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Abstract 

This paper presents the surrogate-based Bayesian model updating of a historical masonry bell tower. The finite element model of 
the structure is updated on the basis of the modal properties experimentally identified thanks to a vibration test. In a general context, 
model updating results are highly affected by several uncertainties, regarding both the experimental measures and the model. 
Stochastic approaches to model updating, as the one based on Bayes’ theorem, enable to quantify the uncertainties associated to 
the updated parameters and, consequently, to increase the reliability of the identification. The major drawback of Bayesian model 
updating is the high computational effort requested to compute the posterior distribution of parameters. For this reason, the paper 
proposes to integrate the classical procedure with a surrogate model. A Gaussian surrogate is employed for the approximation of 
the posterior distribution of parameters and the performances of the proposed method are compared to those of an Bayesian 
numerical method proposed in literature. 
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1. Introduction 

The evaluation of the current structural health of historical masonry structures is a very important issue given their 
ageing and their poor seismic resistance (Bassoli et al. 2018, Rainieri et al., 2022, Sivori et al. 2022). Indeed, these 
structures have been generally conceived to bear static gravitational loads and their seismic behavior depends on 
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several factors, namely material properties, structural geometries, floor stiffness and connections between orthogonal 
walls and structural and non-structural elements (Barbieri et al. 2013). In this context, the use of reliable finite element 
(FE) models is of great importance for several purposes, such as seismic vulnerability assessment (Barbieri et al., 
2013), evaluation of post-earthquake conditions (Bassoli et al. 2018), damage assessment (Ramos et al. 2010), 
evaluation of the bell-ringing effects (Vincenzi et al. 2019). However, the modelling of the structural behavior is 
characterized by a high level of uncertainty due to boundary conditions, complex geometries, material properties as 
well as the presence of damage and stiffness degradation. Vibration-based model updating is surely a widespread 
solution that allows to increase model accuracy by adjusting a set of uncertain structural parameters with the aim to 
minimize the difference between numerical and experimental modal properties (Vincenzi and Savoia 2015). Several 
deterministic approaches to model updating have provided satisfactory results in the structural assessment of masonry 
constructions (Boscato et al. 2015, Clementi et al. 2017, Ponsi et al. 2021). These approaches are focused on the 
determination of the optimal values of the updating parameters on the basis of the available experimental measures. 

Another class of model updating approaches, named stochastic class of model updating, addresses the problem 
from a stochastic point of view and allows to quantify the uncertainty affecting the updating parameters. These 
uncertainties are not only related to the modeling but also to the measurements. For the specific case of experimental 
modal properties, uncertainties are mainly due to measurement noise, errors introduced by the modal extraction 
algorithms or changes in the environmental conditions that affect modal properties. The most diffused method of 
stochastic model updating is based on the Bayes’ theorem, where parameter uncertainties are evaluated by combining 
information based on prior distribution and experimental data (Beck and Katafygiotis 1998). In the last twenty years, 
methods for structural identification with Bayesian inference have been widely investigated (see, for instance Yuen 
2010). These works showed the high computational cost required by the method. Some studies presented in literature, 
such as Yan et al. (2020), García-Macías et al. (2021) and Ni et al. (2021), have demonstrated that the efficiency of 
Bayesian inference can be improved through the adoption of surrogate models. 

This paper investigates the structural behavior of a masonry bell tower through a procedure based on experimental 
testing, dynamic identification and Bayesian model updating. Particular attention is paid to the uncertainty bounds for 
the updated stiffness of the tower. A surrogate model is also adopted as approximated solution in the Bayesian 
approach with the aim to reduce the computational cost. Results of the surrogate-based method are compared to those 
of the exact procedure and of a very diffused sampling algorithm for Bayesian updating, namely the Transitional 
Markov Chain Monte Carlo algorithm (Ching and Chen 2007).  

2. Bayesian model updating 

Bayesian model updating provides a stochastic framework for parameter updating by considering the model 
parameters x and the prediction error as random variables. In this way, different sources of uncertainties can be 
included in the method. The general principle involves the updating through a set of measured data d of the prior 
probability distribution of the model parameters p(x|M) into the posterior distribution p(x|d,M): 

( ) ( ) ( )1| , | , |p M c p M p M−=x d d x x     (1) 

where c is the Bayesian evidence, a constant ensuring that the posterior distribution of parameters integrates to one, 
and is computed as the integral of the product p(d|x,M)p(x|M) over the parameter domain. p(d|x,M) is the likelihood 
function representing the plausibility that model M parameterized by x provides the measured data d. It reflects the 
contribution of data in the determination of the updated posterior distribution of parameters.  

