A microscopic particle description of the charge transport process in amorphous GST (a-GST) is presented in this paper, based on the assumption that electrical conduction in the amorphous phase is controlled by defects and trapped carriers. The physical model has been implemented in a Monte Carlo simulation coupled to the Poisson equation for a simple device formed by a nanometric layer of amorphous GST in contact with two planar metallic electrodes. The purpose of our research is to understand how and to which amount different aspects of the microscopic picture influence the electrical properties of the device when external tunable parameters, like operating current and temperature, are varied. Moreover the role of other parameters, often almost unknown in real devices like, e.g., trap energy levels and concentration, trap spatial distribution, is analised through focused simulated experiments with the purpose of pursuing a theoretical control of the threshold behavior so much important for technological exploitation. Results obtained so far are compared with experiments, analytical models available in the literature, and the outcome of deterministic equations formulated by the Authors for the system under investigation.

Monte Carlo simulation of charge transport in amorphous GST / E., Piccinini; F., Buscemi; T., Tsafack; Brunetti, Rossella; M., Rudan; Jacoboni, Carlo. - STAMPA. - 1:(2008), pp. 177-182. (Intervento presentato al convegno European/Phase Change and Ovonic Symposium EPCOS 2008 tenutosi a Praha nel september 8-9 2008).

Monte Carlo simulation of charge transport in amorphous GST

BRUNETTI, Rossella;JACOBONI, Carlo
2008

Abstract

A microscopic particle description of the charge transport process in amorphous GST (a-GST) is presented in this paper, based on the assumption that electrical conduction in the amorphous phase is controlled by defects and trapped carriers. The physical model has been implemented in a Monte Carlo simulation coupled to the Poisson equation for a simple device formed by a nanometric layer of amorphous GST in contact with two planar metallic electrodes. The purpose of our research is to understand how and to which amount different aspects of the microscopic picture influence the electrical properties of the device when external tunable parameters, like operating current and temperature, are varied. Moreover the role of other parameters, often almost unknown in real devices like, e.g., trap energy levels and concentration, trap spatial distribution, is analised through focused simulated experiments with the purpose of pursuing a theoretical control of the threshold behavior so much important for technological exploitation. Results obtained so far are compared with experiments, analytical models available in the literature, and the outcome of deterministic equations formulated by the Authors for the system under investigation.
2008
European/Phase Change and Ovonic Symposium EPCOS 2008
Praha
september 8-9 2008
1
177
182
E., Piccinini; F., Buscemi; T., Tsafack; Brunetti, Rossella; M., Rudan; Jacoboni, Carlo
Monte Carlo simulation of charge transport in amorphous GST / E., Piccinini; F., Buscemi; T., Tsafack; Brunetti, Rossella; M., Rudan; Jacoboni, Carlo. - STAMPA. - 1:(2008), pp. 177-182. (Intervento presentato al convegno European/Phase Change and Ovonic Symposium EPCOS 2008 tenutosi a Praha nel september 8-9 2008).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/703906
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact