two half-ring maps can take nega-
tive values. We see that in Fig. 12 (top) we can attribute all signal
measured in the Coma region to the anisotropies in the Coma clus-
ter except in the last bin where the contamination may have a sub-
dominant contribution. Note that as we take the cross-spectrum, the
noise cancels out in the mean signal but still contributes to the er-
ror bars, which are thus increasing toward the resolution limit. For
our smallest disc with radius θmax = 15′ (Fig. 12, bottom) we can
measure only the smallest scales and here our measured power in
Coma is of similar magnitude as the test regions. The NILC map
test regions have however smaller contamination, while the signal
in NILC is consistent with that in the LIL and MILCA maps. We
therefore have evidence of pressure fluctuations even in the central
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Figure 12. Squared amplitude spectrum of Coma pressure fluctuations for
θmax = 60′, 30′, 20′, 15′ (top to bottom) in LIL, MILCA and NILC maps
and in the test regions (LIL maps). For the test region we used our best fit
Coma profile in the denominator to calculate δy/ȳ.

Table 1. Statistical properties of distribution of ln(1 + δy/ȳ) in the Coma
cluster within radius of 60′ and 30′.

Mean Variance Skewness Kurtosis excess
LIL 60′ −0.054 0.26 −2.1 12.3

MILCA 60′ −0.1 0.24 −1.6 13.5
NILC 60′ −0.035 0.20 −1.1 11.3
LIL 30′ 0.033 0.062 −0.73 3.23

MILCA 30′ −0.034 0.066 0.19 0.07
NILC 30′ 0.035 0.060 0.54 −0.09
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Figure 13. The PDF of SZ fluctuations in the Coma cluster within the 60′

and 30′ radius of the center in NILC and LIL maps. The distribution of
ln(1 + δy/ȳ) is consistent with a Gaussian distribution (shown by solid gray
lines) and therefore δy/ȳ is consistent with having a log-normal distribution
with mild non-Gaussianities (in ln(1 + δy/ȳ)), which is also the statistics of
thermodynamic perturbations driven by turbulence.

part of the Coma which cannot be fully explained by contribution
due to contamination.

We plot the probability density function (PDF) of ln (1 + δy/ȳ)
in Fig. 13 and the best fit normal distributions for 60′ and 30′

regions. The PDF of δy/ȳ is approximately consistent with be-
ing a log-normal distribution. The properties of the distribution of
ln(1 + δy/ȳ) (mean, variance, skewness, and kurtosis) are given in
Table 1 for all three maps. The results from the three maps are again
consistent with each other, especially for the mean and variance in-
dicating that the contamination is sub-dominant. The spectra and
related PDF have key implications for the ICM physics, which we
discuss in depth in the next section.

3.1 Systematics due to ellipticity of the cluster

We have so far assumed spherical symmetry in our analysis. Clus-
ters in the standard cosmological model are expected to be ellipti-
cal and this is indeed true for the Coma cluster (Schipper & King
1978; Neumann et al. 2003). If we try to fit a spherically or cir-
cularly symmetric profile to the ellipsoidal data, the residuals will
look like anisotropies and may contribute to the fluctuation power
spectrum. To study the amplitude of this effect we make an artifi-
cial elliptical cluster with similar β-profile as the Coma cluster and
repeat all our steps on this simulated cluster. Neumann et al. (2003)
have tried to fit an elliptical profile to the XMM-Newton observa-
tions getting eccentricities for the core of the cluster of e = 0.4, 0.6
for the pn and MOS data, respectively. We use the higher eccentric-
ity as reference for our elliptical cluster model. We show the ellip-
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10 Khatri & Gaspari

Figure 14. The elliptical cluster model (left) and Coma cluster in LIL map (right). We remark Coma cluster is less elliptical than our model with eccentricity
e = 0.6. Therefore, the contribution to the power spectrum from ellipticity obtained from such model shall be seen as upper limits; in reality, we expect the
ellipticity contributions to be much smaller.