The formulation of the likelihood function depends on the definition of the prediction error, that represents the 
discrepancy between the Nm experimentally measured and predicted features, in this case frequencies f and mode 
shapes φ . The usual practice is to assume a zero-mean Gaussian distribution for frequency and mode shape prediction 
error (Simoen et al. 2015). For a generic mode m, it is possible to write:  
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several factors, namely material properties, structural geometries, floor stiffness and connections between orthogonal 
walls and structural and non-structural elements (Barbieri et al. 2013). In this context, the use of reliable finite element 
(FE) models is of great importance for several purposes, such as seismic vulnerability assessment (Barbieri et al., 
2013), evaluation of post-earthquake conditions (Bassoli et al. 2018), damage assessment (Ramos et al. 2010), 
evaluation of the bell-ringing effects (Vincenzi et al. 2019). However, the modelling of the structural behavior is 
characterized by a high level of uncertainty due to boundary conditions, complex geometries, material properties as 
well as the presence of damage and stiffness degradation. Vibration-based model updating is surely a widespread 
solution that allows to increase model accuracy by adjusting a set of uncertain structural parameters with the aim to 
minimize the difference between numerical and experimental modal properties (Vincenzi and Savoia 2015). Several 
deterministic approaches to model updating have provided satisfactory results in the structural assessment of masonry 
constructions (Boscato et al. 2015, Clementi et al. 2017, Ponsi et al. 2021). These approaches are focused on the 
determination of the optimal values of the updating parameters on the basis of the available experimental measures. 

Another class of model updating approaches, named stochastic class of model updating, addresses the problem 
from a stochastic point of view and allows to quantify the uncertainty affecting the updating parameters. These 
uncertainties are not only related to the modeling but also to the measurements. For the specific case of experimental 
modal properties, uncertainties are mainly due to measurement noise, errors introduced by the modal extraction 
algorithms or changes in the environmental conditions that affect modal properties. The most diffused method of 
stochastic model updating is based on the Bayes’ theorem, where parameter uncertainties are evaluated by combining 
information based on prior distribution and experimental data (Beck and Katafygiotis 1998). In the last twenty years, 
methods for structural identification with Bayesian inference have been widely investigated (see, for instance Yuen 
2010). These works showed the high computational cost required by the method. Some studies presented in literature, 
such as Yan et al. (2020), García-Macías et al. (2021) and Ni et al. (2021), have demonstrated that the efficiency of 
Bayesian inference can be improved through the adoption of surrogate models. 

This paper investigates the structural behavior of a masonry bell tower through a procedure based on experimental 
testing, dynamic identification and Bayesian model updating. Particular attention is paid to the uncertainty bounds for 
the updated stiffness of the tower. A surrogate model is also adopted as approximated solution in the Bayesian 
approach with the aim to reduce the computational cost. Results of the surrogate-based method are compared to those 
of the exact procedure and of a very diffused sampling algorithm for Bayesian updating, namely the Transitional 
Markov Chain Monte Carlo algorithm (Ching and Chen 2007).  

2. Bayesian model updating 

Bayesian model updating provides a stochastic framework for parameter updating by considering the model 
parameters x and the prediction error as random variables. In this way, different sources of uncertainties can be 
included in the method. The general principle involves the updating through a set of measured data d of the prior 
probability distribution of the model parameters p(x|M) into the posterior distribution p(x|d,M): 

( ) ( ) ( )1| , | , |p M c p M p M−=x d d x x     (1) 

where c is the Bayesian evidence, a constant ensuring that the posterior distribution of parameters integrates to one, 
and is computed as the integral of the product p(d|x,M)p(x|M) over the parameter domain. p(d|x,M) is the likelihood 
function representing the plausibility that model M parameterized by x provides the measured data d. It reflects the 
contribution of data in the determination of the updated posterior distribution of parameters.  

The formulation of the likelihood function depends on the definition of the prediction error, that represents the 
discrepancy between the Nm experimentally measured and predicted features, in this case frequencies f and mode 
shapes φ . The usual practice is to assume a zero-mean Gaussian distribution for frequency and mode shape prediction 
error (Simoen et al. 2015). For a generic mode m, it is possible to write:  
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Under the assumption of statistical independence of the identified modal properties, the likelihood function can be 
written as the product among the Nm Gaussian distributions with mean fexp,m and standard deviation σfm and the Nm 
multivariate Gaussian distributions with mean vector φexp,m and covariance matrix Σφm (m =1, …, Nm). The covariance 
matrix is usually assumed to be diagonal meaning that no correlation is considered between different mode shape 
components. The variance of the frequency prediction error is expressed as σfm

2=εf
2 fexp,m

2, while the covariance matrix 
of the mode shape prediction error is expressed as Σφm= εφ2 ||φexp,m ||22 I, where I is the identity matrix.  

According to the previous assumptions, the likelihood function can be defined as: 

( ) ( )1
1| , exp
2

p M q J = −  
d x x     (4) 

where q1, that is a function of the coefficients of variation εf and εφ, is a normalizing factor. J(x) is a discrepancy 
function defined as: 
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2.1. Bayesian selection of the optimal coefficients of variation 

When dealing with the construction of the likelihood function, incorrect assumptions regarding the characteristic 
of the prediction error, namely the value of the coefficients of variation εf and εφ, may unfairly influence the Bayesian 
updating results. In this regard, the Bayesian inference framework enables to make use of the available data and to 
include the error parameters in the updating process in order to identify the characteristics of the prediction error 
(Simoen et al. 2015). Bayesian model class selection (BMCS) is an additional level of model updating where the focus 
is addressed to the selection of the most plausible model class from a set of alternatives according to the measured 
data d. In our case, a model class is defined by a specific value of the coefficients of variation εf and εφ.  

