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Abstract

In the context of the ongoing United Nations Framework Convention on
Climate Change (UNFCCC) process, it seems important to focus atten-
tion not only on global mean surface air temperature (GSMT) but also
on climate of specific regions, in order to gain insights into the dynam-
ics of the changes, the timescales of the periodic components, the local
trends and the relationships between climatic variables in the region of
interest. This is important for scientists as well as for policy makers.
This paper provides an analysis of the changes in local air temperature
and precipitation depth in exceptionally long observational records and
examines the relationships between these two variables. The focus is on
monthly values. Temperature maximum, minimum and range and cumu-
lative precipitation depth fare considered. The wavelet analysis shows
that the scale of variation is different for temperature and precipitation
and that the behaviour of the temperature range values diverges from
the behaviour of the minimum and maximum values. The timescale of
important changes in the long-term trend is, however, similar. Results
also suggest that the main mode of variability is persistent through time
in the series of temperature maximum, minimum and range but not in
precipitation depth. This is a clear evidence of climate change. All series
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show variances that change over time and are, as expected, nonstation-
ary. The analysis of the wavelet coherence shows that the relationship
between precipitation and temperature evolves through time, and its
intensity varies considering different time scales. The association between
these climatic variables is particularly strong in the last decade. Note-
worthing, the analysis of the coherence suggests that is temperature
leading rain and not the other way around. This highlights the impact
of global worming on hydrologic cycle and on related human activities.

Keywords: Air tempearture, Climate interactions, Precipitation depth,
Wavelet analysis

1 Introduction

The subject of climate change usually focuses attention on global mean surface
air temperature both for analysing temperature change [1–4] and for estimat-
ing relationships between temperature and climate forcing mechanisms like
carbon dioxide and solar irradiance [5, 6]. However, it is the change on regional
and local scales that affect people directly and the knowledge of this change
is essential for the development of adaptation strategies and policy makers
intervention [7]. Geophysical local time series are often generated by complex
systems of which we know little about and predictable behavior in such sys-
tems like trends and periodicities are therefore of great interest (see, among
others, [8]). In this paper we examine historical variations in local surface air
temperature and precipitation depth using data from the Geophysical Obser-
vatory of the University of Modena and Reggio Emilia (Italy). These data can
provide uncommon evidence of the long-term trend and of the relationships
between temperature and precipitation which are hard to find in any global
investigation due to the scarcity of long observed (and not simulated) time
series. Discrete and continuous wavelets are used to characterize the time series
and to study the association between temperature and precipitation, to com-
pare the features of these climatic variables and to detect the abrupt shifts
in both cyclic and trend dynamics. The tools of the discrete and continuous
wavelet transforms [9, 10], the wavelet spectra, coherence, and phase offer a
comprehensive assessment of the characteristic modes of variability of climate
system forcing and of the scale-based relationships between natural climate
variables. In addition, short-term variations in local surface temperature and
rain can be associated with internally generated natural climate variability
and external climate forcing, while long-term variations are strongly related
to human-induced changes only [11]. In particular, the research questions,
addressed in this work, are:

1. Which frequencies contribute the most to the variability of the series? Do
the periodicities remain constant or evolve in time? Are these periodicities
the same in temperature and precipitation?
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2. How does the long-term trend evolve in time? Is there a point of an
important discontinuity?

3. At which timescales, if any, temperature and precipitation have a common
behaviour? Has the association between these two variables changed in the
last decade? Which variable influences the other one?

Giving an answer to these questions means exploring systematically weather
changes and the relationships between variations in temperature and precipi-
tation. Even though the annual cumulative precipitation depth and the annual
maximum and minimum temperature do not show evident dynamics in time,
the study of climate change requires consideration and comparison of both the
internal variability in the local system and the behaviour due to a global devel-
opment. Wavelet analysis is used here to separate the contribution of these two
factors by reconstructing the original time series as a sum of detailed compo-
nents, each of which corresponds to an oscillating component with a different
period that can be associated to local variations, and a smooth component
showing the long-term trend, that can be associated to a global dynamic.