Figure 15. SZ fluctuations (left) and normalized fluctuations (right) for the elliptical cluster model. These maps should be compared with the corresponding
Coma maps in Figs. 3 and 4.

tical model and Coma cluster in the LIL map in Fig. 14. We note
Coma cluster gas distribution is much more complex than a simple
elliptical profile and different radii have elongations along different
directions. We then perform our previous analysis on such ellipti-
cal cluster model, subtracting the azimuthally averaged profile and
retrieving δy and δy/ȳ maps. These maps are shown in Fig. 15 and
should be compared with the corresponding Coma maps in Figs. 3
and 4. The level of anisotropy introduced by ignoring the ellipticity
is negligible compared with the actual fluctuations observed in the
Coma cluster. In Fig. 16, we show the amplitude of the power spec-

trum of normalized fluctuations for the elliptical model cluster and
compare it with the fluctuations in the Coma cluster in LIL map.
Except for the innermost core, the contribution of ellipticity to the
power spectrum is small (60’ and 30’ region) and can be ignored
on small scales. For the core 15’ region we are at the limit of res-
olution for the y map; there are indeed not enough pixels to make
a definite statement about the ellipticity. In passing, we note that
subtracting a spherical profile from an elliptical profile would re-
sult in a characteristic quadrupolar anisotropy which we do not see
in the real Coma map. To summarize, the above results justify the
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Figure 16. The amplitude of the power spectrum of the elliptical model
compared with the measured fluctuations in Coma cluster.

usage of spherical symmetry and azimuthal averages in our fiducial
analysis.

4 ICM PHYSICS: TURBULENCE, THERMODYNAMICS,
HSE BIAS, AND COSMOLOGICAL IMPLICATIONS

As introduced in §1, the dominant scale and amplitude of the power
spectrum allow us to probe the physics and (thermo)dynamics of
the ICM plasma. The retrieved spectrum of pressure fluctuations
at 500 kpc scale has an amplitude of 33 ± 12% in the inner 15′

extraction region of the cluster. The amplitude of pressure fluc-
tuations at the same scale increases to 74 ± 19% if we use the
40′ radius region. Using previous Eq. 3 – which arises from the
simulation modeling carried out in Gaspari & Churazov (2013)
– and the adiabatic mode (δP/P ' γ δρ/ρ; discussed below),
we estimate that turbulence is characterized by 3-d Mach number
Ma3d = 0.8 ± 0.3 (or Ma1d ≈ 0.5 ± 0.2). This is larger value than
the Chandra estimate since the new observational constraint on the
amplitude peak has increased by 2×.7 As the adiabatic sound speed
is cs ' 1.5 × 104 T 1/2 ' 1.5 × 103 km s−1 (T0 = 8.5 keV), the large-
scale eddies have a characteristic velocity σv ≈ 1.2 × 103 km s−1.
For the 40′ region, we find Ma3d = 1.8 ± 0.5 if we extrapolate
Eq. 3 to the supersonic regime, which is currently untested. We
note that the temperature decreases down to 2 keV at 2 Mpc radius
in Coma (Simionescu et al. 2013), therefore the physical velocities
do not double as the Mach number does but increase by a much
smaller amount, σv ≈ 1.8 × 103, while the compressibility of the
medium progressively increases. The fact that at larger radial an-
nuli the ICM reaches the transonic value is likely an indication that
we are approaching the accretion shock region. Large-scale veloci-
ties up to a few 103 km s−1 are consistent with Chandra constraints
derived from the redshift maps of 6 massive clusters undergoing
significant merging activity (Liu et al. 2016), as well as large-scale
cosmological simulations (e.g., Schmidt et al. 2016).

At scales larger than 500 kpc, the pressure fluctuations in
all spectra (corresponding to different maximum extraction radii8)
steadily decline, indicating a dominant turbulence injection scale