Considering a discrete set of model classes M={Mk : k=1,2,...,NMC} the Bayes' theorem expressed at model class 
level updates the prior probability P(Mk|M) into the posterior P(Mk|d,M) through the information contained in d: 

( ) ( ) ( )
( )

| |
| ,

|
k k

k

p M P M
P M

p
=

d M
d M

d M
    (6) 

If all the model classes are considered equally plausible a priori, the posterior probability depends exclusively on 
the factor p(d | Mk), which is the Bayesian evidence for the model class Mk, previously introduced as c in section 2 for 
a generic model class M. The denominator of Eq. (6) is a constant ensuring that the sum of the posterior probabilities 
related to all model classes gives 1. 
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2.2. Computation of the posterior distribution 

In accordance with Eq. (1), for the determination of the posterior distribution of parameters p(x|d,M) the evaluation 
of the Bayesian evidence is needed. In practice, the direct computation of the Bayesian evidence involves numerical 
integration of the product between prior distribution and likelihood function over the parameter domain discretized 
through a mesh. In the following, we indicate this procedure as the “exact” procedure, despite the unavoidable 
approximations related to the numerical integration. The numerical integration becomes unfeasible when the number 
of updating parameters is high since the number of evaluations of the likelihood function grows exponentially with 
the number of parameters. For this reason, several approximated methods have been developed for the determination 
of the updated distribution of parameters and the evidence. The algorithm developed by Ching and Chen (2007), 
named Transitional Markov Chain Monte Carlo (TMCMC) algorithm, is one of the most diffused in the context of 
Bayesian model updating of structural models. The TMCMC uses a series of intermediate distributions pj that 
converge from the prior distribution to the posterior one. At each step, the Metropolis-Hastings algorithm (Hastings 
1970) generates a fixed number of samples according to the distribution pj. Plausibility weights are introduced to 
assess if the samples generated in the previous step can be employed also in the current one. Finally, the TMCMC 
also allows to estimate the Bayesian evidence as the product among the expected values of the plausibility weights 
computed at each step. All the details of the algorithm can be found in Ching and Chen (2007). 

2.3. Proposed surrogate-based solution 

The main problem of the numerical sampling methods for Bayesian model updating is the high number of samples 
required to characterize the posterior distribution. In this work, the authors propose the use of a Gaussian surrogate, 
that approximates the posterior distribution and also allows the computation of the Bayesian evidence.  

The complete procedure used in this work to define the surrogate can be summarized as follows: 
1) Minimization of the function defined as the negative logarithm of the product p(d|x,M)p(x|M) and 

identification of the Maximum a Posteriori (MAP) solution. Indeed, this solution is the point that maximizes 
the product p(d|x,M)p(x|M). The minimization is performed with a surrogate-assisted evolutionary algorithm 
(Vincenzi and Gambarelli 2017). 

2) Creation of a database containing all the points xi evaluated by the optimization algorithm in the previous step 
and the corresponding values of the product p(d|xi,M)p(xi|M). 

3) Normalization of the values p(d|xi,M)p(xi|M) of the database based on the maximum value obtained at step 1). 
Collection of these values in the vector s . 

4) Definition of a Gaussian distribution as the surrogate for the posterior distribution of the updating parameters. 
The mean vector of the distribution is the MAP solution computed at step 1). The covariance matrix is 
calibrated by minimizing the error function: 

( ) ( )
1

f = −x xΣ g Σ s     (7) 

where the symbol 
1
 denotes the generalized 1-norm and ( )xg Σ is the vector collecting the normalized values 

of the Gaussian distribution with covariance matrix  Σx. These values are computed for the points xi contained 
in the database created at step 2). The calibration of the covariance matrix is performed with a penalty approach 
since the matrix needs to be positive defined. 

5) Computation of the evidence as the ratio between the maximum value of the product p(d|xi,M)p(xi|M) and the 
corresponding value of the Gaussian distribution. 

