Polythiophene derivatives constitute nowadays the most extensively studied class of conducting polymers, thanks to their mechanical and thermal stability, as well as to their physical and chemical properties, such as electronic conductivity, electrochromism, solvatochromism, thermochromism and luminescence. These materials have been proposed for use in a wide range of applications, including chemical sensors, light emitting diodes, thin film transistors, different electrocatalytic systems, batteries, smart windows, and even artificial muscles.Peculiar systems are realised by anchoring similar materials on substrates. In particular, conductive substrates suitably coated by polythiophene derivatives constitute particularly interesting electrode systems that can be exploited in numerous electrochemical-electroanalytical applications. However, a notable part of the research activity in these fields is today evolving toward the insertion of metals into the polythiophenes matrix, in order to further improve the performances of the pure organic material. The driving force to these studies lies in the possibility to combine the properties of the organic and inorganic entities, taking advantage of their synergic interaction. Basically, two different approaches, resulting in hybrids/composites of quite different nature, have been followed: i) link of metal complexes to the polymeric backbone; ii) inclusion of metal ions and complexes, of clusters, oxides or nanoparticles into the polymer. In similar systems, the presence of the metal is supposed to deeply affect the electronic and electrochemical properties of the resulting hybrid/composite material.The aim of the present contribution is to give a picture of the variety of polythiophene-based hybrid/composite materials developed, with reference to the systems in which the polymer is supported on a conductive substrate, to constitute an electrode system. The different physico-chemical characterisations are treated, mainly devoted to clarify the interactions between the polymer and the metal centres, as well as the nature of the interface between the ambient and the composite as a whole. Description is given of some applications in electrochemical environments.

Electrode coatings consisting of polythiophene-based composites containing metal centres / Zanardi, Chiara; Terzi, Fabio; Pigani, Laura; Seeber, Renato. - STAMPA. - (2009), pp. 1-74.

Electrode coatings consisting of polythiophene-based composites containing metal centres.

ZANARDI, Chiara;TERZI, Fabio;PIGANI, Laura;SEEBER, Renato
2009

Abstract

Polythiophene derivatives constitute nowadays the most extensively studied class of conducting polymers, thanks to their mechanical and thermal stability, as well as to their physical and chemical properties, such as electronic conductivity, electrochromism, solvatochromism, thermochromism and luminescence. These materials have been proposed for use in a wide range of applications, including chemical sensors, light emitting diodes, thin film transistors, different electrocatalytic systems, batteries, smart windows, and even artificial muscles.Peculiar systems are realised by anchoring similar materials on substrates. In particular, conductive substrates suitably coated by polythiophene derivatives constitute particularly interesting electrode systems that can be exploited in numerous electrochemical-electroanalytical applications. However, a notable part of the research activity in these fields is today evolving toward the insertion of metals into the polythiophenes matrix, in order to further improve the performances of the pure organic material. The driving force to these studies lies in the possibility to combine the properties of the organic and inorganic entities, taking advantage of their synergic interaction. Basically, two different approaches, resulting in hybrids/composites of quite different nature, have been followed: i) link of metal complexes to the polymeric backbone; ii) inclusion of metal ions and complexes, of clusters, oxides or nanoparticles into the polymer. In similar systems, the presence of the metal is supposed to deeply affect the electronic and electrochemical properties of the resulting hybrid/composite material.The aim of the present contribution is to give a picture of the variety of polythiophene-based hybrid/composite materials developed, with reference to the systems in which the polymer is supported on a conductive substrate, to constitute an electrode system. The different physico-chemical characterisations are treated, mainly devoted to clarify the interactions between the polymer and the metal centres, as well as the nature of the interface between the ambient and the composite as a whole. Description is given of some applications in electrochemical environments.
2009
Encyclopedia of Polymer Composites: Properties, Performance and Applications
9781607417170
Nova Publishers
STATI UNITI D'AMERICA
Electrode coatings consisting of polythiophene-based composites containing metal centres / Zanardi, Chiara; Terzi, Fabio; Pigani, Laura; Seeber, Renato. - STAMPA. - (2009), pp. 1-74.
Zanardi, Chiara; Terzi, Fabio; Pigani, Laura; Seeber, Renato
File in questo prodotto:
File Dimensione Formato  
978-1-60741-717-0_ch1.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 521.5 kB
Formato Adobe PDF
521.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/618036
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 9
social impact