The rest of the paper is organized as follows. Section 2 illustrates the data
and methods. Section 3 reports and discusses results of the statistical analyses.
Conclusions and directions for future research are reported in Section 4.

2 Data and methods

2.1 Data

The monthly time series of maximum and minimum air temperature Tmax and
Tmin and temperature range Trange (◦C) and cumulative precipitation depth
PMM (mm) are obtained from uninterrupted daily observations collected from
1-01-1861 to 31-12-2020 at the Geophysical Observatory of the University of
Modena and Reggio Emilia (latitude 44.6474N, longitude 10.9293E, elevation
76.50 m asl), Modena, Italy. These long term in situ observations (160 years,
1920 monthly observations per series) are not affected by in-homogenities
caused by changes in instrumentations, station moves, different observing prac-
tices (for example, different formulas for calculating the minimum and the
maximum) or different observations time. Therefore, observed variability is due
to changes in the local and global environment and can be related to global
CO2 as well as to variations in the local development. Tmax and Tmin are
defined as the maximum and minimum daily value in the month, respectively,
while Trange is the monthly average of the daily temperature range values.
While changes in the maximum and minimum temperatures are strongly asso-
ciated with changes in the average temperature, temperature range provides
additional information for observing climate variability and change [12, 13].
For this reason, in this study we also consider the monthly average of the dif-
ference between daily maximum temperature and minimum temperature, as it
has been shown to be an important meteorological indicator associated with
global climate change. PMM is defined as the cumulative precipitation depth
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in the month. There are 9 missing values in precipitation in 1943 that are
inputed using cubic spline interpolation.

2.2 Methods

To extract information and to identify scales of variation in the series we use the
wavelet analysis. In order to uncover the different characteristics of the series
we apply both discrete and continuous wavelets. We use a modified version of
the classic Daubechies wavelet for the discrete analysis [14–17] called “least
asymmetric” (LA), and the Morlet wavelet for the continuous analysis. The
LA filter is a common choice in practical applications (see, for example [18]).
For a comparison of different continuous wavelets in an ecological contest we
refer to [19]. All the analysis are carried out with R [20], using the R packages
wavelets [21], biwavelet [22] and an advanced version of the latter [23],
available at the website of the author.

We first use the discrete wavelet transform (DWT) to perform a spec-
tral analysis assuming stationarity, in order to partition the variance of the
series into its different oscillating components with different frequencies (peri-
ods) and to detect which frequencies contribute the most to the variance of
the series. We then use the discrete wavelet for a non-stationary analysis by
performing a local time-scale decomposition of the series and estimating the
spectral characteristics as a function of time [9, 24]. Further, we use the contin-
uous wavelet transform (CWT) approach that is more suited for the extraction
of local time-scale or time-frequency information and it is characterized by a
well-defined relationship between frequency and scale [25]. As shown in [26],
while discrete wavelets are more indicated for the representation of the pro-
cess on appropriate bases and the relationship between scale and frequency in
this approach has less meaning, the main feature of continuous wavelets is the
time-frequency decomposition with the optimal trade-off between time and
frequency resolution, which permits investigation of the temporal evolution of
aperiodic and transient processes. Last, we use the continuous wavelet coher-
ence for a bi-variate analysis of the time series, in order to detect and quantify
the non stationary association between precipitation and temperature.

2.2.1 Wavelet transform

The wavelet transform decomposes a signal over dilated and translated func-
tions of the so called “mother wavelet” φ(t) [10] that can be expressed as a
function of two parameters, one for the time position, τ , and one for the scale of
the wavelet, a. More formally, wavelets are defined as φa,τ (t) = a−1/2φ

(
t−τ
a

)
.

