Concise information on the general features of the quantum-mechanical current density induced in the electrons of a molecule by a spatially uniform, time-independent magnetic field is obtained via a stagnation graph that shows the isolated singularities and the lines at which the current-density vector field vanishes. Stagnation graphs provide compact description of current-density vector fields and help the interpretation of molecular magnetic response, e.g., magnetic susceptibility and nuclear magnetic shielding. The stagnation graph of six cyclic, planar aromatic molecules has been obtained at the Hartree-Fock level via a procedure based on continuous transformation of the origin of the current density formally annihilating the diamagnetic contribution. Some common distinctive elements observed for cyclic aromatic rings CnHn, with n=3,4, . . . ,8, in the presence of a magnetic field normal to the molecular plane, are discussed. The results can be used for a general discussion of diatropism in aromatic systems.

Topology of magnetic-field induced current-density field in diatropic mono-cyclic molecules / Faglioni, Francesco; Lazzeretti, Paolo; Pelloni, Stefano; Zanasi, Riccardo. - In: PHYSICAL REVIEW A. - ISSN 1050-2947. - STAMPA. - 74:(2006), pp. 012506-1-012506-8. [10.1103/PhysRevA.74.012506]

Topology of magnetic-field induced current-density field in diatropic mono-cyclic molecules

FAGLIONI, Francesco;LAZZERETTI, Paolo;PELLONI, Stefano;ZANASI, Riccardo
2006

Abstract

Concise information on the general features of the quantum-mechanical current density induced in the electrons of a molecule by a spatially uniform, time-independent magnetic field is obtained via a stagnation graph that shows the isolated singularities and the lines at which the current-density vector field vanishes. Stagnation graphs provide compact description of current-density vector fields and help the interpretation of molecular magnetic response, e.g., magnetic susceptibility and nuclear magnetic shielding. The stagnation graph of six cyclic, planar aromatic molecules has been obtained at the Hartree-Fock level via a procedure based on continuous transformation of the origin of the current density formally annihilating the diamagnetic contribution. Some common distinctive elements observed for cyclic aromatic rings CnHn, with n=3,4, . . . ,8, in the presence of a magnetic field normal to the molecular plane, are discussed. The results can be used for a general discussion of diatropism in aromatic systems.
2006
74
012506-1
012506-8
Topology of magnetic-field induced current-density field in diatropic mono-cyclic molecules / Faglioni, Francesco; Lazzeretti, Paolo; Pelloni, Stefano; Zanasi, Riccardo. - In: PHYSICAL REVIEW A. - ISSN 1050-2947. - STAMPA. - 74:(2006), pp. 012506-1-012506-8. [10.1103/PhysRevA.74.012506]
Faglioni, Francesco; Lazzeretti, Paolo; Pelloni, Stefano; Zanasi, Riccardo
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/454646
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 58
social impact