Based on this procedure, the Bayesian model updating method allows to determine the updating parameters and 
their uncertainties with a limited number of modal analyses. Moreover, the integration operation is not necessary, so 
the computational cost is significantly lower than that of the exact procedure. The use of a surrogate-assisted 
evolutionary algorithm allows the characterization of the region close to the MAP solution with enough points. In this 
way, the calibration of the Gaussian covariance matrix is mainly based on the points with the highest values of 
probably density.  
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If all the model classes are considered equally plausible a priori, the posterior probability depends exclusively on 
the factor p(d | Mk), which is the Bayesian evidence for the model class Mk, previously introduced as c in section 2 for 
a generic model class M. The denominator of Eq. (6) is a constant ensuring that the sum of the posterior probabilities 
related to all model classes gives 1. 
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2.2. Computation of the posterior distribution 

In accordance with Eq. (1), for the determination of the posterior distribution of parameters p(x|d,M) the evaluation 
of the Bayesian evidence is needed. In practice, the direct computation of the Bayesian evidence involves numerical 
integration of the product between prior distribution and likelihood function over the parameter domain discretized 
through a mesh. In the following, we indicate this procedure as the “exact” procedure, despite the unavoidable 
approximations related to the numerical integration. The numerical integration becomes unfeasible when the number 
of updating parameters is high since the number of evaluations of the likelihood function grows exponentially with 
the number of parameters. For this reason, several approximated methods have been developed for the determination 
of the updated distribution of parameters and the evidence. The algorithm developed by Ching and Chen (2007), 
named Transitional Markov Chain Monte Carlo (TMCMC) algorithm, is one of the most diffused in the context of 
Bayesian model updating of structural models. The TMCMC uses a series of intermediate distributions pj that 
converge from the prior distribution to the posterior one. At each step, the Metropolis-Hastings algorithm (Hastings 
1970) generates a fixed number of samples according to the distribution pj. Plausibility weights are introduced to 
assess if the samples generated in the previous step can be employed also in the current one. Finally, the TMCMC 
also allows to estimate the Bayesian evidence as the product among the expected values of the plausibility weights 
computed at each step. All the details of the algorithm can be found in Ching and Chen (2007). 

2.3. Proposed surrogate-based solution 

The main problem of the numerical sampling methods for Bayesian model updating is the high number of samples 
required to characterize the posterior distribution. In this work, the authors propose the use of a Gaussian surrogate, 
that approximates the posterior distribution and also allows the computation of the Bayesian evidence.  

The complete procedure used in this work to define the surrogate can be summarized as follows: 
1) Minimization of the function defined as the negative logarithm of the product p(d|x,M)p(x|M) and 

identification of the Maximum a Posteriori (MAP) solution. Indeed, this solution is the point that maximizes 
the product p(d|x,M)p(x|M). The minimization is performed with a surrogate-assisted evolutionary algorithm 
(Vincenzi and Gambarelli 2017). 

2) Creation of a database containing all the points xi evaluated by the optimization algorithm in the previous step 
and the corresponding values of the product p(d|xi,M)p(xi|M). 

3) Normalization of the values p(d|xi,M)p(xi|M) of the database based on the maximum value obtained at step 1). 
Collection of these values in the vector s . 

4) Definition of a Gaussian distribution as the surrogate for the posterior distribution of the updating parameters. 
The mean vector of the distribution is the MAP solution computed at step 1). The covariance matrix is 
calibrated by minimizing the error function: 
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f = −x xΣ g Σ s     (7) 

where the symbol 
1
 denotes the generalized 1-norm and ( )xg Σ is the vector collecting the normalized values 

of the Gaussian distribution with covariance matrix  Σx. These values are computed for the points xi contained 
in the database created at step 2). The calibration of the covariance matrix is performed with a penalty approach 
since the matrix needs to be positive defined. 

5) Computation of the evidence as the ratio between the maximum value of the product p(d|xi,M)p(xi|M) and the 
corresponding value of the Gaussian distribution. 

Based on this procedure, the Bayesian model updating method allows to determine the updating parameters and 
their uncertainties with a limited number of modal analyses. Moreover, the integration operation is not necessary, so 
the computational cost is significantly lower than that of the exact procedure. The use of a surrogate-assisted 
evolutionary algorithm allows the characterization of the region close to the MAP solution with enough points. In this 
way, the calibration of the Gaussian covariance matrix is mainly based on the points with the highest values of 
probably density.  
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3. The Ficarolo bell tower 

The structure, showed in Fig. 1, is a masonry bell tower located in the city of Ficarolo (Veneto, Italy). Its 
construction started in 1777 and it presents an impressive vertical inclination with a mean tilt angle of about 3°. The 
tower is about 68 m high and has a variable cross section whose dimension is variable, from about 8.50 m at the base 
up to 5.30 m at the cusp level. Two intermediate masonry cross-vaulted floors are located at the level of 45.0 m and 
53.0 m, the first of those support the belfry. Due to the Emilia earthquake occurred in 2012, the structure has suffered 
serious damage, thus retrofitting interventions where planned and performed in 2014. The dynamic behavior of the 
Ficarolo bell tower has been characterized thanks to two ambient vibration tests performed before and after the 
strengthening interventions. Since the model calibration is performed with reference to the actual condition of the 
tower (namely after the strengthening), the identification of modal parameters presented in the following refers to that 
condition. The first five identified modes are listed in the first two columns of Table 1. More detail about the tower 
geometry, the instrumentation and the modal extraction can be found in Ponsi et al. (2022). 