The wavelet transform of a time series x(t) of length T (t = 1, . . . , T ), with
respect to a chosen mother wavelet is performed as follows:

Wx(a, τ) =
1√
a

∫ ∞
−∞

x(t)φ∗
(
t− τ
a

)
dt =

∫ ∞
−∞

x(t)φ∗a,τ (t)dt (1)
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where ∗ denotes the complex conjugate form. The wavelet coefficients Wx(a, τ)
represent the contribution of the scales (the a values) to the signal at different
time positions τ . The wavelet transform can be though of as a cross-correlation
of a signal x(t) with a set of wavelets of various widths or scales a at different
time positions τ . The wavelet function is not arbitrary. It is rather normalized
to have unitary variance so that

∫
|φ(t)|2dt = 1 and it verifies

∫
φ(t)dt = 0.

The wavelet decomposition is therefore a linear representation of the series
where the variance is preserved. The original series can be recovered by using
the following inverse transform:

x(t) =

∫ ∞
−∞

∫ ∞
0

1

a2
Wx(a, τ)φa,τ (t) dt da

/∫ ∞
0

‖Φ(f)‖2/f df (2)

where Φ(f) denotes the Fourier transform of φ(t). Therefore, the wavelet trans-
form is just a linear filter whose response function is given by the wavelet
function. By means of (2), the original series can be reconstructed by inte-
grating over all scales and locations. However, the integration can be limited
over a chosen range of scales a1 − a2, to perform a band-pass filtering of the
original time series in this chosen range. This analysis is called multiresolu-
tion analysis (MRA). In the discrete domain, the scale and shift parameters
are discretized as a = am0 and τ = nτ0, with a0 > 1 and τ0 6= 0 to restrict the
values pof the parameters to a discrete sublattice (see [14]). The wavelets are
also discretized, as follows:

φm,n(t) = a
−m/2
0 φ

(
t− nτ0
amo

)
(3)

where n and m are integer values. The discrete wavelet transform and its
inverse transform are defined as follows:

Wm,n =

∫ ∞
−∞

φ∗m,n(t)x(t)dt, (4)

x(t) = kφ
∑
m

∑
n

Wm,nφm,n(t) (5)

where kφ is a constant value for normalization. The function φm,n(t) provides
sampling points on the scale-time plane that are linear sampling in the time
direction but logarithmic in the scale (a-axis) direction. The scales are on a
dyadic base since a0 is chosen as a0 = 2j where j is an integer value. This
is analogous to the use of a set of narrowband filters in conventional Fourier
analysis.

2.2.2 Mother wavelet

In our application, for the discrete analysis we use a modified version of the
Daubechies wavelet, called least asymmetric (LA). This wavelet is the orthog-
onal wavelet with a phase response that most closely resembles a linear phase
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filter; this allows to align the filtered series in time with the original series. The
wavelets in the least asymmetric family have compact support and are indexed
by a parameter N proportional to the regularity since, as N increases, the
wavelet become smoother. In our application, N = 8. The wavelet is defined
as follows:

φ(t) =

∞∑
k=−∞

βk
√

2ψ(2t− k) (6)

where ψ(t) is a compactly supported scaling function, ψ(t) =∑∞
k=−∞ αk

√
2ψ(2t− k) for the progression {αk}, k real integer, satisfying the

following conditions for all integers N ≥ 2:

αk = 0 if k < 0 or k > 2N (7)

∞∑
k=−∞

αk αk+2m = δ0m, for all integers m (8)

where δ0m is the Kronecker delta,

∞∑
k=−∞

αk =
√

2 (9)

∞∑
k=−∞

βkk
m = 0, 0 ≤ m ≤ N − 1 (10)

where βk = (−1)kα−k+1. The function (6) satisfies the N vanishing moments
condition

