Some of the most intriguing properties of graphene are predicted for specifically designed nanostructures such as nanoribbons. Functionalities far beyond those known from extended graphene systems include electronic band gap variations related to quantum confinement and edge effects, as well as localized spin-polarized edge states for specific edge geometries. The inability to produce graphene nanostructures with the needed precision, however, has so far hampered the verification of the predicted electronic properties. Here, we report on the electronic band gap anddispersion of the occupied electronic bands of atomically precise graphene nanoribbons fabricated via on-surface synthesis. Angle-resolved photoelectron spectroscopy and scanning tunnelingspectroscopy data from armchair graphene nanoribbons of width N = 7 supported on Au(111) reveal a band gap of 2.3 eV, an effective mass of 0.21 m0 at the top of the valence band, and anenergy-dependent charge carrier velocity reaching 8.2 105 m/s in the linear part of the valence band. These results are in quantitative agreement with theoretical predictions that include image charge corrections accounting for screening by the metal substrate and confirm the importance of electron-electron interactions in graphene nanoribbons

Electronic Structure of Atomically Precise Graphene NanoribbonsACS Nano, 2012, 6 (8), pp 6930–6935Publication Date (Web): August 1, 2012 (Article)DOI: / P., Ruffieux; J., Cai; N. C., Plumb; L., Patthey; Prezzi, Deborah; Ferretti, Andrea; Molinari, Elisa; X., Feng; K., Müllen; C. A., Pignedoli; R., Fasel. - In: ACS NANO. - ISSN 1936-0851. - ELETTRONICO. - 6:(2012), pp. 6930-6935. [10.1021/nn3021376]

Electronic Structure of Atomically Precise Graphene NanoribbonsACS Nano, 2012, 6 (8), pp 6930–6935Publication Date (Web): August 1, 2012 (Article)DOI:

PREZZI, Deborah;FERRETTI, Andrea;MOLINARI, Elisa;
2012

Abstract

Some of the most intriguing properties of graphene are predicted for specifically designed nanostructures such as nanoribbons. Functionalities far beyond those known from extended graphene systems include electronic band gap variations related to quantum confinement and edge effects, as well as localized spin-polarized edge states for specific edge geometries. The inability to produce graphene nanostructures with the needed precision, however, has so far hampered the verification of the predicted electronic properties. Here, we report on the electronic band gap anddispersion of the occupied electronic bands of atomically precise graphene nanoribbons fabricated via on-surface synthesis. Angle-resolved photoelectron spectroscopy and scanning tunnelingspectroscopy data from armchair graphene nanoribbons of width N = 7 supported on Au(111) reveal a band gap of 2.3 eV, an effective mass of 0.21 m0 at the top of the valence band, and anenergy-dependent charge carrier velocity reaching 8.2 105 m/s in the linear part of the valence band. These results are in quantitative agreement with theoretical predictions that include image charge corrections accounting for screening by the metal substrate and confirm the importance of electron-electron interactions in graphene nanoribbons
2012
6
6930
6935
Electronic Structure of Atomically Precise Graphene NanoribbonsACS Nano, 2012, 6 (8), pp 6930–6935Publication Date (Web): August 1, 2012 (Article)DOI: / P., Ruffieux; J., Cai; N. C., Plumb; L., Patthey; Prezzi, Deborah; Ferretti, Andrea; Molinari, Elisa; X., Feng; K., Müllen; C. A., Pignedoli; R., Fasel. - In: ACS NANO. - ISSN 1936-0851. - ELETTRONICO. - 6:(2012), pp. 6930-6935. [10.1021/nn3021376]
P., Ruffieux; J., Cai; N. C., Plumb; L., Patthey; Prezzi, Deborah; Ferretti, Andrea; Molinari, Elisa; X., Feng; K., Müllen; C. A., Pignedoli; R., Fasel
File in questo prodotto:
File Dimensione Formato  
ACSNano6.pdf

Solo gestori archivio

Tipologia: Versione pubblicata dall'editore
Dimensione 382.45 kB
Formato Adobe PDF
382.45 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/763890
Citazioni
  • ???jsp.display-item.citation.pmc??? 46
  • Scopus 397
  • ???jsp.display-item.citation.isi??? 382
social impact