3.1. FE model 

A FE model of a three-dimensional cantilever beam discretized in 32 elements with flexural and shear deformability 
has been created for the bell tower. The distribution of the stiffness along the height of the tower is highly uncertain 
due to the deformability of the soil-foundation system, the presence of a rock basement and the presence of a masonry 
vault at the height of 45 m. The calibration of the stiffness distribution is thus necessary in order to match the 
experimental modal properties as well as possible. The variation of stiffness along the tower height is taken into 
account by implementing the so-called damage function approach as proposed by Teughels et al. (2002).  

The external side of the square cross section, that affects both flexural and shear stiffness, is described by a piece-
wise linear function, while the internal side of the cross section is supposed to have a constant value equal to 3.9 m. 
A reference value for the external side of the cross-section B0 of 7 m has been considered and for each element e of 
the FE model the updated side Be is computed through the parameter ae, that represents the relative variation with 
respect to the reference value: 

( )0 1e eB B a= −     (8) 

 

Fig. 1. The Ficarolo bell tower. 

Table 1. Comparison between experimental and numerical modal properties (MAP solution). 

Mode shape Exp. Freq. [Hz] Num. Freq. [Hz] MAC [%] 

1st bending Y 0.55 0.56 96 

1st bending X 0.57 0.56 97 

2nd bending X 2.16 2.14 96 

2nd bending Y 2.18 2.14 96 

1st torsional 3.10 3.08 95 
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The correction parameter ae is computed by the linear combination of the damage functions Ni: 

( )
1

FN
e e

i i
i

a p N
=

=  y     (9) 

where NF is the number of functions Ni used in the discretization, pi are their multiplication factors and ye is the vector 
containing the centroid coordinate of the element e. In summary, the FE model is divided into substructures and the 
variation of the generic parameter ae inside a substructure is described through the damage functions. 

For this case study, three substructures, each one characterized by linear or piece-wise linear damage functions, are 
defined. The first substructure includes the FEs n° 1-3 and takes into account the deformability of the soil-foundation 
system and the presence of a rock basement. The second substructure includes the FEs n° 4-18 and is characterized 
by the decrement of the cross-section dimension with height. The last substructure includes the FEs n° 19-22 and 
considers the increment of stiffness due to the presence of a masonry vault at the height of about 45 m. The upper part 
of the bell tower does not significantly affect the modal behavior of the tower. It is accurately modeled in term of 
masses and stiffeners, but no updating parameters are considered for this part of the model.  

3.2. Bayesian model updating and model class selection 

Bayesian model updating and model class selection (see section 2) have been carried out in order to determine the 
optimal coefficients of variation εf and εφ for the likelihood function and the posterior distribution of parameter vector 
x. The updating parameters are the four multiplication factors pi that appear in Eq. (9). The considered prior 
distribution is a non-informative uniform distribution defined in a four-dimensional hyper-cubic domain where each 
updating parameter pi belongs to the interval [-0.5, 0.4]. This domain is discretized into a regular grid employing a 
step size of 0.025 for each parameter.  

Fig. 2a shows the contour plot of the posterior probability for the coefficients εf and εφ. The probabilities have been 
computed for values of εf and εφ in the range [1%, 10%] with step-size 0.5%. The optimal pair of coefficients, that 
corresponds to the pair with the maximum posterior probability, is εf =2.5% and εφ =3%. Moving away from the 
maximum, the slope of the distribution is steeper in the εφ direction, highlighting the more sensitivity of the posterior 
probability towards the mode shape coefficient.  

Fixed the optimal coefficients of variation, the posterior distribution of updating parameters is calculated. 
Considering the MAP solution, a very good agreement between experimental and numerical modal properties is 
obtained, as shown in Table 2. As concerns the parameter uncertainty, the posterior marginal distributions are reported 
in Fig. 2b. The corresponding updated stiffness distribution is illustrated in Fig. 3a with the uncertainty bounds [μEI - 
σEI; μEI + σEI]. We can note the high uncertainty that characterizes the updated values at the base of the tower with 
differences of about 2.5∙1011 Nm2. 

 
a 

 

b 

 

Fig. 2. (a) contour plot of the posterior probability for different values of the coefficients of variation εf and εφ; (b) marginal posterior distributions 
of the updating parameters p1 (black), p2 (red), p3 (blue) and p4 (dashed black) 
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where NF is the number of functions Ni used in the discretization, pi are their multiplication factors and ye is the vector 
containing the centroid coordinate of the element e. In summary, the FE model is divided into substructures and the 
variation of the generic parameter ae inside a substructure is described through the damage functions. 
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corresponds to the pair with the maximum posterior probability, is εf =2.5% and εφ =3%. Moving away from the 
maximum, the slope of the distribution is steeper in the εφ direction, highlighting the more sensitivity of the posterior 
probability towards the mode shape coefficient.  