∫
φ(t)tmdt = 0, for all integers 0 ≤ m ≤ N − 1. This last prop-

erty has important implications for applications since it ensures that fine-scale
wavelet coefficients will only be large where a function or its derivatives have
singularities [25]. Another important feature is that the wavelet compact bases
are capable of representing various classes of functions more efficiently than
Fourier bases [27]. If we consider, as an example, a piecewise continuous func-
tion, many Fourier basis functions are needed to represent the discontinuities
accurately and the effects of these basis functions will be global. On the other
hand, wavelets will be able to represent the discontinuities more efficiently and
at the same time they will be local and will not affect the global represen-
tation. The DWT has some limitations in terms of sample size (it has to be
a power of two), and the starting point and filter choice can have an impact
on the wavelet transform of the series. Instead, we use the maximum over-
lap DWT (MODWT); this is no longer and orthogonal transformation which
means a higher computational cost, but without the issues that the DWT has
[10]. In either case, for a given level of decomposition J , the original series can
be re-expressed as the sum of a number of wavelet details components Dj ,
j = 1, . . . , J and a smooth component SJ . The wavelet detail Dj can be seen
as a time series related to variations in the original time series at a scale of
2j−1 months, j = 1, . . . , J , while the smooth component SJ can be interpreted
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as a time series related to variations in X at scale of 2J and higher, so one
could think about SJ as the long-term trend.

For the continuous analysis we utilize the mostly used Morlet mother
function, defined as follows:

φ(t) = π−1/4eiω0te−t
2/2 (11)

where ω0 is the non dimensional frequency taken to be 6 to satisfy the admis-
sibility conditions. For ω0 = 6, the second term in the Fourier transform of
(11):

Φ(ω) = e(−ω−ω0)
2/2 − e−ω

2/2e−ω
2
0/2 (12)

is so small that it can be neglected in practice and the Morlet wavelet can be
consequently considered as a modulated Gaussian waveform. Another charac-
teristic of the Morlet wavelet is that the relation between the frequency f and
the scale parameter a can be derived analytically and 1

f = 4πa

ω0+
√

2+ω2
0

with ω0

the central angular frequency of the wavelet (ω0 = 2πf0). With ω0 around 2π
the scale a is inversely proportional to the frequency f . This greatly simplifies
the interpretation of the wavelet analysis and one can replace, in all results,
the scale a by the frequency f or the period 1/f . With ω0 = 6 the Fourier
period pF is almost equal to the scale, since pF = 1.03a ( [9]).

2.2.3 Wavelet power spectra and cone of influence

Following the previous paragraph, the scale a is replaced by the frequency f in
the notation that follows. Considering the wavelet transform of a time series
x(t) defined in (1), we can obtain the local wavelet power spectrum, which
gives the indication of how volatile a time series is across different time scales,
as follows:

Sx(f, τ) = ‖Wx(f, τ)‖2 (13)

Since we are dealing with finite-length time series, errors will occur at the
beginning and end of the wavelet power spectrum as the transform assumes
the data is cyclic. As the wavelet gets closer to the edge of the time series,
parts of it exceed the edge and thus the values of the wavelet transform are
affected creating boundary effects. The affected region increases in extent as
the scale a (or the frequency f) increases. This zone where edge effects are
present is called “cone of influence” and the spectral information in the cone
lacks in accuracy and should be interpreted with caution. The Fourier spectrum
of a series, assuming stationarity, can be related to the global wavelet power
spectrum which is defined as the averaged variance contained in all wavelet
coefficients of the same frequency f or scale a:

S̄x(f) =
σ2
x

T

∫ T

0

‖Wx(f, τ)‖2dt (14)
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with σ2
x the variance of the time series x(t) and T the length of the series.

Another interesting computation is the mean variance at each time location,
obtained by averaging the frequency components:

s̄x(τ) =
σ2
xπ

1/4τ1/2∫∞
0
‖Φ(f)‖2/fdf

∫ ∞
0

(
1

f

)1/2

‖Wx(f, τ)‖2dt (15)

where Φ(f) is the Fourier transform of φ(t). This quantity can also be filtered
in a chosen frequency band (or range of scales) to perform a multiresolution
analysis.