7 We note that the injection scale can not be derived from the Gaspari &
Churazov (2013) modeling, but must come from the observational data.
8 Note that the scale λ (or Fourier mode k) is different from the radial dis-

at that location. The injection Linj ' 500 kpc is consistent with gas
motions driven by mergers and large-scale inflows, as indicated by
cosmological simulations (e.g., Lau et al. 2009; Vazza et al. 2009,
2011; Miniati 2014)9. Even for the larger extraction region, the fluc-
tuations power is mostly contained within r < 1 Mpc, i.e., well
within the virial radius. Internal galaxy group merging and infall
(e.g., Eckert et al. 2014; De Grandi et al. 2016) is thus the likely
dominant driver compared to the large-scale cosmological filamen-
tary accretion. Perturbations driven by the active galactic nucleus
(AGN) feedback play a minor role, since the major AGN outflow
outbursts can reach at best 0.1 R500 (Gaspari et al. 2014b). The same
can be said for perturbations linked to thermal instability (Gaspari
2015); besides Coma long cooling time, fluctuations related to ther-
mal instability are typically contained within r < 50 kpc. External
clumps accreted in the cluster outskirts may enhance density per-
turbations; however, recent cosmological simulations have shown
that such ‘clumpiness’ is secondary compared with the perturba-
tions imparted by non-thermal gas motions (Avestruz et al. 2016).
For instance, the SW large-scale perturbation is cospatial with an
infalling sub-structure (Neumann et al. 2001) which might in part
increase the amplitude in the 60’ spectrum; the 40’ spectrum, on
the other hand, excludes such region, showing a minor decrease in
amplitude (< 20 percent; Sec. 3) and thus signaling that most of the
power is contained in the chaotic motions.

Given the limited resolution of Planck, we are currently not
able to constrain the small-scale (‘inertial’) slope of the power spec-
trum. The complementary X-ray data shows a quasi Kolmogorov
power-law (Pk ∝ k−11/3, i.e., Ak ∝ k−1/3), classically related to tur-
bulence with very low thermal conductivity. If we visually extrapo-
late the cascade beyond the Chandra peak (Fig. 11; cyan band), this
joins within errorbars the Planck red/green data of the inner extrac-
tion regions (Fig. 11), in line with a self-similar cascade of turbulent
eddies from Linj to the dissipation scale (< 30 kpc). As warned in
Gaspari & Churazov (2013), we remark the X-ray amplitude spec-
trum below k < 5 × 10−3 kpc−1 is highly uncertain and can under-
estimate the perturbations, given the strong dependence of X-ray
emissivity on radial distance (∝ ρ2). A jump relative to SZ data is
thus to be expected. Moreover, recall that Planck black/yellow/blue
points cover much larger, more active extraction regions than that
of Chandra (see Sec. 3). Higher resolution SZ observations are re-
quired to ensure tighter constraints on the full ICM power spec-
trum and to directly link the SZ observations to the X-ray data and
related ICM microphysics. Planck data still add key value to our
knowledge of the ICM physics, as it allows us to assess the global
strength of internal motions and the ICM equation of state.

The distribution of SZ/pressure fluctuations follows a log-
normal distribution with mild non-Gaussianities (fat tails and slight
negative skewness; Fig. 13). Remarkably, turbulent motions drive
thermodynamic perturbations (e.g., density, pressure) with similar
log-normal statistics (Federrath et al. 2010; Gaspari et al. 2014a;
Porter et al. 2015). Log-normal fluctuations in the ICM have been
also found by X-ray studies on smaller scales (Kawahara et al.
2008). Regarding asymmetries, since the retrieved Coma Mach
number is nearly transonic, a prediction from turbulence simula-
tions (e.g., Kowal et al. 2007) is that stronger compressive motions

tance r, the latter is the region used for calculating the power spectra while
the former describes the wavelength of fluctuations.
9 Nowadays it is still numerically unfeasible to resolve the long-term and
10s Mpc cosmological evolution, at the same time resolving turbulence and
plasma physics down to the kpc scale over the whole cluster volume.
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drive heavier tails, as found here. Overall, key signature of turbu-
lence is to linearly drive the fluctuations rms σ ∝ Ma3d with log-
normal and leptokurtic PDF, as we find in Planck data. This corrob-
orates the importance of turbulence in shaping the dynamics of hot
plasmas from the cosmological Mpc scale down to the kpc scales,
and possibly further – below the Coulomb collisional scale – via
kinetic plasma instabilities and Alfvén waves.