Fixed the optimal coefficients of variation, the posterior distribution of updating parameters is calculated. 
Considering the MAP solution, a very good agreement between experimental and numerical modal properties is 
obtained, as shown in Table 2. As concerns the parameter uncertainty, the posterior marginal distributions are reported 
in Fig. 2b. The corresponding updated stiffness distribution is illustrated in Fig. 3a with the uncertainty bounds [μEI - 
σEI; μEI + σEI]. We can note the high uncertainty that characterizes the updated values at the base of the tower with 
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Fig. 2. (a) contour plot of the posterior probability for different values of the coefficients of variation εf and εφ; (b) marginal posterior distributions 
of the updating parameters p1 (black), p2 (red), p3 (blue) and p4 (dashed black) 
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Table 2. Comparison between the results of the exact procedure, the TMCMC and the proposed solution. 

Method 
p1 p2 p3 p4 

Mean [-] St. Dev. [-] Mean [-] St. Dev. [-] Mean [-] St. Dev. [-] Mean [-] St. Dev. [-] 

Exact 0.006 0.071 -0.079 0.044 0.240 0.026 0.031 0.049 

TMCMC -0.014 0.087 -0.062 0.049 0.226 0.033 0.049 0.057 

Gaussian surr. 0.034 0.043 -0.093 0.037 0.249 0.021 0.016 0.043 

 
a 

 

b 

 

Fig. 3. (a) bending stiffness distribution with the uncertainty bounds [μEI-σEI; μEI+σEI]. (b) mean values of the updated stiffness distribution for the 
exact method (blue line), the TMCMC (black line) and the surrogate-based method (red line). 

3.3. Approximated methods for Bayesian model updating 

In this section, the approximated surrogate-based method proposed in section 2.3 is applied for the Bayesian 
updating of the tower FE model. Updating results are presented in Table 2 together with the results of the exact 
procedure and those of the TMCMC. Focusing on the comparison of the TMCMC and of the surrogate-based method 
results with the exact ones, the mean values of the updating parameters p1, p2, p3 and p4 are quite similar. The largest 
relative difference is found for the parameter p1 in both TMCMC and surrogate-based method. As regards the standard 
deviation of all the parameters, it is lightly overestimated by the TMCMC and lightly underestimated by the surrogate-
based method. There are significant differences in the number of modal analyses required to perform the updating: 
about 1.9 million for the exact procedure, 9000 for the TMCMC and 265 for the surrogate-based method. 

The mean values of the updated stiffness distribution obtained with the three methods are represented in Fig. 3b. 
All the distributions are characterized by the same trend, proving the good approximations obtained by proposed 
method. The major differences in terms of stiffness values are noted for the elements located at the base of the model. 
This is in line with the observations of the results presented in Table 2. 

4. Conclusions 

In this paper, the structural identification of the FE model of the Ficarolo bell tower has been presented. The FE 
model is a simple cantilever beam where the stiffness variation along the longitudinal axis is parametrized with the 
so-called damage function approach. The parameter identification is based on the experimental modal properties 
extracted from the acceleration response of the structure acquired during an ambient vibration test and it is performed 
with a Bayesian approach. This approach allows to obtain the optimal values of the prediction error coefficients of 
variation from the experimental data and to quantify the uncertainty of the updated parameters.  

Results show a large uncertainty for the updated stiffness value at the base of the tower. Indeed, the deformability 
of the soil-foundation system and the presence of a rock basement represent significant uncertainty sources for the 
model.  
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The posterior distribution of the updating parameters is computed in an approximate way through a surrogate-based 
method. The comparison with the exact results and with those obtained by means of the TMCMC algorithm reveals 
that the proposed method allows to compute a sufficiently accurate solution for this problem with a computational 
cost significantly reduced if compared to that of the exact procedure or of the TMCMC. The main drawback deals 
with the uncertainty of the updated parameters, that is lightly underestimated with respect to the exact values. In the 
authors opinion, it can depend on the discrepancy between the exact posterior distribution and the Gaussian 
approximator in the tail areas. 

Acknowledgment 

The research was partially supported by the ReLUIS-DPC 2022-2024 Project (Line WP6 – Monitoring and satellite 
data). The financial support of the Civil Protection Department and the Reluis Consortium is gratefully acknowledged. 

References 

Barbieri, G., Biolzi, L., Bocciarelli, M., Fregonese, L., Frigeri, A., 2013. Assessing the seismic vulnerability of a historical building. Engineering 
Structures 57, 523-535. 

Bassoli, E., Vincenzi, L., D'Altri, A. M., de Miranda, S., Forghieri, M., Castellazzi, G., 2018. Ambient vibration-based finite element model 
updating of an earthquake-damaged masonry tower. Structural Control and Health Monitoring, 25. 

Beck, J. L., Katafygiotis, L. S., 1998. Updating Models and Their Uncertainties. I: Bayesian Statistical Framework. Journal of Engineering 
Mechanics, 124, 455-461. 

Boscato G, Ceravolo R, Russo S, Zanotti Fragonara L, 2015. Global sensitivity-based model updating for heritage structures. Computer-Aided 
Civil and Infrastructure Engineering 30(8), 620–635. 

Ching, J., Chen, Y.-C., 2007. Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model 
Averaging. Journal of Engineering Mechanics 133.  