2.2.4 Wavelet coherence and phase difference

For the bi-variate analysis, we use the wavelet coherence. In Fourier analysis,
the coherence is used to determine the association between two time series.
The coherence function is a direct measure of the correlation between the spec-
tra of two time series. To quantify the relationship between two non stationary
series, one can compute the wavelet coherence. Following [28], we define the
wavelet coherence between two time series x(t) and y(t) as the cross spec-
trum Wx,y(f, τ) = Wx(f, τ)W ∗y (f, τ) with * denoting the complex conjugate,
normalized by the spectrum of each series:

Rx,y(f, τ) =
‖〈Wx,y(f, τ)〉‖

‖〈Wx,x(f, τ)〉‖1/2‖〈Wy,y(f, τ)〉‖1/2
(16)

where the symbol 〈〉 denotes a smoothing operator in both time and scale.
Rx,y(f, τ) is bounded in [0, 1]. The smoothing is performed by a convolution
with a constant length window function both in the time and frequency direc-
tion [29]. For the Morlet wavelet, the most suited smoothing operator having

similar footprint as the wavelet, is given in [28]. It is

(
Wx,y(f, τ) ∗ c

−t2

2f2

1

)∣∣∣∣∣
f

for the frequency and (Wx,y(f, τ) ∗ c2Π(0.6a))|τ for time, where c1 and c2
are normalization constants and Π is the rectangle function. The factor 0.6
is an empirically determined scale decorrelation length. In practice both con-
volutions are done directly and the normalization coefficients are determined
numerically. The advantage of these quantities based on wavelets is that they
vary in time and can also detect transient correlations between two series. The
wavelet coherence provides information about at which temporal location and
frequency two non stationary time series are linearly correlated. The quantity
Rx,y(f, τ) can be interpreted as the proportion of power of x(t) explained by
the linear relation with the power of y(t) at a particular time and frequency
band. It has the same meaning of a square correlation coefficient between two
time series. Since the Morlet wavelet is complex, we may also obtain infor-
mation about the possible delay in the relationship, that is information about
which variable is leading the other one, by computing the phase difference. The
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analysis of the phase or out of phase relationship allows us to get insights into
the asymmetric association between the two series, which could be useful for
making hypothesis about possible causal relationships. The phase difference is
defined as follows:

φx,y(f, τ) = tan−1
= (〈Wx,y(f, τ)〉)
< (〈Wx,y(f, τ)〉)

, (17)

where = indicates the imaginary part and < the real part. The phase differ-
ence varies cyclically between −π and π over the duration of the component
waveforms. Positive values suggest that is x(t) leading y(t) while negative
values suggest the opposite situation. Values close to zero indicate that the
relationship between the two series, if present, is symmetric.

2.2.5 Significance level

One can test whether the wavelet-based quantities, that is the spectra or coher-
ence, observed at a particular time for a particular scale, are real features and
not due to a random process with the same Markov transitions as the orig-
inal time series. In our application, we perform hypothesis testing using the
existing R functions written by [23] and available at the author’s website. The
functions are an advanced version of the biwavelet R package. Regarding the
wavelet spectrum, one can compare the estimated sample spectrum with a
background noise spectrum. To make such comparisons, statistical tests such
as the point-wise [28], area-wise [30, 31], geometric [32], and cumulative area-
wise [33] can be implemented. The point wise significant test proposed by [28]
is the first and still mostly used method that allows placing wavelet analysis
in a statistical hypothesis testing framework. In the point-wise approach, the
statistical significance of wavelet quantities associated with points in a wavelet
spectrum is assessed individually, without considering the correlation struc-
ture among wavelet coefficients. For wavelet power spectra of climate time
series, theoretical red-noise spectra are the preferred noise background spectra
against which sample wavelet power spectra are tested. Regarding coherence,
more recent Monte Carlo methods are used to estimate the background noise
spectra [34, 35]. We apply both the point-wise approach and the cumulative
area-wise test developed by [23]. The second approach overcomes some draw-
backs of the first one addressed in literature, like the frequent generation of
many false positive results because of the simultaneous testing of multiple
hypotheses [31, 32] and the occurrence of spurious results in clusters because
of the correlations of the wavelet coefficients.