The Planck data helps us to constrain the dominant thermo-
dynamic mode of the ICM. Since the retrieved gas motions are dy-
namically important (Ma3d & 0.8), perturbations are expected to
drift toward the adiabatic regime (Gaspari et al. 2014a), i.e., δP/P =

γ δρ/ρ, the regime adopted in Fig. 11. This is valid for Ma3d > 0.5.
The fact that we see substantial pressure fluctuations indicates by it-
self that Coma cluster is globally not in isobaric mode, at least at in-
termediate and large scales. In such regime, sound waves (linked to
pressure fluctuations) start to overcome pure entropy perturbations
(mediated by buoyancy/gravity waves). The latter regime would
dominate if Ma3d � 0.5 with δK/K � δP/P, where δK/K are
the entropy perturbations (see Gaspari et al. 2014a for an in-depth
theoretical derivation). This is corroborated by the aforementioned
cosmological simulations, showing that the cosmological accretion
inflow and mergers drive turbulence with average kinetic energy 5 -
35% of the thermal energy, from relaxed to unrelaxed clusters (e.g.,
Vazza et al. 2011). Using our turbulence constraint, Coma has tur-
bulent energy density in the inner region

Eturb ≡
1
2
ρσ2

v =
1
2
γ(γ − 1) Ma2

3d Eth ' 0.34 ± 0.25 Eth. (10)

If we consider the 1 Mpc radius region, the turbulent energy be-
comes comparable to the thermal energy, although it should be kept
in mind the large error bars. As expected, Coma belongs to the class
of unrelaxed clusters with a major dynamic component.

Besides difficult lensing estimates, cluster masses are typically
retrieved via the X-ray density and temperature radial profile as-
suming hydrostatic equilibrium (HSE), dPtot/dr = −ρGM(< r)/r2,
where G is the gravitational constant, Ptot is the total pressure –
thermal and non-thermal – and M(< r) is the mass enclosed within
radius r. Expanding the previous equation, the total mass can be
retrieved as

Mtot(< r) = −
kBT (r) r
µmp G

[
d ln ρ(r)

d ln r
+

d ln T (r)
d ln r

+
Pnt

P
d ln Pnt

d ln r

]
,

(11)
where the last term is the non-thermal pressure support which is
not included in observed X-ray masses Mx, µ is the mean atomic
weight and mp is the proton mass. The mass bias is thus

bM ≡
Mx

Mtot
− 1 = −

Pnt

P
d ln Pnt

d ln P

(
1 +

Pnt

P
d ln Pnt

d ln P

)−1

, (12)

Since P = (γ − 1) Eth = (2/3) Eth and Pnt = (1/3)ρσ2
v = (2/3)Ent

(e.g., Lau et al. 2009; Schmidt et al. 2016), thus Pnt/P = (γ/3) Ma2
3d

and
d ln Pnt/d ln r
d ln P/d ln r

= 1 + 2
d ln Ma3d/d ln r

d ln P/d ln r
. (13)

Beyond the core radius, the pressure gradient slope is −2 (β+1/2) '
−3.14 (Eq. 5) and our retrieved Mach between the 40’ and 15’ ra-
dius implies d ln Ma3d/d ln r ' 0.8, yielding a mass bias

bM ' −0.27 Ma3d
2
(
1 + 0.27 Ma2

3d

)−1
' −15% ÷ −45%, (14)

for the inner (15’) and outskirt (40’) region, respectively. The sub-
stantial increase in non-equilibrium measures at larger radii is con-
sistent with large-scale cosmological simulations (e.g., Battaglia

et al. 2015). The above analysis accounts only for turbulence as
the dominant source of non-thermal pressure; magnetic fields and
cosmic rays may further increase the bias. Bonafede et al. (2010)
find a weak 1 - 5 µG magnetic field in Coma cluster (from the out-
skirts to the core, respectively) by using Faraday rotation measure
in radio data. The magnetic pressure, B2/(8π), is thus < 10 percent
of our retrieved turbulent pressure.

