The brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD) between mossy fibres and granule cells can saturate synaptic capacity and impair cerebellar functioning, which suggests that neuromodulators are required to gate plasticity processes. Cholinergic systems innervating the cerebellum are thought to enhance procedural learning and memory. Here we show that a specific subtype of acetylcholine receptors, the α7-nAChRs, are distributed both in cerebellar mossy fibre terminals and granule cell dendrites and contribute substantially to synaptic regulation. Selective α7-nAChR activation enhances the postsynaptic calcium increase, allowing weak mossy fibre bursts, which would otherwise cause LTD, to generate robust LTP. The local microperfusion of α7-nAChR agonists could also lead to in vivo switching of LTD to LTP following sensory stimulation of the whisker pad. In the cerebellar flocculus, α7-nAChR pharmacological activation impaired vestibulo-ocular-reflex adaptation, probably because LTP was saturated, preventing the fine adjustment of synaptic weights. These results show that gating mechanisms mediated by specific subtypes of nicotinic receptors are required to control the LTD/LTP balance at the mossy fibre-granule cell relay in order to regulate cerebellar plasticity and behavioural adaptation.

Gating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage / Prestori, F; Bonardi, C; Mapelli, L; Lombardo, P; Goselink, R; De Stefano, Me; Gandolfi, D; Mapelli, Jonathan; Bertrand, D; Schonewille, M; De Zeeuw, C; D'Angelo, E.. - In: PLOS ONE. - ISSN 1932-6203. - ELETTRONICO. - 8:(2013), pp. 1-10. [10.1371/journal.pone.0064828]

Gating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage.

Gandolfi D;MAPELLI, Jonathan;
2013

Abstract

The brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD) between mossy fibres and granule cells can saturate synaptic capacity and impair cerebellar functioning, which suggests that neuromodulators are required to gate plasticity processes. Cholinergic systems innervating the cerebellum are thought to enhance procedural learning and memory. Here we show that a specific subtype of acetylcholine receptors, the α7-nAChRs, are distributed both in cerebellar mossy fibre terminals and granule cell dendrites and contribute substantially to synaptic regulation. Selective α7-nAChR activation enhances the postsynaptic calcium increase, allowing weak mossy fibre bursts, which would otherwise cause LTD, to generate robust LTP. The local microperfusion of α7-nAChR agonists could also lead to in vivo switching of LTD to LTP following sensory stimulation of the whisker pad. In the cerebellar flocculus, α7-nAChR pharmacological activation impaired vestibulo-ocular-reflex adaptation, probably because LTP was saturated, preventing the fine adjustment of synaptic weights. These results show that gating mechanisms mediated by specific subtypes of nicotinic receptors are required to control the LTD/LTP balance at the mossy fibre-granule cell relay in order to regulate cerebellar plasticity and behavioural adaptation.
2013
8
1
10
Gating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage / Prestori, F; Bonardi, C; Mapelli, L; Lombardo, P; Goselink, R; De Stefano, Me; Gandolfi, D; Mapelli, Jonathan; Bertrand, D; Schonewille, M; De Zeeuw, C; D'Angelo, E.. - In: PLOS ONE. - ISSN 1932-6203. - ELETTRONICO. - 8:(2013), pp. 1-10. [10.1371/journal.pone.0064828]
Prestori, F; Bonardi, C; Mapelli, L; Lombardo, P; Goselink, R; De Stefano, Me; Gandolfi, D; Mapelli, Jonathan; Bertrand, D; Schonewille, M; De Zeeuw, C; D'Angelo, E.
File in questo prodotto:
File Dimensione Formato  
Prestori2013.pdf

Open access

Descrizione: Articolo principale
Tipologia: Versione pubblicata dall'editore
Dimensione 4.93 MB
Formato Adobe PDF
4.93 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/963295
Citazioni
  • ???jsp.display-item.citation.pmc??? 25
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 41
social impact