3 Analysis

3.1 Discrete wavelet and multiresolution analysis

Multiresolution analysis (MRA) permits a very detailed analysis by separating
the signal into components at different scales. We apply the MODWT with
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dyadic scale allowing us to decompose variations in the monthly series at scales
of 1, 2, 4 months and so on. As introduced in Section 2.2.2, for a fixed level of
decomposition J , the original time series X can be reconstructed based on the
wavelet coefficients as X =

∑J
j=1 Dj +SJ . The analysis of monthly data with

J = 4 gives a sequence of results which relate to variations at scales of 1, 2, 4
and 8 months. Extracting signal components at different resolutions amounts
to decomposing variations in the data on different time scales, or equivalently
in different frequency bands (different rates of oscillation). Accordingly, one
can visualize signal variability at different scales, or frequency bands simulta-
neously. Detail components Dj become progressively smoother since, in terms
of frequency, the frequencies contained in the components become progres-
sively lower. Figures 1 and 2 report, for each time series, the distribution of
the estimated wavelet variances, calculated as the variance of the wavelet coef-
ficients at that scale. It is interesting because it provides a decomposition of
the time series variance σ2

X on a scale by scale basis. The analysis reveals
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Fig. 1 Wavelet variance decomposition of monthly cumulated PMM (left) and monthly
Tmin (right)

that temperature and precipitation have a different periodicity. While for the
minimum, the maximum and the temperature range the main periodic com-
ponent (that is, the scale contributing the most to the variance of the series)
is clearly 4 months and the periodicity is thus close to the seasonality, for rain
intensity the main periodic component is one month. Figures 3–6 show the
wavelet detail series D3 for PMM, Tmin, Tmax and Trange, corresponding to
the scale of 4 months previously detected as the main periodic component for
temperature. As outline before, we can think D3 as the seasonal component in
the data. We also report the wavelet detail series D1 (Figure 7) for PMM, as it
is the main responsible for the variability in the PMM time series. The anal-
ysis reveals that the main oscillating component is nearly constant through
time, both in amplitude and time location, for Tmin, Tmax and Trange. On
the contrary, the seasonal behavior of the rain intensity is quite irregular with
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Fig. 2 Wavelet variance decomposition of monthly Tmax (left) and monthly average Trange
(right)
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Fig. 3 Time series plot of D4 for monthly cumulated PMM - scale 4 months

more frequent peaks in the last four decades. It is hard to identify chang-
ing behaviour or any specific time evolution in the considered period (Figure
3). However, if we analyse the monthly pattern D1 (Figure 7) we note that
extreme peaks are present in some years all over the observed period but the
last two decades are characterized by the absence of nearly-zero amplitudes,
quite frequent in the past years, and relative higher amplitudes of the oscil-
lating component. We may conclude that, even though the seasonal behaviour
of the rain intensity doesn’t show an evident change in the last decades, the
monthly behaviour has indeed changed in the mode of variability. The long
term trend, that is the S4 wavelet smooth for all series, is shown in Figure 8.
We note an evident change in the trend component in all temperature series
from around 1960 and a decrease in Trange over time. While both the mini-
mum and the maximum temperature start increasing as ever before, the range
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Fig. 4 Time series plot of D4 for monthly Tmin - scale 4 months

−10
−5

0
5

10

1860 1870 1880 1890 1900 1910
Time (years)

T
m

ax
 (

°C
)

−10
−5

0
5

10

1920 1930 1940 1950 1960
Time (years)

T
m

ax
 (

°C
)

−10
−5

0
5

10

1970 1980 1990 2000 2010 2020
Time (years)

T
m

ax
 (

°C
)