Clementi, F., Pierdicca, A., Formisano, A., Catinari, F., Lenci, S., 2017. Numerical model upgrading of a historical masonry building damaged 
during the 2016 Italian earthquakes: the case study of the Podestà palace in Montelupone (Italy). Journal of Civil Structural Health Monitoring, 
7, 703–717. 

García-Macías E., Ierimonti L., Venanzi I., Ubertini F., 2021. An Innovative Methodology for Online Surrogate-Based Model Updating of Historic 
Buildings Using Monitoring Data. International Journal of Architectural Heritage, 15 (1), 92- 12. 

Hastings, W. D., 1970. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrica, 57, 97-109. 
Ni, P., Li, J., Hao, H., Han, Q., Du, X., 2021. Probabilistic model updating via variational Bayesian inference and adaptive Gaussian process 

modeling. Computer Methods in Applied Mechanics and Engineering, 383, 113915.  
Ponsi, F., Bassoli, E., Vincenzi, L. 2021. A multi-objective optimization approach for FE model updating based on a selection criterion of the 

preferred Pareto-optimal solution. Structures, 33, 916-934.  
Ponsi, F., Bassoli, E., Vincenzi, L., 2022. Bayesian and deterministic surrogate-assisted approaches for model updating of historical masonry 

towers. Journal of Civil Structural Health Monitoring.  
Rainieri, C., Fabbrocino, G., Brigante, D. 2022. Differentiating Local and Global Vibration Modes of Heritage Masonry Buildings through the 

Spatial Correlation of Modal Displacements. International Journal of Architectural Heritage, 16(4), 597-615. 
Ramos, L. F., Roeck, G. D., Lourenço, P. B., Campos-Costa, A., 2010. Damage identification on arched masonry structures using ambient and 

random impact vibrations. Engineering Structures, 32, 146-162.  
Simoen, E., De Roeck, G., Lombaert, G., 2015. Dealing with uncertainty in model updating for damage assessment: A review. Mechanical Systems 

and Signal Processing, 56–57, 123-149. 
Sivori D, Cattari S, Lepidi M, 2022. A methodological framework to relate the earthquake-induced frequency reduction to structural damage in 

masonry buildings. Bullettin of Earthquake Engineering. 
Teughels, A., Maeck, J., De Roeck, G., 2002. Damage assessment by FE model updating using damage functions. Computers & Structures, 80, 

1869-1879.  
Vincenzi, L., Savoia, M., 2015. Coupling response surface and differential evolution for parameter identification problems. Computer-Aided Civil 

and Infrastructure Engineering, 30, 376-393.  
Vincenzi, L., Gambarelli, P., 2017. A proper infill sampling strategy for improving the speed performance of a Surrogate-Assisted Evolutionary 

Algorithm. Computers and Structures, 178, 58-70. 
Vincenzi, L., Bassoli, E., Ponsi, F., Castagnetti, C., Mancini, F., 2019. Dynamic monitoring and evaluation of bell ringing effects for the structural 

assessment of a masonry bell tower. Journal of Civil Structural Health Monitoring, 9, 439–458.  
Yan, W.-J., Chronopoulos, D., Papadimitriou, C., Cantero-Chinchilla, S., Zhu, G.-S., 2020. Bayesian inference for damage identification based on 

analytical probabilistic model of scattering coefficient estimators and ultrafast wave scattering simulation scheme. Journal of Sound and 
Vibration, 468, 1-23.  

Yuen, K.-V., 2010. Bayesian Methods for Structural Dynamics and Civil Engineering. John Wiley & Sons. 



	 Federico Ponsi  et al. / Procedia Structural Integrity 44 (2023) 1538–1545� 1545
 F. Ponsi et al./ Structural Integrity Procedia 00 (2022) 000–000  7 

Table 2. Comparison between the results of the exact procedure, the TMCMC and the proposed solution. 

Method 
p1 p2 p3 p4 

Mean [-] St. Dev. [-] Mean [-] St. Dev. [-] Mean [-] St. Dev. [-] Mean [-] St. Dev. [-] 

Exact 0.006 0.071 -0.079 0.044 0.240 0.026 0.031 0.049 

TMCMC -0.014 0.087 -0.062 0.049 0.226 0.033 0.049 0.057 

Gaussian surr. 0.034 0.043 -0.093 0.037 0.249 0.021 0.016 0.043 

 
a 

 

b 

 

Fig. 3. (a) bending stiffness distribution with the uncertainty bounds [μEI-σEI; μEI+σEI]. (b) mean values of the updated stiffness distribution for the 
exact method (blue line), the TMCMC (black line) and the surrogate-based method (red line). 
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The posterior distribution of the updating parameters is computed in an approximate way through a surrogate-based 
method. The comparison with the exact results and with those obtained by means of the TMCMC algorithm reveals 
that the proposed method allows to compute a sufficiently accurate solution for this problem with a computational 
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with the uncertainty of the updated parameters, that is lightly underestimated with respect to the exact values. In the 
authors opinion, it can depend on the discrepancy between the exact posterior distribution and the Gaussian 
approximator in the tail areas. 