Although we analyzed only one cluster, the HSE bias is ex-
pected to play a crucial role in the mass estimates of all cosmo-
logical systems, from massive clusters to galaxy groups (e.g., Ra-
sia et al. 2004; Lau et al. 2009; Sun et al. 2009). Moreover, it is
well known that cosmological parameter constraints (such as σ8)
derived from SZ clusters and CMB are in tension (Planck Collabo-
ration et al. 2015c). For instance, Shaw et al. (2010) show that in-
creasing the fraction of Pnt support in the ICM reduces the total SZ
power and can thus alleviate such tension (see also de Haan et al.
2016). Furthermore, retrieving true masses allows us to accurately
assess the main scaling relations of virialized structures (in terms
of both slope and intrinsic scatter), such as Lx −Mtot and Mtot − Tx,
where Lx is the X-ray luminosity and Tx is the X-ray temperature,
typically within R500 (Giodini et al. 2013 for a review). In conclu-
sion, while total SZ power probes the thermal energy content, the
related SZ fluctuations tell us the strength of the non-thermal devi-
ations, thus providing a global, self-consistent view of the cluster
(thermo)dynamics.

5 CONCLUSIONS

We have for the first time used the thermal Sunyaev-Zeldovich
effect to constrain the absolute and relative y fluctuations. Such
fluctuations put key constraints on the physics of the intracluster
medium, such as turbulence and the dominant thermodynamics,
with major implications for cosmological studies. We applied our
methodology to the archetypal massive galaxy cluster Coma (Abell
1656), which can be replicated for any other system hosting a hot
gaseous halo. Our major conclusions are summarized as follows.

• Relative 3-d pressure perturbations δP/P can be retrieved via
the 2-d SZ perturbations δy/y, after removal of the average
background profile and spherical deprojection. The retrieved
pressure fluctuations peak at 500 kpc, which is at the limit of
Planck resolution, and steadily decline beyond 1 Mpc. When
combined with the decline in X-ray derived power spectrum on
smaller scales, we can take it as an evidence for a peak in the
turbulence power spectrum at ≈ 500 kpc scales. The fluctuations
at such dominant scale are δP/P = 33 ± 12% and 74 ± 19% for
the 15′ and 40′ radius region, respectively. Because of the limited
angular resolution, Planck can not resolve the power-law cascade
in the spectrum, which is instead constrained by X-ray Chandra
data (Ak ∝ k−1/3; Kolmogorov slope).

• We carefully tested the impact of foreground/background con-
tamination, selecting external regions without evident structures,
and we provided evidence that intrinsic SZ perturbations, and
not contamination, dominate our signal within Coma cluster, in
particular within r < 1 Mpc.

• We show how to deproject the SZ fluctuations in Fourier space.
The impact of projection effects is to suppress the small scale
power as a function of the SZ window function W(θ, z), which
is broader than that of X-ray emissivity (∝ n2). The 3-d to 2-d
amplitude ratio however does not vary drastically: it is of order
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unity at Mpc scale, increasing by a factor of a few at smaller scales.

• SZ fluctuations are a novel important tool to probe the ICM
physics, which optimally complements the X-ray data tied to
smaller tens of kpc scales. By using the modeling and 3-d
high-resolution simulations presented in Gaspari et al. (2013;
2014a), which relate turbulence to thermodynamic perturbations,
we improve the turbulence constraints in Coma. The turbulence
Mach number is Ma3d = 0.8 ± 0.3 (15’ region) with injection scale
Linj ≈ 500 kpc. For the 40’ region, the Mach number doubles, albeit
velocities remain similar due to the declining plasma temperature.
The transonic value at larger radii suggests that we are approaching
the accretion shock region.

• The large SZ fluctuations imply that the hot halo is in adiabatic
mode (mediated by sound waves), rather than in isobaric mode
(mediated by buoyancy waves). The large injection scale and
velocities ≈ 1.2 - 1.8×103 km s−1 are consistent with driving due to
mergers, in particular tied to internal galaxy groups – in agreement
with cosmological simulations and complementary X-ray data.

• The PDF of SZ fluctuations is log-normal with mild non-
Gaussianities (heavier tails). This is the same statistics of
perturbations predicted by high-resolution simulations of turbu-
lence, with heavier tails induced by the increasingly compressive
motions (since approaching the transonic regime).