Fig. 5 Time series plot of D4 for monthly Tmax - scale 4 months

temperature starts decreasing. Recent changes in the dynamics of the range
temperature can be related to climate changes due to anthropogenic forcing
[36–38]. The reduction of the range is associated to larger increases in min-
imum temperature than maximum temperatures over the same period and
this difference has been attributed in literature to a number of factors such as
urban heat, land use change, aerosols and greenhouse gases changes in solar
irradiance [13, 39]. Different regions may be affected by different factors. In
this study, we do not consider the possible anthropogenic causes but we find
that, for the region of interest, temperatures changes are indeed present in the
last 50 years, as supported by other local and global studies [39]. The large
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Fig. 6 Time series plot of D4 for monthly Trange - scale 4 months
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Fig. 7 Time series plot of D1 for monthly cumulated PMM - scale 1 month

negative trend of the range temperature is an important meteorological indi-
cator reflecting the instability of the weather very unlikely to have occurred
due to internal variability or external climate forcing but rather associated to
global dynamics related to human-induced changes.

3.2 Time dependent wavelet variance

The wavelet analysis reported in the previous section assumes variability to
be constant over time. We can explore the time-dependent wavelet variance
by choosing a smoothing window and by estimating the wavelet variance as
a moving average of squared wavelet coefficients (note that the mean for the
coefficients is zero). We chose a window of 12 months since the year is the
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Fig. 8 Time series plot of S4 for all series - scales 16 months and higher

natural period of geophysical processes occurring across seasons, like temper-
ature and rain. The resulting time-dependent wavelet variances are reported
in Figures 9–13. While Figures 3–6 allow us to investigate the changes in the
mode of variability, from Figures 9–13 we may get insights into the changes
of the magnitude of the variability across the last 160 years. We see that for
rain intensity the variability has increased in the last 30 years, both consider-
ing the one month scale (responsible of the highest variability, Figure 9) and
the seasonal scale (Figure 10). On the contrary, the temperature series show a
decrease in variability in the last 30 years. For temperature, the highest vari-
ability is found during the period 1930-1960. This confirms that the minimum,
the maximum and the temperature range in the last 50 years fluctuate less
across seasons while the monthly and the seasonal cumulative precipitation
depth is much more variable than before.

3.3 Continuous wavelet transform

Figures 14–17 show the wavelet power spectra obtained with continuous
wavelet analysis (Eq. (13)). The vertical axis reports the wavelet scale (in
years) while the horizontal axis is time (in years). The colour code for power
ranges from dark blue (low values) to dark red (high values). The superimposed
white area indicates the cone of influence that delimits the region influenced
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lines represent areas affected by boundary effects

by edge effects. The thick black contours indicate areas (i.e. patches) signifi-
cant at the α = 5% level (following the cumulative area-wise testing by [23]).
P-values associated with values within the contours are less than 5%. The anal-
ysis reveals a single persistent mode of variability of one year within the whole
considered period, for temperature. It seems that temperature is not affected
by transient features in annual or multi-annual scales. On the contrary, for
rain there clearly exists a 32-year mode of variability that ends around 1980
(without considering the cone of influence) suggesting a potential change in
the process generating rain at that time. Significant patches at scales of 2 and
4 years before 1900 and after 1950 respectively seem to be associated with
singularity-like time domain features rather than periodicities, since they are
intermittent.
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3.4 Wavelet coherence

The analysis of the coherence (Eq. (16)) for two time series reveals areas with
high common power. The value of the wavelet coherence can be thought of as
a localized correlation coefficient in a time-frequency domain: its value in the
[0, 1] range provides information about how strong the association between the
two series is, at each time point and time scale. The phase difference provides
a measure of the lag difference between the two series at each time and scale.
We can think about it as a suggestion of causality: if the phase difference is
positive, it is the first series leading the second, and the other way around if
the phase difference is negative. In the outcome, as for the power spectrum,
the superimposed white area indicates the cone of influence, while thick black
contours enclose areas (i.e. patches) significant at the α = 5% level following
the cumulative area-wise test.
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Fig. 14 Wavelet power spectrum of cumulated PMM

