The efficient conversion of light into electricity or chemical fuels is a fundamental challenge. In artificial photosynthetic and photovoltaic devices, this conversion is generally thought to happen on ultrafast, femto-to-picosecond timescales and to involve an incoherent electron transfer process. In some biological systems, however, there is growing evidence that the coherent motion of electronic wavepackets is an essential primary step, raising questions about the role of quantum coherence in artificial devices. Here we investigate the primary charge-transfer process in a supramolecular triad, a prototypical artificial reaction centre. Combining high time-resolution femtosecond spectroscopy and time-dependent density functional theory, we provide compelling evidence that the driving mechanism of the photoinduced current generation cycle is a correlated wavelike motion of electrons and nuclei on a timescale of few tens of femtoseconds. We highlight the fundamental role of the interface between chromophore and charge acceptor in triggering the coherent wavelike electron-hole splitting.

Quantum coherence controls the charge separation in a prototypical artificial light-harvesting system / C. A., Rozzi; S. M., Falke; Spallanzani, Nicola; A., Rubio; Molinari, Elisa; D., Brida; M., Maiuri; G., Cerullo; H., Schramm; J., Christoffers; C., Lienau. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - ELETTRONICO. - 4:(2013), pp. 1602-1602. [10.1038/ncomms2603]

Quantum coherence controls the charge separation in a prototypical artificial light-harvesting system

SPALLANZANI, NICOLA;MOLINARI, Elisa;
2013

Abstract

The efficient conversion of light into electricity or chemical fuels is a fundamental challenge. In artificial photosynthetic and photovoltaic devices, this conversion is generally thought to happen on ultrafast, femto-to-picosecond timescales and to involve an incoherent electron transfer process. In some biological systems, however, there is growing evidence that the coherent motion of electronic wavepackets is an essential primary step, raising questions about the role of quantum coherence in artificial devices. Here we investigate the primary charge-transfer process in a supramolecular triad, a prototypical artificial reaction centre. Combining high time-resolution femtosecond spectroscopy and time-dependent density functional theory, we provide compelling evidence that the driving mechanism of the photoinduced current generation cycle is a correlated wavelike motion of electrons and nuclei on a timescale of few tens of femtoseconds. We highlight the fundamental role of the interface between chromophore and charge acceptor in triggering the coherent wavelike electron-hole splitting.
2013
4
1602
1602
Quantum coherence controls the charge separation in a prototypical artificial light-harvesting system / C. A., Rozzi; S. M., Falke; Spallanzani, Nicola; A., Rubio; Molinari, Elisa; D., Brida; M., Maiuri; G., Cerullo; H., Schramm; J., Christoffers; C., Lienau. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - ELETTRONICO. - 4:(2013), pp. 1602-1602. [10.1038/ncomms2603]
C. A., Rozzi; S. M., Falke; Spallanzani, Nicola; A., Rubio; Molinari, Elisa; D., Brida; M., Maiuri; G., Cerullo; H., Schramm; J., Christoffers; C., Lienau
File in questo prodotto:
File Dimensione Formato  
Rozzi Falke Nat Comm ncomms2603.pdf

Open access

Descrizione: articolo principale
Tipologia: Versione pubblicata dall'editore
Dimensione 765.58 kB
Formato Adobe PDF
765.58 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/963895
Citazioni
  • ???jsp.display-item.citation.pmc??? 30
  • Scopus 218
  • ???jsp.display-item.citation.isi??? 237
social impact