• The non-thermal pressure support is Eturb/Eth ' 0.34 (for 15’ ra-
dius), corroborating Coma belongs to the class of unrelaxed clus-
ters. We propose a simple methodology (Eq. 12-14) to study the
mass bias bM = Mx/M − 1 as a function of Mach number. The
retrieved turbulent pressure can induce significant HSE mass bias
bM ≈ −15% to −45% in the core and cluster outskirts, respectively.
The SZ fluctuations spectrum thus allows to better retrieve the true
masses, improving our ability to carry out precision cosmology, in
terms of measuring the cosmological parameters (e.g., σ8) and the
main scaling relations (e.g., Lx − Mtot, Mtot − Tx).

This study opens up a new window into the diffuse gas/plasma
physics. While total SZ power conveys the total energy content, the
SZ fluctuations unveil the non-thermal deviations, thus providing
a self-consistent way to assess the global cluster thermodynamics.
The ground based high-resolution SZ missions – SPT (J. J. McMa-
hon et al. 2009), ALMA (Yamada et al. 2012), ACT (Niemack
et al. 2010), CARMA (Rodrı́guez-Gonzálvez et al. 2015), Mus-
tang (Dicker et al. 2014) – will be able to extend our work based
on Planck maps and assess the full cascade of perturbations. Fu-
ture CMB space experiments as COrE (The COrE Collaboration
2011; Cosmic Origins Explorer) and PRISM (Polarized Radiation
Imaging and Spectroscopy Mission; P. Andre et al. 2014) may
even probe the small scales accessible to X-ray, due to the better
S/N and foreground cleaning. Considering that, at the present time,
the next large X-ray mission Athena has foreseen launch in 2028,
the aforementioned SZ missions are vital to advance cluster astro-
physics. In closing, we remark the importance of combining multi-
wavelength observations and multi-scale simulations, as probing
the astrophysics of the diffuse gas and hot plasmas is inevitably
tied to cosmological studies, and vice versa.
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APPENDIX A: FLAT SKY APPROXIMATION

We review the flat sky approximation following Jaffe &
Kamionkowski (1998). Let us consider the correlation function
written in terms of Fourier space as well as in spherical harmonic
space. Equating the two ways of calculating the same correlation
function gives us the flat sky relation between the two power spec-
tra.

We will use angular brackets to denote ensemble average.
In flat space two dimensional Cartesian position vector is x =

(x cos φ, x sin φ), where the bold font denotes a vector and normal
font its scalar amplitude. The correlation function for a field f (x)
for two points separated by displacement vector r is, assuming sta-
tistical homogeneity,

C(r) ≡ 〈 f (x + r) f (x)〉

=

∫
d2k

(2π)2 eik.x d2k′

(2π)2 eik′ .(x+r)〈 f (k) f (k′)〉

=

∫
d2k

(2π)2 e−ik.rP f (k)

=

∫
kdkdφk

(2π)2 e−ikr(cos φk cos φ+sin φk sin φ)P f (k)

=

∫
kdk
2π

J0(kr)P f (k), (A1)

where we have used k = (k cos φk, k sin φk), 〈 f (k) f (k′)〉 =

(2π)2δD(kk′ )P f (k), δD is the Dirac delta distribution, and P f (k) is
the Fourier space power spectrum. In the last line we integrated
over the Fourier angle φk and J0 is the Bessel function of first kind.

Doing the same exercise on a sphere of radius R so that r = Rθ,
and θ is the angular distance between the two points on the sphere,
we get

C(r) = C(Rθ) =
∑
`

2` + 1
4π
P`(cos(θ))C` (A2)

Using the fact that for ` � 1 we have P`(cos(θ)) ≈ J0(`θ) and
approximating the sum by an integral we get

C(r) ≈
∫

`d`
2π

J0

(
`r
R

)
C` (A3)

From Eqs. A1 and A3 we get k2P f (k) ≈ `2C` |`=kR. Note that k in
our convention is the angular frequency with k = 2π/λ, where λ
is the physical wavelength of the Fourier mode. We use PolSpice
software package (Szapudi et al. 2001; Chon et al. 2004) software
package which calculates the power spectra in the spherical har-
monic domain and use the flat sky approximation to present the
results in the Fourier domain. Note that since we have data on a
sphere, spherical harmonics are the natural basis for analyzing the
data.