Acknowledgment 

The research was partially supported by the ReLUIS-DPC 2022-2024 Project (Line WP6 – Monitoring and satellite 
data). The financial support of the Civil Protection Department and the Reluis Consortium is gratefully acknowledged. 

References 

Barbieri, G., Biolzi, L., Bocciarelli, M., Fregonese, L., Frigeri, A., 2013. Assessing the seismic vulnerability of a historical building. Engineering 
Structures 57, 523-535. 

Bassoli, E., Vincenzi, L., D'Altri, A. M., de Miranda, S., Forghieri, M., Castellazzi, G., 2018. Ambient vibration-based finite element model 
updating of an earthquake-damaged masonry tower. Structural Control and Health Monitoring, 25. 

Beck, J. L., Katafygiotis, L. S., 1998. Updating Models and Their Uncertainties. I: Bayesian Statistical Framework. Journal of Engineering 
Mechanics, 124, 455-461. 

Boscato G, Ceravolo R, Russo S, Zanotti Fragonara L, 2015. Global sensitivity-based model updating for heritage structures. Computer-Aided 
Civil and Infrastructure Engineering 30(8), 620–635. 

Ching, J., Chen, Y.-C., 2007. Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model 
Averaging. Journal of Engineering Mechanics 133.  

Clementi, F., Pierdicca, A., Formisano, A., Catinari, F., Lenci, S., 2017. Numerical model upgrading of a historical masonry building damaged 
during the 2016 Italian earthquakes: the case study of the Podestà palace in Montelupone (Italy). Journal of Civil Structural Health Monitoring, 
7, 703–717. 

García-Macías E., Ierimonti L., Venanzi I., Ubertini F., 2021. An Innovative Methodology for Online Surrogate-Based Model Updating of Historic 
Buildings Using Monitoring Data. International Journal of Architectural Heritage, 15 (1), 92- 12. 

Hastings, W. D., 1970. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrica, 57, 97-109. 
Ni, P., Li, J., Hao, H., Han, Q., Du, X., 2021. Probabilistic model updating via variational Bayesian inference and adaptive Gaussian process 

modeling. Computer Methods in Applied Mechanics and Engineering, 383, 113915.  
Ponsi, F., Bassoli, E., Vincenzi, L. 2021. A multi-objective optimization approach for FE model updating based on a selection criterion of the 

preferred Pareto-optimal solution. Structures, 33, 916-934.  
Ponsi, F., Bassoli, E., Vincenzi, L., 2022. Bayesian and deterministic surrogate-assisted approaches for model updating of historical masonry 

towers. Journal of Civil Structural Health Monitoring.  
Rainieri, C., Fabbrocino, G., Brigante, D. 2022. Differentiating Local and Global Vibration Modes of Heritage Masonry Buildings through the 

Spatial Correlation of Modal Displacements. International Journal of Architectural Heritage, 16(4), 597-615. 
Ramos, L. F., Roeck, G. D., Lourenço, P. B., Campos-Costa, A., 2010. Damage identification on arched masonry structures using ambient and 

random impact vibrations. Engineering Structures, 32, 146-162.  
Simoen, E., De Roeck, G., Lombaert, G., 2015. Dealing with uncertainty in model updating for damage assessment: A review. Mechanical Systems 

and Signal Processing, 56–57, 123-149. 
Sivori D, Cattari S, Lepidi M, 2022. A methodological framework to relate the earthquake-induced frequency reduction to structural damage in 

masonry buildings. Bullettin of Earthquake Engineering. 
Teughels, A., Maeck, J., De Roeck, G., 2002. Damage assessment by FE model updating using damage functions. Computers & Structures, 80, 

1869-1879.  
Vincenzi, L., Savoia, M., 2015. Coupling response surface and differential evolution for parameter identification problems. Computer-Aided Civil 

and Infrastructure Engineering, 30, 376-393.  
Vincenzi, L., Gambarelli, P., 2017. A proper infill sampling strategy for improving the speed performance of a Surrogate-Assisted Evolutionary 

Algorithm. Computers and Structures, 178, 58-70. 
Vincenzi, L., Bassoli, E., Ponsi, F., Castagnetti, C., Mancini, F., 2019. Dynamic monitoring and evaluation of bell ringing effects for the structural 

assessment of a masonry bell tower. Journal of Civil Structural Health Monitoring, 9, 439–458.  
Yan, W.-J., Chronopoulos, D., Papadimitriou, C., Cantero-Chinchilla, S., Zhu, G.-S., 2020. Bayesian inference for damage identification based on 

analytical probabilistic model of scattering coefficient estimators and ultrafast wave scattering simulation scheme. Journal of Sound and 
Vibration, 468, 1-23.  

Yuen, K.-V., 2010. Bayesian Methods for Structural Dynamics and Civil Engineering. John Wiley & Sons. 


