High power density, low weight, compact dimensions, high efficiency as well as reliability are the key factors in designing and dimensioning piston engines for General Aviation and Unmanned Aerial Vehicle (UAV) power plants. Despite of new available technologies, conventional solutions are still struggling to fulfill simultaneously all those requirements. The paper explores the application of a new design of 2-Stroke externally scavenged engines to aircraft. The new concept basically consists in the use of a patented rotary valve for controlling the flow through a set of inlet ports, enabling supercharging and the achievement of extremely high power densities compared to conventional solutions. The scavenging is realized by using an external pump, made up of a further cylinder, whose piston is connected to the same crankshaft. The piston pump allows the crankcase to be used as a conventional oil sump, and greatly improves the crankshaft balance. No poppet valves or camshafts need to be installed, since the flow is driven by piston-controlled ports and by two sets of reed valves. The engine can adopt two types of combustion system: Gasoline Direct Injection (GDI) for SI operations, and Direct Injection Common Rail for Diesel cycle. The paper is focused on the last version, since it can run on standard aircraft fuel. The Diesel engine has three cylinders and three piston pumps, for a total displacement of 1.5 liter The engine is turbocharged and inter-cooled, in order to reach a power target, at sea level, of 150 kW@4000 rpm. Another fundamental target is the minimum power of 100 kW, at the altitude of 20,000 feet. The paper reviews the design of the engine and presents the numerical prediction of the key performance parameters.

A new design concept for 2-Stroke aircraft Diesel engines / Cantore, Giuseppe; Mattarelli, Enrico; Rinaldini, Carlo Alberto. - In: ENERGY PROCEDIA. - ISSN 1876-6102. - ELETTRONICO. - 45:(2014), pp. 739-748. (Intervento presentato al convegno 68th Conference of the Italian Thermal Machines Engineering Association, ATI 2013 tenutosi a Bologna, ita nel 2013) [10.1016/j.egypro.2014.01.079].

A new design concept for 2-Stroke aircraft Diesel engines

CANTORE, Giuseppe;MATTARELLI, Enrico;RINALDINI, Carlo Alberto
2014

Abstract

High power density, low weight, compact dimensions, high efficiency as well as reliability are the key factors in designing and dimensioning piston engines for General Aviation and Unmanned Aerial Vehicle (UAV) power plants. Despite of new available technologies, conventional solutions are still struggling to fulfill simultaneously all those requirements. The paper explores the application of a new design of 2-Stroke externally scavenged engines to aircraft. The new concept basically consists in the use of a patented rotary valve for controlling the flow through a set of inlet ports, enabling supercharging and the achievement of extremely high power densities compared to conventional solutions. The scavenging is realized by using an external pump, made up of a further cylinder, whose piston is connected to the same crankshaft. The piston pump allows the crankcase to be used as a conventional oil sump, and greatly improves the crankshaft balance. No poppet valves or camshafts need to be installed, since the flow is driven by piston-controlled ports and by two sets of reed valves. The engine can adopt two types of combustion system: Gasoline Direct Injection (GDI) for SI operations, and Direct Injection Common Rail for Diesel cycle. The paper is focused on the last version, since it can run on standard aircraft fuel. The Diesel engine has three cylinders and three piston pumps, for a total displacement of 1.5 liter The engine is turbocharged and inter-cooled, in order to reach a power target, at sea level, of 150 kW@4000 rpm. Another fundamental target is the minimum power of 100 kW, at the altitude of 20,000 feet. The paper reviews the design of the engine and presents the numerical prediction of the key performance parameters.
2014
68th Conference of the Italian Thermal Machines Engineering Association, ATI 2013
Bologna, ita
2013
45
739
748
Cantore, Giuseppe; Mattarelli, Enrico; Rinaldini, Carlo Alberto
A new design concept for 2-Stroke aircraft Diesel engines / Cantore, Giuseppe; Mattarelli, Enrico; Rinaldini, Carlo Alberto. - In: ENERGY PROCEDIA. - ISSN 1876-6102. - ELETTRONICO. - 45:(2014), pp. 739-748. (Intervento presentato al convegno 68th Conference of the Italian Thermal Machines Engineering Association, ATI 2013 tenutosi a Bologna, ita nel 2013) [10.1016/j.egypro.2014.01.079].
File in questo prodotto:
File Dimensione Formato  
2014 - A new design concept for 2-Stroke aircraft Diesel engines.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 959.81 kB
Formato Adobe PDF
959.81 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/982137
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 19
social impact