APPENDIX B: RELATION BETWEEN PRESSURE AND
SZ POWER SPECTRUM ASSUMING SPHERICAL
SYMMETRY

We can get the relationship between the pressure and SZ power
spectrum under the assumption of spherical symmetry by calcu-
lating the correlation function in two different ways. For the SZ
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correlation between two points at θ and θ + r we have

C(r) ≡ 〈
δy
y

(θ)
δy
y

(θ + r)〉 =

∫
d2kθ
(2π)2 eikθ .θ

d2k′θ
(2π)2 eik′θ .(θ+r)〈ỹ(kθ)ỹ(k′θ)〉

=

∫
d2kθ
(2π)2 e−ikθ .rPy(kθ), (B1)

where ỹ is the Fourier transform of δy
y and we have used

〈ỹ(kθ)ỹ(k′θ)〉 = (2π)2 Py(kθ)δ2
D(kθ + k′θ), (B2)

and δD is the Dirac delta distribution. Alternatively we can write y
as integral over pressure along the line of sight direction which we
take along the z direction,

C(r) ≡ 〈
δy
ȳ

(θ)
δy
ȳ

(θ + r)〉 = 〈

∫
P̄(δP/P̄)dz∫

P̄dz
(θ)

∫
P̄(δP/P̄)dz∫

P̄dz
(θ + r)〉

(B3)

Defining the window function

W(z) ≡
P̄∫
P̄dz

=
mec2

σT

P̄
ȳ

(B4)

and assuming that it is independent of θ, we get

C(r) = 〈

∫
dz W

δP
P̄

(θ)
∫

dz′W
δP
P̄

(θ + r)〉

=

∫
dzdz′

d3k
(2π)3

d3k′

(2π)3

dk′z1

2π

dk′z2

2π
W̃

(
kz − k′z1

)
W̃

(
k′z − k′z2

)
ei(kθ .θ+kz .z+k′θ .(θ+r)+k′z .z

′)〈P̃
(
kθ, k′z1

)
P̃

(
k′θ, k

′
z2

)
〉, (B5)

where we have defined P̃ as the Fourier transform of δP/P̄ and W̃
as the Fourier transform of W. Using

〈P̃
(
kθ, k′z1

)
P̃

(
k′θ, k

′
z2

)
〉 = (2π)3 δ2

D
(
kθ + k′θ

)
δD

(
k′z1

+ k′z2

)
Pp

(∣∣∣kθ + kz
′
1

∣∣∣)
(B6)

and integrating using the Dirac delta distributions we get

C(r) =

∫
d2kθ
(2π)2

dkz

2π

∣∣∣W̃(kz)
∣∣∣2 eikθ .rPp (|kθ + kz|) (B7)

Comparing with Eq. B1 we get the relation between the 2-d and 3-d
power spectrum

Py(kθ) =

∫
dkz

2π

∣∣∣W̃(kz)
∣∣∣2 Pp (|kθ + kz|) (B8)

APPENDIX C: FOURIER CONVENTION

We have used the Fourier convention where the reverse transform
is given by (in n dimensions)

f (x) =

∫
dnk

(2π)n f̃ (k)eik.x (C1)

X-ray studies typically use the Fourier convention (e.g., Churazov
et al. 2012; Zhuravleva et al. 2012; Gaspari & Churazov 2013)

f (x) =

∫
dnq f̃ (q)ei2πq.x, (C2)

where q = k/(2π). The power per unit logarithmic frequency inter-
val, A, is dimensionless and independent of the Fourier convention
used. By equating the real space variance, C(0) ≡ 〈 f (x) f (x)〉, as in

the previous section, we get the relation between the power spec-
trum in the two conventions as (with the subscript k or q specifying
the Fourier convention)

Aq =

√
4πq3Pq(q) = Ak =

√
k3

2π2 Pk(k) (C3)

in 3-d and

Aq =

√
2πq2Pq(q) = Ak =

√
k2

2π
Pk(k) (C4)

in 2-d. The Fourier conventions for the power spectrum in n dimen-
sions are

〈 f̃ (q) f̃ (q′)〉 = δn
D(q − q′)Pq(q)

〈 f̃ (k) f̃ (k′)〉 = (2π)nδn
D(k − k′)Pk(k), (C5)

where δn
D is the n-dimensional Dirac delta distribution.
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