The top panels in Figures 18–20 show that an intermittent strong (signif-
icant) annual association between temperature and rain is present from 1861
until the year 2020. A signficant inter-annual association is also found at higher
scales but again it is not constant over time. For Tmax, it is particularly strong
in the last 20 years on a scale of 2-8 years, and on a scale of 16 years over the
period 1930-2000. The latter relationship is also found for Tmin. On the other
hand, Trange shows a stronger (yet intermittent) relationship with rain that
Tmin or Tmax on scales of 0.5 years and 2-6 years.

The bottom panels in Figures 18–20 show the phase difference. For easy
of interpretation, we have added arrows wherever the coherence is above 0.8.
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Fig. 16 Wavelet power spectrum of Tmax

It can be seen that the prevalent type of relationship, regarless of the scale,
time period and couple of variables, is asymmetric, with temperature leading
precipitation and not the other way around. This result can be generalized
to a global scale, suggesting that global warming influences the other climatic
variables.



Springer Nature 2021 LATEX template

Modelling local climate change using site-based data 19

Time

P
er

io
d

1900 1950 2000

16
.0

0
 4

.0
0

 1
.0

0
 0

.2
5

9.8e−04

3.1e−02

1.0e+00

3.2e+01

1.0e+03

Fig. 17 Wavelet power spectrum of Trange

4 Discussion and Conclusions

Although it is commonly recognised that the mean air temperature is related
to the increase in global carbon dioxide concentration, the dynamics of local
trends due to local weather variables such as precipitation depth or due to
local development remain unclear. Explaining the characteristic of local cli-
mate variables and the relationships among them is an important challenge
emphasized by the increasing evidence that several ecological processes are
affected by local climatic fluctuations. In this study, monthly series of air tem-
perature and precipitation depth are examined over the period of time from
1861 to 2020 and a systematic analysis taking into account the essential fea-
tures of non stationarity and time scale dependence is presented. Data are
particularly relevant since long time series of observed and not reconstructed
climatic variables are scarce in literature. Advanced statistical tools combing
time and frequency domain such as wavelet analysis are used to determine and
compare the internal variability of the series for different scales of time and
to study the long-term patterns and the relationships between temperature
and precipitation. Analysis of results suggests that the main periodic compo-
nent leading the variability is one month for precipitation and 4 months for
temperature, with a different cycling dynamic over the period 1861 to 2020
in rain and temperature range, and similar cycling dynamic in minimum and
maximum temperature. Important discontinuities in the long-term trend start
from 1981 for both rain and temperature. This marked change in the dynamic
of the evolution of both climatic variables can be associated with endoge-
neous or exhogeneous mechanisms such as local or global development (global
CO2, anthropogenic heating of urban areas). While rain shows the highest
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Fig. 18 Wavelet coherence (top) and phase (bottom) between Tmax and PMM

variability in the last two decades, temperature exhibits peaks of variability
within the time interval 1930-1960. Within the same period, the relationship
between temperature and precipitation is statistically significant considering
multi-annual periods of about 16 years. From 2000, the association is highly
significant considering multi-annual periods of 2-4 years. There is a strong sig-
nificant relationship between temperature and precipitation on a yearly cycle
but it is not constant over the time period under study. An important finding
of this study is the different pattern of the minimum and maximum tempera-
tures and the monthly average of daily range temperature in the last 50 years,
consistent with recent works showing how climate change mostly influences
temperature range [40, 41].

In conclusion, the present study highlights the following key points.
Changes in temperature maximum and minimum values display different
behavior than changes in temperature range. Temperature and precipitation
display different timescales of the periodic components and persistent main
mode and variances changing in time. Wavelet coherence analysis shows that
the relationship between temperature and precipitation evolves in time and
suggests that it is temperature driving rainfall and not the other way around.
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Fig. 19 Wavelet coherence (top) and phase (bottom) between Tmin and PMM
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